DevOps

Martin Kellogg

Reading quiz: DevOps

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SREs aren’t supposed to spend more
than half their time on operations. If they do start to spend more
than 50% of their time, the software engineering teams responsible
for the system (not the SREs) must handle the extra operations load.

Q2: TRUE or FALSE: a blameless post-mortem culture is motivated
by the fact that you can’t "fix" people, but you can fix systems and
processes to better support people making the right choices when
designing and maintaining complex systems

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SREs aren’t supposed to spend more
than half their time on operations. If they do start to spend more
than 50% of their time, the software engineering teams responsible
for the system (not the SREs) must handle the extra operations load.

Q2: TRUE or FALSE: a blameless post-mortem culture is motivated
by the fact that you can’t "fix" people, but you can fix systems and
processes to better support people making the right choices when
designing and maintaining complex systems

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SREs aren’t supposed to spend more
than half their time on operations. If they do start to spend more
than 50% of their time, the software engineering teams responsible
for the system (not the SREs) must handle the extra operations load.

Q2: TRUE or FALSE: a blameless post-mortem culture is motivated
by the fact that you can’t "fix" people, but you can fix systems and
processes to better support people making the right choices when
designing and maintaining complex systems

DevOps

Today’s agenda:

e Operations, Toil, and the DevOps philosophy
e Achievingreliability

O

O O O O

the service reliability hierarchy + SLAs/targets
monitoring and reliability testing
incident/emergency response

preventing problems before they occur
post-mortems + learning from failure

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
e setting up the servers that will run the software and installing the

software on them

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
e setting up the servers that will run the software and installing the

software on them
e conducting system/acceptance tests

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
e setting up the servers that will run the software and installing the

software on them
e conducting system/acceptance tests
e running the software and keeping it running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:

e setting up the servers that will run the software and installing the
software on them

e conducting system/acceptance tests
e running the software and keeping it running
e measuring the performance of the running software

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
e setting up the servers that will run the software and installing the

software on them

conducting system/acceptance tests

running the software and keeping it running

measuring the performance of the running software

fixing any problems that arise while the software is running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
e setting up the servers that will run the software and installing the

software on them

conducting system/acceptance tests

running the software and keeping it running

measuring the performance of the running software

fixing any problems that arise while the software is running
deploying new versions of the software

Operations: the traditional approach

Operations: the traditional approach

e traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers

Operations: the traditional approach

e traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
o sysadmins are specialists in specific tech stacks
m e.g., experts at Linux or Windows, etc.

Operations: the traditional approach

e traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
o sysadmins are specialists in specific tech stacks
m e.g., experts at Linux or Windows, etc.
o e.g., NJIT’s IT undergrad degree program was (probably)
originally intended as preparation for this kind of role

Operations: the traditional approach

e traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
o sysadmins are specialists in specific tech stacks
m e.g., experts at Linux or Windows, etc.
o e.g., NJIT’s IT undergrad degree program was (probably)
originally intended as preparation for this kind of role
e thisapproach is best when systems change rarely

Operations: the traditional approach

e traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
o sysadmins are specialists in specific tech stacks
m e.g., experts at Linux or Windows, etc.
o e.g., NJIT’s IT undergrad degree program was (probably)
originally intended as preparation for this kind of role
e thisapproach is best when systems change rarely
o e.g.,when software is released on physical media

Operations: the traditional approach

e traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
o sysadmins are specialists in specific tech stacks
m e.g., experts at Linux or Windows, etc.
o e.g., NJIT’s IT undergrad degree program was (probably)
originally intended as preparation for this kind of role
e thisapproach is best when systems change rarely
o e.g.,when software is released on physical media
o other advantages: easy to staff for, off-the-shelf tooling, etc.

Traditional ops in different business models

e two business models:

Traditional ops in different business models

e two business models:
o services (i.e., the developing organization runs the software and
sells access to customers)

Traditional ops in different business models

e two business models:
o services (i.e., the developing organization runs the software and
sells access to customers)
m service ops: need to set up the servers/machines on which
the software will run, install the software + dependencies,
configure firewalls, etc.

Traditional ops in different business models

e two business models:
o services (i.e., the developing organization runs the software and
sells access to customers)

m service ops: need to set up the servers/machines on which
the software will run, install the software + dependencies,
configure firewalls, etc.

o products (i.e., sell/lease the software to others to run)

Traditional ops in different business models

e two business models:
o services (i.e., the developing organization runs the software and
sells access to customers)

m service ops: need to set up the servers/machines on which
the software will run, install the software + dependencies,
configure firewalls, etc.

o products (i.e., sell/lease the software to others to run)

m product ops: still need to system test in the anticipated
operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

4)

Traditional opsS iN di| Traditional approach to operations
can work in either of these models!
e two business models: _)

o services (i.e., the developing organization runs the software and
sells access to customers)

m service ops: need to set up the servers/machines on which
the software will run, install the software + dependencies,
configure firewalls, etc.

o products (i.e., sell/lease the software to others to run)

m product ops: still need to system test in the anticipated
operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

Operations: the traditional approach

e However, the traditional sysadmin approach to operations has
downsides, too:

Operations: the traditional approach

e However, the traditional sysadmin approach to operations has
downsides, too:
o for services, ops costs scale with system load: more users =
must hire more sysadmins to administer more servers, etc.

Operations: the traditional approach

e However, the traditional sysadmin approach to operations has
downsides, too:
o for services, ops costs scale with system load: more users =
must hire more sysadmins to administer more servers, etc.
o separation of operations and development means developers
are not directly exposed to the costs of poor design decisions
m thisis a misalignment of incentives

Operations: the traditional approach

e However, the traditional sysadmin approach to operations has

downsides, too:

o for services, ops costs scale with system load: more users =
must hire more sysadmins to administer more servers, etc.

o separation of operations and development means developers
are not directly exposed to the costs of poor design decisions
m thisis a misalignment of incentives

o developers and sysadmins have different backgrounds,
terminology, etc., leading to

Operations: the traditional approach

° Howe\{er, the traditionzry o problems do not mean that the
downsides, too: traditional approach to operations is
o forservices,opsd badin all circumstances!
must hire more sy

o separation of ope
are not directly e
m thisisamisali

o developersands /
terminology, etc., leaomgTo

Operations: the traditional approach

* Howe\{er, the tradition i, ose problems do not mean that the
downsides, too: traditional approach to operations is
o forservices,opsd bad in all circumstances!
must hire moresy e But,they are serious concerns for
o separation of ope modern systems with high release
are not directly e cadences, especially those that are:
. . O microservices
m thisisamisal o delivered viathe web

o developers ands 5 : : ;
P o use “continuous delivery /
terminology, etc., leaomgTo

Operations: the DevOps approach

Operations: the DevOps approach

Key idea: combine the development and operations teams

Operations: the DevOps approach

Key idea: combine the development and operations teams
e “DevOps”is aportmanteau of “developers” + “operators”

Operations: the DevOps approach

Key idea: combine the development and operations teams
e “DevOps”is aportmanteau of “developers” + “operators”
e DevOpsteams are organized around services/projects

Operations: the DevOps approach

Key idea: combine the development and operations teams
e “DevOps”is aportmanteau of “developers” + “operators”
e DevOpsteams are organized around services/projects

o similar to organizational motivation for

Aside: microservices

Aside: microservices

[https:/microservices.io/]

Mobile app

Web

Browser

https://microservices.io/

Aside: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

Inventory
D8

Mobile app

Inventory
Service

Storefront
WebApp

[https:/microservices.io/]

https://microservices.io/

Aside: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

Account
Account
Service

e [ndependently deployable

Mobile app

Inventory

'a

" J Inventory
Service

Storefront
~ Web App

[https:/microservices.io/]

https://microservices.io/

Aside: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

Account

Account
Service

e [ndependently deployable
e |ooselycoupled

Inventory

| am J Inventory
Service

[https://microservices.io/]

https://microservices.io/

Aside: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

¥ o
Inventory
an Inventory D8
o Service

e Loosely coupled
e Organized around
business capabilities

eb
| Storefront
“ WebApp

[https://microservices.io/]

https://microservices.io/

Aside: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

e Independently deployable .

e Loosely coupled -
e Organized around
business capabilities

e Owned by a small team i

| Storefront
WebApp

[https://microservices.io/]

https://microservices.io/

Aside: microservices

Definition: a microservice architecture structures an application as a

collection of services that are:
e Independently deployable . Q— Aopemt % _’
“\\

e Loosely coupled
e Organized around
business capabilities

_ Y,
e Owned by asmall team @}— ‘\“/31\

Browser

Mlcroserwce architectures are
very common in industry. Why?

REST

Shipping
s Service

[https://microservices.io/]

https://microservices.io/

Aside: microservices

Definition: a microservice architecture structures an application as a

collection of services that are:
e Independently deployable . - \s.,v % '
\

e Loosely coupled T _ .
) Microservice architectures are
e Organized around

: . very common in industry. Why?
business capabilities

_ _J
e Owned by a small team @}— ‘\ﬂ:&\

(makes management easy) ...

Shipping

Shipping
s Service

[https://microservices.io/]

https://microservices.io/

Operations: the DevOps approach

Key idea: combine the development and operations teams
e “DevOps”is aportmanteau of “developers” + “operators”
e DevOpsteams are organized around services/projects

o similar to organizational motivation for

Operations: the DevOps approach

Key idea: combine the development and operations teams

e “DevOps”is aportmanteau of “developers” + “operators”

e DevOpsteams are organized around services/projects
o similar to organizational motivation for

e operational burden is shared by the developers who are building
the system

Operations: the DevOps approach

Key idea: combine the development and operations teams

e “DevOps”is aportmanteau of “developers” + “operators”

e DevOpsteams are organized around services/projects
o similar to organizational motivation for

e operational burden is shared by the developers who are building
the system
o better alignment of incentives between developers and

operators, since same people perform both roles

Operations: the DevOps approach

Key idea: combine the development and operations teams

“DevOps” is a portmanteau of “developers” + “operators”

DevOps teams are organized around services/projects
o similar to organizational motivation for
operational burden is shared by the developers who are building

the system
o better alignment of incentives between developers and

operators, since same people perform both roles
encourage operators to automate toil

Operations: the DevOps approach

Key idea: combine the development and operations teams

“DevOps” is a portmanteau of “developers” + “operators”
DevOps teams are organized around services/projects

o similar to organizational motivation for

operational burden is shared by the developers who are building
the system

o better alignment of incentives between developers and

operators, since same people perform both roles
encourage operators to automate toil
may still have some dedicated ops roles (e.g., SREs at Google)

Operations: the DevOps approach

figure credit: Atlassian

Operations: toil

1

If a human operator needs to touch your system during normal
operations, you have a bug. The definition of normal changes
as your systems grow.))

Carla Geisser, Google SRE

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

(A key advantage of DevOps is that it

encourages removing toil

e if operators are separate from devs,
devs have no incentive to avoid toil

_ J

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

e manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

e manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

e repetitive: if you're performing a task for the first time ever, or even
the second time, this work is not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

e manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

e repetitive: if you're performing a task for the first time ever, or even
the second time, this work is not toil

° . if human judgment is essential for the task, there’s a

good chance it’s not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

° : toil is usually interrupt-driven and reactive

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

° : toil is usually interrupt-driven and reactive
e no enduring value: if your service remains in the same state after
you have finished a task, the task was probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

° : toil is usually interrupt-driven and reactive

e no enduring value: if your service remains in the same state after
you have finished a task, the task was probably toil

e O(n) with service growth: if the work involved in a task scales up
linearly with service size, traffic volume, or user count, that task is
probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

° :toy”

e noenduril Ataskdoesn’t need to have all of these L ofter
you have fi attributes to be toil. But, the more closely
e O(n)with: work matches one or more of these les up
: 1 descriptors, the more likely it is to be toil. .
linearly wit_ kkis

probably toil

Operations: toil

Things that aren’t toil:

Operations: toil
Things that aren’t toil:

e workyoudon'tliketodois toil

Operations: toil
Things that aren’t toil:

e workyoudon'tliketodois toil
o useful, productive work can be unpleasant
m e.g,cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

Operations: toil
Things that aren’t toil:

e workyoudon'tliketodois toil
o useful, productive work can be unpleasant
m e.g,cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil
o but most toil is unpleasant

Operations: toil
Things that aren’t toil:

e workyoudon'tliketodois toil
o useful, productive work can be unpleasant
m e.g,cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil
o but most toil is unpleasant
e overhead is also different than toil

Operations: toil
Things that aren’t toil:

e workyoudon'tliketodois toil
o useful, productive work can be unpleasant
m e.g,cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil
o but most toil is unpleasant
e overhead is also different than toil
o tasks like team meetings, setting and grading goals, and HR
paperwork (that are not tied to operations) are overhead

Operations: toil

What'’s so bad about toil?

Operations: toil

What'’s so bad about toil?

career stagnation (it doesn’t get you promoted)

lowers morale (it’s boring)

creates confusion (easy to forget to do a manual task!)

slows progress (could be doing useful work instead)

sets precedent (avoid letting toil become normal!)

promotes attrition (“| want to work on something interesting!”)

Operations: toil

What'’s so bad about toil?

career stagnation (it doesn’t get you promoted)
lowers mor. it's harino)

creates cq Despite all this, a of toil is often
slows pro{ okay. After all, engineers only have so
sets precd many productive hours in every day, and
promotes| sometimes a mental break is nice :)

esting!”)

DevOps example: Google SREs

DevOps example: Google SREs

e SRE teams are a mix of:
o software engineers
o software-inclined sysadmins

DevOps example: Google SREs

e SRE teams are a mix of:
o software engineers
o software-inclined sysadmins

e goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

DevOps example: Google SREs

e SRE teams are a mix of:
o software engineers
o software-inclined sysadmins

e goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

e SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
o SRE team manages ops for all of these systems

DevOps example: Google SREs

e SRE teams are a mix of:
o software engineers
o software-inclined sysadmins

e goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

e SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
o SRE team manages ops for all of these systems

e SRE motto: “Hope is not a strategy”

Another DevOps example: AWS

Another DevOps example: AWS

e unlike Google, AWS does not have dedicated ops teams

Another DevOps example: AWS

e unlike Google, AWS does not have dedicated ops teams
e all development teams are solely responsible for the operations of
their own services

Another DevOps example: AWS

e unlike Google, AWS does not have dedicated ops teams
e all development teams are solely responsible for the operations of
their own services
o teams are also small (“two-pizza”) and usually organized around
a single microservice

Another DevOps example: AWS

e unlike Google, AWS does not have dedicated ops teams
e all development teams are solely responsible for the operations of
their own services
o teams are also small (“two-pizza”) and usually organized around
a single microservice
e thissetupis (no need to staff SRE teams!)

Another DevOps example: AWS

e unlike Google, AWS does not have dedicated ops teams
e all development teams are solely responsible for the operations of
their own services
o teams are also small (“two-pizza”) and usually organized around
a single microservice
e thissetupis (no need to staff SRE teams!)
o but means teams must choose between delivering new features
and reducing operational burden

Another DevOps example: AWS

e unlike Google, AWS does not have dedicated ops teams
e all development teams are solely responsible for the operations of
their own services
o teams are also small (“two-pizza”) and usually organized around
a single microservice
e thissetupis (no need to staff SRE teams!)
o but means teams must choose between delivering new features
and reducing operational burden
m makes technical debt riskier to take on (why?)

DevOps

Today’s agenda:

e Operations, Toil, and the DevOps philosophy
e Achievingreliability

O

O O O O

the service reliability hierarchy + SLAs/targets
monitoring and reliability testing
incident/emergency response

preventing problems before they occur
post-mortems + learning from failure

Achieving reliability

e DevOps teams usually have a goal: make their service reliable

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:
e (i.e., when a client calls it, it responds)

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:

o (i.e., when a client calls it, it responds)

o (i.e., client requests get the right results)

Achieving reliability

e DevOps teams usually have a goal: make their service reliable

e areliableserviceis:
o (i.e., when a client calls it, it responds)
o (i.e., client requests get the right results)
e thesetwo properties are related: an unavailable service cannot be

correct

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:

e (i.e., when a client calls it, it responds)
o (i.e., client requests get the right results)

e thesetwo properties are related: an unavailable service cannot be
correct

o so, availability is the first thing we need to worry about when
trying to make a service reliable

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:
m latency (time it takes to serve client requests)

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:
m latency (time it takes to serve client requests)
m throughput (how many requests can you serve per hour)

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:
m latency (time it takes to serve client requests)
m throughput (how many requests can you serve per hour)
m durability (how much of your data can you still retrieve
after a fixed time has passed)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics
a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1.
2.

decide what your users care about (call these “objectives”)

map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

define the levels of those metrics that your service

order to meet user expectations

.in

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1.
2.

decide what your users care about (call these “objectives”)

map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

define the levels of those metrics that your service

order to meet user expectations

a. optionally, publish these as a (“

.in

")

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1.
2.

decide what your users care about (call these “objectives”)
map those objectives to one or more metrics

a. it might not be possible tp_maldn_ea&h_o.b.immgﬁ

easy-to-collect metrics.
approximate the object

define the levels of those ma_

Sometimes SLAs are written into
contracts with your customers!

v

order to meet user expectations
a. optionally, publish these as a (“

")

in

Aside: subtleties in metrics

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”
o even this apparently straightforward measurement implicitly
aggregates data over the measurement window

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”
o even this apparently straightforward measurement implicitly
aggregates data over the measurement window
e We need to consider questions like “Is the measurement obtained
once a second, or by averaging requests over a minute?”

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”
o even this apparently straightforward measurement implicitly
aggregates data over the measurement window
e We need to consider questions like “Is the measurement obtained
once a second, or by averaging requests over a minute?”
o The latter may much higher instantaneous request rates
in bursts that last for only a few seconds

Aside: subtleties in metrics

e For simplicity and usability, wég., consider two systems: \
measurements. This needstf ® system A serves 200

e e.g., consider “the numbero requests in every
. even-numbered second, and
o even this apparently str{

O requests in every
aggregates data over th odd-numbered second

e Weneedto consider questi{ o gsystem B serves 100 d
once a second, or by averagi requests every second
o The latter may much Mgrmermstarmaneous Tequestrates

in bursts that last for only a few seconds

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages
o this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

milliseconds
- N

purpleis
+— 50th %
latency

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

‘ redis
-+ 95th %
latency

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

| - blue is
99th %
latency

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Advice: choosing metrics

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need
e keepitsimple
o SLAs, especially, should avoid mentioning complex
aggregations of metrics (which are hard to reason about)

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need
e keepitsimple
o SLAs, especially, should avoid mentioning complex
aggregations of metrics (which are hard to reason about)
e avoid absolutes
o e.g., don't promise “infinite scaling” or “100% availability”

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need
e keepitsimple
o SLAs, especially, should avoid mentioning complex
aggregations of metrics (which are hard to reason about)
e avoid absolutes
o e.g., don't promise “infinite scaling” or “100% availability”
e includeas as possible while still covering what matters
o avoid metrics that aren’t useful in arguing for priorities

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!
o Then, make sure that those metrics actually look good.

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!
o Then, make sure that those metrics actually look good.
e How do we think about how to do this?

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!
o Then, make sure that those metrics actually look good.
e How do we think about how to do this?
o insight: thereisa of system components that need to
be working well in order to meet an SLA

Service Reliability Hierarchy

Product
e analogy to Maslow’s

“Hierarchy of Needs” for / LB BE \
humans / Capacity Planning \

/ Testing + Release procedures \
/ Postmortem / Root Cause Analysis \

/ Incident Response \
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Maslow’s Hierarchy of Needs

Self-actualization
desire to become the most that one can be

Esteem

respect, self-esteem, status, recognition, strength, freedom

Safety needs

personal security, employment, resources, health, property

Physiological needs

air, water, food, shelter, sleep, clothing, reproduction

Maslow's hierarchy of needs

[Image credit: https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571 |

https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / Dexelopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |€V€|, / Postmortem / Root Cause Analysis \
achieving the higher level / gt Respone \
becomes a lot harder
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / Dexelopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |€V€|, / Postmortem / Root Cause Analysis \
achieving the higher level / gt Respone \
becomes a lot harder
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / Dexelopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |eve| / Postmortem / Root Cause Analysis \
achieving the higher level [ildentkesonee \
becomes a lot harder g
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / evclopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |€V€|, / Postmortem / Root Cause Analysis \
achieving the higher level / gt Respone \
becomes a lot harder
/ [Monitoring] \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

DevOps

Today’s agenda:

e Operations, Toil, and the DevOps philosophy
e Ops challenge example: deployment
e Achievingreliability
o the service reliability hierarchy + SLAs/targets
o monitoring
o incident/emergency response
o post-mortems + learning from failure

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

e essentially, monitoring is responsible for collecting your metrics

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

e essentially, monitoring is responsible for collecting your metrics
e without monitoring, you have no way to tell whether the service is

even working

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

e essentially, monitoring is responsible for collecting your metrics
e without monitoring, you have no way to tell whether the service is

even working
e you want to be aware of problems before your users notice them

Monitoring

[Monitoring is why IS so)
Definition: monitoring is colle| |mpqrtapt in practice: if your ,
monitoring depends on your logging

displaying real-time quantital . o\ ork itis a very important
counts and types, error cou nt\component of your service!)
lifetimes

e essentially, monitoring is responsible for collecting your metrics
e without monitoring, you have no way to tell whether the service is

even working
e you want to be aware of problems before your users notice them

Monitoring: alerting

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email

alias, or a pager

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email

alias, or a pager

e tickets = alertto a bug or ticket queue, which a human will
hopefully get to eventually

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

e tickets = alertto a bug or ticket queue, which a human will

hopefully get to eventually
e email alert = alert sent to an email alias for a human to respond to

during their next work day

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

e tickets = alertto a bug or ticket queue, which a human will
hopefully get to eventually

e email alert = alert sent to an email alias for a human to respond to
during their next work day

e page = alert send directly to a human (via a pager)

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”
e \Whenyou are the on-call for a service, any pages about that
service go to you

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you
o even inthe middle of the night!

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you
o even in the middle of the night!

e Getting paged should be an event

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you

o even in the middle of the night!
e Getting paged should be an event
o ideally, pages correspond 1:1 with emergencies

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you

o even in the middle of the night!
e Getting paged should be an event
o ideally, pages correspond 1:1 with emergencies

m (lessideal but still good: you get paged if and only if there is
an emergency)

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”
e \Whenyou are the on-call for a service, any pages about that
service go to you
o even inthe middle of the night!
e Getting paged should be an event
o ideally, pages correspond 1:1 with emergencies
m (lessideal but still good: you get paged if and only if there is
an emergency)
e Example from earlier: “cleaning up a service’s alerting config” =
fixing to pages vs email alerts vs tickets

Monitoring: being on-call

e Beingon-call is a major source of toil in most services

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call
o e.g.,daily, weekly, whatever
o everyone working on the service should be in this rotation!

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call
o e.g.,daily, weekly, whatever
o everyone working on the service should be in this rotation!
e The person on-call typically assumes all operational burden (i.e.,
toil) for the service for the duration of their on-call shift

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call
o e.g.,daily, weekly, whatever
o everyone working on the service should be in this rotation!
e The person on-call typically assumes all operational burden (i.e.,
toil) for the service for the duration of their on-call shift
o butcan () page other team members in an
emergency

DevOps

Today’s agenda:

e Operations, Toil, and the DevOps philosophy
e Achievingreliability

O

O O O O

the service reliability hierarchy + SLAs/targets
monitoring and reliability testing
incident/emergency response

preventing problems before they occur
post-mortems + learning from failure

Service Reliability Hierarchy:
Incident/Emergency Response

Product

/ Development \
/ (apacity Planning \
/ Testing + Release procedures \
/ Postmortem / Root Cause Analysis \

/ [Incident Response] \
/ Monitoring \

https://sre.google/sre-book/part-Ill-practices

https://sre.google/sre-book/part-III-practices/

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”
o astheon-call, you arein charge in an emergency by default

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”
o astheon-call, you arein charge in an emergency by default
e \What constitutes an emergency?

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”
o astheon-call, you arein charge in an emergency by default
e \What constitutes an emergency?
o depends on your service, but typically these qualify:
m big % of user requests aren’t getting responses
m big % of user requests have really high latency
m lots of your servers are unavailable/down (even if users
aren’'t yet impacted)

Emergency Response: causes of emergencies

Emergency Response: causes of emergencies

e error handling: code that is only called when something is wrong
o why is this likely to cause an emergency?

Emergency Response: causes of emergencies

e error handling: code that is only called when something is wrong
o why is this likely to cause an emergency?
m less likely to have tests for failure cases!

Emergency Response: causes of emergencies

e error handling: code that is only called when something is wrong
o why is this likely to cause an emergency?
m less likely to have tests for failure cases!

Trivial
mistakes

—— Errors ignored (25%) ——

35% Abort in over-caught

g
i
exceptions (8%) g
Incorrect handling of errors ” _ . 2
explicitly signaled in s.w. TODO Inhandier (2%) o
Easily detectable (23%) — g
Teca, i, il 57% specific Complex bugs (34%) —— —
bugs, misconfig. }K e \%
100% Latent error S
8% ~—————

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. Yuan et al. OSDI 2014.]

Emergency Response: causes of emergencies

e error handling: code that is only called when something is wrong
o why is this likely to cause an emergency?
m less likely to have tests for failure cases!

vast majority would be easy to catch! 2\

Errors ignored (25%)
Trivial *
mistakes

35% | Abort in over-caught |

g
8
exceptions (8%) g
I t handling of =
ncorr.ef: a'n mgq errors “TODO” in handler (2%) —t ©
explicitly signaled in s.w. =
Ngsily detectable (23%) — g
(e.q., h.w. fault, 57% specific Complex bugs (34%) —— —E
bugs, misconfig.)x e \%
100% «a==> B
8%

Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. Yuan et al. OSDI 2014.]

Emergency Response: causes of emergencies

e configuration changes:
o especially for services, how the servers that run the system are
configured is often as important as the code itself

Emergency Response: causes of emergencies

e configuration changes:
o especially for services, how the servers that run the system are
configured is often as important as the code itself
o changes to the infrastructure (e.g., adding or removing servers)
are just as risky as changes to the code
m but testing them is harder!

Emergency Response: causes of emergencies

o pop quiz: how long does an average hard disk last?

Emergency Response: causes of emergencies

o pop quiz: how long does an average hard disk last?
m answer: 3-5 years

Emergency Response: causes of emergencies

o
o pop quiz: how long does an average hard disk last?
m answer: 3-5 years
o law of large numbers: suppose you have 10,000 hard disks.
What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
m getout apiece of paper and do the math

Emergency Response: causes of emergencies

o
o pop quiz: how long does an average hard disk last?
m answer: 3-5 years
o law of large numbers: suppose you have 10,000 hard disks.
What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
m getout apiece of paper and do the math

m eachdisklasts 365*5 = 1825 days. 10k disks = ~5 fail/day

Emergency Response: causes of emergencies

o pop quiz: how long does an average hard disk last?
m answer: 3-5 years
o law of large numbers: suppose you have 10,000 hard disks.

What are the odds tha .. }h
"] Implication: in large systems, you
has a 5 year average li

. must plan for hardware failures,
m getoutapieceof P pecause they will occur

J

m eachdisklasts 365*5 = 1825 days. 10k disks = ~5 fail/day

Emergency Response: causes of emergencies

e human/process error:
o pop quiz: as a human, have you ever made a mistake at
something you're usually good at?

Emergency Response: causes of emergencies

e human/process error:
o pop quiz: as a human, have you ever made a mistake at
something you're usually good at?
m of course you have! we all make mistakes sometimes!

Emergency Response: causes of emergencies

e human/process error:
o pop quiz: as a human, have you ever made a mistake at
something you're usually good at?
m of course you have! we all make mistakes sometimes!
o itis amistake for a human to repeatedly perform a task that
could lead to catastrophic failure if it is not done perfectly

Emergency Response: causes of emergencies

e human/process error:

o pop quiz: as a human, have you ever made a mistake at
something you're usually good at?
m of course you have! we all make mistakes sometimes!

o itis amistake for a human to repeatedly perform a task that
could lead to catastrophic failure if it is not done perfectly
m computers are good at this!
m analogy: just like hardware components sometimes fail, any

step carried out by humans should be assumed to have a
non-zero failure rate

Emergency Response: have a plan

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
o playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”
e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
o playbooks are built up over a service’s lifetime (i.e., they record
how previous incidents might have been avoided or mitigated)
o often, playbooks have specific guidance for particular alerts

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
o playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)

o often, playbooks have specific guidance for particular alerts
o playbooks also have a psychological function: prevent panic

Emergency Response: best practices

Emergency Response: best practices

e Know your priorities:

Emergency Response: best practices

e Know your priorities:
o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)

Emergency Response: best practices

e Know your priorities:
o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)
o restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

Emergency Response: best practices

e Know your priorities:
o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)
o restore service: get the service back to a healthy state, even if
you aren’t sure about the cause (e.g., by rolling back recent
changes)

o : save logs, etc., for post-mortem analysis

Emergency Response: best practices

e Know your priorities:

o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)

o restore service: get the service back to a healthy state, even if
you aren’t sure about the cause (e.g., by rolling back recent
changes)

o : save logs, etc., for post-mortem analysis

e Practice makes perfect

o don’t wait for an actual emergency to find out if your playbook

works: simulate one instead!

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o so, to fix the incident, we should undo the change

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o 5o, to fix the incident, we should undo the change

e The needtoroll back has important implications:

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o 5o, to fix the incident, we should undo the change
e The needtoroll back has important implications:
o avoid changes that (“two-way doors”)

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o 5o, to fix the incident, we should undo the change
e The needtoroll back has important implications:
o avoid changes that (“two-way doors”)
o your version control system is your friend here!

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o so, to fix the incident, we should undo the change
e The needtoroll back has important implications:
o avoid changes that (“two-way doors”)
o your version control system is your friend here!
m make sure to commit things that might cause incidents if
they change to version control, e.g., your

Emergency Response: rolling back

e One of the most importar]
rolling back to the last kn
o key idea: most emerge
o so,to fix the incident,

KEasy rollbacks are one motivation for)
“infrastructure-as-code”: if your
infrastructure configurationisin
version control, it's easy to go back to

\ the last working one! Y,

e The need toroll back has important implications:

o avoid changes that

(“two-way doors”)

o your version control system is your friend here!
m make sure to commit things that might cause incidents if
they change to version control, e.g., your

DevOps

Today’s agenda:

e Operations, Toil, and the DevOps philosophy
e Achievingreliability

O

O O O O

the service reliability hierarchy + SLAs/targets
monitoring and reliability testing
incident/emergency response

preventing problems before they occur
post-mortems + learning from failure

Preventing Problems

e whileit’'simportant to have a plan for responding to emergencies,
it’s better if they never happen at all

Preventing Problems

e whileit’'simportant to have a plan for responding to emergencies,
it’s better if they never happen at all
o we can use many of the techniques that we discussed in this
class to help prevent emergencies!

Preventing Problems

e whileit’'simportant to have a plan for responding to emergencies,
it’s better if they never happen at all
o we can use many of the techniques that we discussed in this
class to help prevent emergencies!
e however, there are some DevOps-specific testing and
deployment strategies that can help:

Preventing Problems

e whileit’'simportant to have a plan for responding to emergencies,
it’s better if they never happen at all
o we can use many of the techniques that we discussed in this
class to help prevent emergencies!
e however, there are some DevOps-specific testing and
deployment strategies that can help:
o integrating testing and monitoring
o stress testing services
o canaries and “baking the binary”

Integrating Testing and Monitoring

e \We canview monitoring as a form of

Integrating Testing and Monitoring

e \We canview monitoring as a form of
o thatis, our monitoring systems are constantly “testing” the
real, production system!

Integrating Testing and Monitoring

e \We canview monitoring as a form of
o thatis, our monitoring systems are constantly “testing” the
real, production system!
e [f we view our monitoring system this way, we can apply many of
the techniques that we have learned in this class to monitoring

Integrating Testing and Monitoring

e \We canview monitoring as a form of
o thatis, our monitoring systems are constantly “testing” the
real, production system!
e [f we view our monitoring system this way, we can apply many of
the techniques that we have learned in this class to monitoring
o for example, should there be a metamorphic relationship
between a pair of metrics that we're collecting?

Integrating Testing and Monitoring

e \We canview monitoring as a form of
o thatis, our monitoring systems are constantly “testing” the
real, production system!
e [f we view our monitoring system this way, we can apply many of
the techniques that we have learned in this class to monitoring
o for example, should there be a metamorphic relationship
between a pair of metrics that we're collecting?
m if so, we can define an alert that goes off if that
relationship is ever violated - similar to a property-based
test that’s running on our real traffic!

Stress Testing

Stress Testing

Definition: a is any test designed to find the limits of the
external conditions under which a service can safely operate

Stress Testing

Definition: a is any test designed to find the limits of the
external conditions under which a service can safely operate
e Stress tests answer questions like:

o “How full can a database get before writes start to fail?”

Stress Testing

Definition: a is any test designed to find the limits of the
external conditions under which a service can safely operate
e Stress tests answer questions like:
o “How full can a database get before writes start to fail?”
o “How many queries a second can be sent to an application
server before it becomes overloaded, causing requests to fail?”

Stress Testing

Definition: a is any test designed to find the limits of the
external conditions under which a service can safely operate
e Stress tests answer questions like:
o “How full can a database get before writes start to fail?”
o “How many queries a second can be sent to an application
server before it becomes overloaded, causing requests to fail?”
e Chaos Monkey is one example of a stress testing technique

Stress Testing

Definition: a is any test designed to find the limits of the
external conditions under which a service can safely operate
e Stress tests answer questions like:

o “How full can a database get before writes start to fail?”

o “How many queries a second can be sent to an application

server before it becomes overloaded, causing requests to fail?”

e Chaos Monkey is one example of a stress testing technique
e Othersinclude intentionally another service

o i.e.,, simulate a spike in demand with artificial traffic

Canaries and Staged Deployments

e Another important consideration is limiting the blast radius of a
failure, if one does occur

Canaries and Staged Deployments

e Another important consideration is limiting the blast radius of a
failure, if one does occur
o the blast radius is how many users/requests are impacted

Canaries and Staged Deployments

e Another important consideration is limiting the blast radius of a
failure, if one does occur
o the blast radius is how many users/requests are impacted
e Animportant technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing

Canaries and Staged Deployments

e Another important consideration is limiting the blast radius of a
failure, if one does occur
o the blast radius is how many users/requests are impacted
e Animportant technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
o inastaged deployment of a change, at first
of the active fleet is modified

Canaries and Staged Deployments

e Another important consideration is limiting the blast radius of a
failure, if one does occur
o the blast radius is how many users/requests are impacted
e Animportant technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
o inastaged deployment of a change, at first
of the active fleet is modified
m this part of the fleet is monitored for failures, and if none
occur then more and more of the fleet is updated

Canaries and Staged Deployments

e Another important consideration is limiting the blast radius of a
failure, if one does occur
o the blast radius is how many users/requests are impacted

e Animportant technique for limiting blast radius is staged
deployment, which is als{ This incubation period while the fleet h

o inastaged deploym{ IS partially upgraded is sometimes
of the 3 called “baking the binary’.)

m this part of the fleet is monitored for failures, and if none
occur then more and more of the fleet is updated

Staged Deployment: concrete example

Staged Deployment: concrete example

e Consider a given underlying fault that:

Staged Deployment: concrete example

e Consider a given underlying fault that:
o relatively rarely impacts user traffic

Staged Deployment: concrete example

e Consider a given underlying fault that:
o relatively rarely impacts user traffic
o is deployed via astaged upgrade rollout that is exponential

Staged Deployment: concrete example

e Consider a given underlying fault that:
o relatively rarely impacts user traffic
o is deployed via astaged upgrade rollout that is exponential
e \We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:

Staged Deployment: concrete example

e Consider a given underlying fault that:
o relatively rarely impacts user traffic
o is deployed via astaged upgrade rollout that is exponential
e \We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
o C =cumulative number of reports

Staged Deployment: concrete example

e Consider a given underlying fault that:
o relatively rarely impacts user traffic
o is deployed via astaged upgrade rollout that is exponential
e \We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
o C =cumulative number of reports
o U= order of the fault (see next slide)

Staged Deployment: concrete example

e Consider a given underlying fault that:

o relatively rarely impacts user traffic

o is deployed via astaged upgrade rollout that is exponential
e \We would expect a growing cumulative number of reported

variances, governed by the equation CU = RK, where:

o C =cumulative number of reports

o U= order of the fault (see next slide)

o R =therate of reports

Staged Deployment: concrete example

e Consider a given underlying fault that:
o relatively rarely impacts user traffic
o is deployed via astaged upgrade rollout that is exponential
e \We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
= cumulative number of reports
U = order of the fault (see next slide)
= the rate of reports
K = the period over which the traffic grows by a factor of e

O O O O

Staged Deployment: concrete example

e Consider a given underlying fault that:
[Note that C, R, and K should all be

measurable by your monitoring system. put that is exponential
e \We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
= cumulative number of reports
U = order of the fault (see next slide)
= the rate of reports
K = the period over which the traffic grows by a factor of e

O O O O

Staged Deployment: concrete example

e Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.

Staged Deployment: concrete example

e Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
o our monitoring can tell us C and R, and we should already know
K (because we chose the deployment rate)

Staged Deployment: concrete example

e Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
o our monitoring can tell us C and R, and we should already know
K (because we chose the deployment rate)
e from these, we can compute U, the order of the fault:

Staged Deployment: concrete example

e Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
o our monitoring can tell us C and R, and we should already know
K (because we chose the deployment rate)
e from these, we can compute U, the order of the fault:
o U=1:eachrequest encountered code that is simply broken

Staged Deployment: concrete example

e Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
o our monitoring can tell us C and R, and we should already know
K (because we chose the deployment rate)
e from these, we can compute U, the order of the fault:
o U=1:eachrequest encountered code that is simply broken
o U=2:eachrequest randomly damages data that a future request
may see.

Staged Deployment: concrete example

e Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
o our monitoring can tell us C and R, and we should already know
K (because we chose the deployment rate)
e from these, we can compute U, the order of the fault:
o U=1:eachrequest encountered code that is simply broken
o U=2:eachrequest randomly damages data that a future request
may see.
o U=3:therandomly damaged data is also a valid identifier to a
previous request.

/Observe that order here is like big-O notation: I
e U=1 means that only the request itself is impacted
e U=2 means that alinear-ish number of other requests will
be impacted
e U=3 means exponentially more requests will be impacted know

_® etc. ,)

e from these, we can compute U, the order of the fault:
o U=1:eachrequest encountered code that is simply broken
o U=2:eachrequest randomly damages data that a future request
may see.
o U=3:therandomly damaged data is also a valid identifier to a
previous request.

Staged Deployment: concrete example

e Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service

Staged Deployment: concrete example

e Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
o ifU=1, then we're already okay: the rollback is sufficient,
because each failure only impacts the incoming request

Staged Deployment: concrete example

e Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service

o ifU=1, then we're already okay: the rollback is sufficient,
because each failure only impacts the incoming request

o ifU>1,we'll need to do some operations work to rollback the
state of the system, in addition to rolling back the code
m this might involve writing automation to trace all requests

that hit the bug, restoring from a backup, etc.

Staged Deployment: concrete example

e Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
o ifU=1, then we're already okay: the rollback is sufficient,
because each failure only impacts the incoming request
o ifU>1,we'll need to do some operations work to rollback the
state of the system, in addition to rolling back the code
m this might involve writing automation to trace all requests
that hit the bug, restoring from a backup, etc.
e Aswedo all of this, it's important to keep records
o they’'ll be useful later for writing the post-mortem (next topic!)

DevOps

Today’s agenda:

e Operations, Toil, and the DevOps philosophy
e Achievingreliability

O

O O O O

the service reliability hierarchy + SLAs/targets
monitoring and reliability testing
incident/emergency response

preventing problems before they occur
post-mortems + learning from failure

Service Reliability Hierarchy:
Post-mortems

Product

/ Development \
/ (apacity Planning \
/ Testing + Release procedures \
/ [Postmortem / Root Cause Analysis] \

/ Incident Response \
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is awritten record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)

is awritten record of an incident, its impact, the actions taken to

mitigate or resolve it, the root cause(s), and the follow-up actions to

prevent the incident from recurring

e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)

is awritten record of an incident, its impact, the actions taken to

mitigate or resolve it, the root cause(s), and the follow-up actions to

prevent the incident from recurring

e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)

e good postmortems are blameless and

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is awritten record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)
e good postmortems are blameless and
o “blameless” = find the faults in the process, not the people

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is awritten record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)
e good postmortems are blameless and
o “blameless” = find the faults in the process, not the people

o " = gjve specific guidance for how to avoid the
problem in the future (these become tickets)

Post-mortems: blameless

e Why not assign blame after an incident?
o After all, someone should be responsible, right?

Post-mortems: blameless

e Why not assign blame after an incident?
o After all, someone should be responsible, right?
e Somereasons:
o Gives people confidence to escalate issues without fear
o Avoids creating a culture in which incidents and issues are
(which is worse long-term!)
o : engineers who have experienced an
incident won’t make the same mistakes again
o You can't "fix" people, but you can fix systems and processes

Post-mortems: blameless

e \Why not assign bla

o After all. some Historically, software engineering \

adopted a lot of “blameless culture”
® Some reasons: from aviation and medicine, where

o Gives people ¢{ mistakes can be fatal! We might not
o Avoids creatin{y have the same stakes, but all complex |[e

systems are similar in a lot of ways.
o Wmn
incident won’t make the same mistakes again
o You can't "fix" people, but you can fix systems and processes

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be
more senior engineers

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in
response to an incident

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in
response to an incident

o leads to more actionable takeaways and better understanding
of what went wrong

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in

response to an incident
o leads to more actionable takeaways and better understanding

of what went wrong
o alsoenables engineers on different teams to learn from each

others’ mistakes

Post-mortems: example

Shakespeare Sonnet++ Postmortem (incident #465)

Date: 2015-10-21
Authors: jennifer, martym, agoogler
Status: Complete, action items in progress

Summary: Shakespeare Search down for 66 minutes during period of very high interest in Shakespeare due to discovery of
a new sonnet.

Impact:'®® Estimated 1.21B queries lost, no revenue impact.

Root Causes:'* Cascading failure due to combination of exceptionally high load and a resource leak when searches failed
due to terms not being in the Shakespeare corpus. The newly discovered sonnet used a word that had never before
appeared in one of Shakespeare’s works, which happened to be the term users searched for. Under normal circumstances,
the rate of task failures due to resource leaks is low enough to be unnoticed.

Trigger: Latent bug triggered by sudden increase in traffic. [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Shakespeare Sonnet++ Postmortem (incident #465)

Date: 2015-10-21

Authors: jennifer, martym, agoogler

Status: Compll Resolution: Directed traffic to sacrificial cluster and added 10x capacity to mitigate cascading failure. Updated index

deployed, resolving interaction with latent bug. Maintaining extra capacity until surge in public interest in new sonnet
Summary: Sh{

a new sonnet.

passes. Resource leak identified and fix deployed.

Detection: Borgmon detected high level of HTTP 500s and paged on-call.
IMpact:’5? EStibrrerea—r o qerorroo ooy rrorerorrae ot

Root Causes:'* Cascading failure due to combination of exceptionally high load and a resource leak when searches failed
due to terms not being in the Shakespeare corpus. The newly discovered sonnet used a word that had never before
appeared in one of Shakespeare’s works, which happened to be the term users searched for. Under normal circumstances,
the rate of task failures due to resource leaks is low enough to be unnoticed.

Trigger: Latent bug triggered by sudden increase in traffic. [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Action Item

Update playbook with instructions for
responding to cascading failure

Use flux capacitor to balance load
between clusters

Schedule cascading failure test during
next DIRT

Investigate running index MR/fusion
continuously

Type

mitigate

prevent

process

prevent

PMNoise Bl alsisnmiptoamare Taaa by By rapaecaaraail o e s e .

Owner

jennifer

martym

docbrown

jennifer

Bug

n/a DONE

Bug 5554823 TODO

n/a TODO

Bug 5554824 TODO

[source: https://sre.google/sre-book/example-postmortem/ |
Disre CCC A0 IYOAAIE

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Action Item

Update playbook with instructions for
responding to cascading failure

Use flux capacitor to balance load
between clusters

Schedule cascading failure test during
next DIRT

Investigate running index MR/fusion
continuously

and 5 more...

Type

mitigate

prevent

process

prevent

PMNoise Bl alsisnmiptoamare Taaa by By rapaecaaraail o e s e .

Owner

jennifer

martym

docbrown

jennifer

Bug

n/a DONE

Bug 5554823 TODO

n/a TODO

Bug 5554824 TODO

[source: https://sre.google/sre-book/example-postmortem/ |
Disre CCC A0 IYOAAIE

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Lessons Learned

What went well

» Monitoring quickly alerted us to high rate (reaching ~100%) of HTTP 500s
 Rapidly distributed updated Shakespeare corpus to all clusters

What went wrong

» We're out of practice in responding to cascading failure

» We exceeded our availability error budget (by several orders of magnitude) due to the exceptional surge of traffic
that essentially all resulted in failures

Where we got lucky's®

 Mailing list of Shakespeare aficionados had a copy of new sonnet available

 Server logs had stack traces pointing to file descriptor exhaustion as cause for crash

» Query-of-death was resolved by pushing new index containing popular search term [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Timeline”

2015-10-21 (all times UTC)

* 14:51 News reports that a new Shakespearean sonnet has been discovered in a Delorean’s glove compartment

» 14:53 Traffic to Shakespeare search increases by 88x after post to /r/shakespeare points to Shakespeare search
engine as place to find new sonnet (except we don’t have the sonnet yet)

» 14:54 OUTAGE BEGINS — Search backends start melting down under load
 14:55 docbrown receives pager storm, ManyHttp5080s from all clusters

» 14:57 All traffic to Shakespeare search is failing: see https:/monitor

» 14:58 docbrown starts investigating, finds backend crash rate very high

» 15:01 INCIDENT BEGINS docbrown declares incident #465 due to cascading failure, coordination on
#shakespeare, names jennifer incident commander

» 15:02 someone coincidentally sends email to shakespeare-discuss@ re sonnet discovery, which happens to be at
top of martym’s inbox
[source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Timeline”

2015-10-21 (all times UTC)

* 14:51 News reports that a new Shakespearean sonnet has been discovered in a Delorean’s glove compartment

14:53 Traffic to Shakespeare search increases by 88x after post to /r/shakespeare points to Shakespeare search
engine as place to find new sonnet (except we don’t have the sonnet yet)

» 14:54 OUTAGE BEGINS — Search backends start melting down under load

 14:55 docbrown receives pager storm, ManyHttp500s from all clusters

14:57 All traffic to Shakespeare search is failing: see https:/monitor

14:58 docbrown starts investigating, finds backend crash rate very high

el e e dachisuin daclaracinsidani LS dusiacaceadina follansoaidiosiionog

this goes on for several pages!
e shows importance of keeping records

ppens to be at

[source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

DevOps: takeaways

e Many modern engineering organizations prefer to combine, rather
than separate, development and operations
o this works best when most systems are services
e Major benefit of DevOps approach is elimination of toil
o developers are best at building automation
e Planning for incidents/emergencies is critical
o Monitoring allows on-call to quickly identify problems
o Have aplan (ideally, in a playbook) for incidents
o Use post-mortems to learn from prior emergencies
m not to blame people for causing them!

Course Wrap-up

e This course has been a tour of modern quality assurance methods
o especially testing and static analysis

Course Wrap-up

e This course has been a tour of modern quality assurance methods
o especially testing and static analysis
e While | hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some course themes that | want you to remember :)

Course Wrap-up

e This course has been a tour of modern quality assurance methods
o especially testing and static analysis
e While | hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some that | want you to remember :)
o testing can show the presence of bugs, but not their absence
m static analysis can show the absence of bugs

Course Wrap-up

e This course has been a tour of modern quality assurance methods
o especially testing and static analysis

e While | hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some that | want you to remember :)
o testing can show the presence of bugs, but not their absence

m static analysis can show the absence of bugs

o dynamic analyses like testing are usually precise but unsound

Course Wrap-up

e This course has been a tour of modern quality assurance methods
o especially testing and static analysis

e While | hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some that | want you to remember :)
o testing can show the presence of bugs, but not their absence

m static analysis can show the absence of bugs

o dynamic analyses like testing are usually precise but unsound
o static analyses are usually conservative: sound but imprecise

Course Wrap-up

e This course has been a tour of modern quality assurance methods
o especially testing and static analysis

e While | hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some that | want you to remember :)
o testing can show the presence of bugs, but not their absence

m static analysis can show the absence of bugs

o dynamic analyses like testing are usually precise but unsound
o static analyses are usually conservative: sound but imprecise
o program analysis is powerful for QA, but getting it right is tricky

Course Wrap-up: Logistics

e Reminder that the finalis
in two weeks (5/9 at 6pm)

Course Wrap-up: Logistics

e Reminder that the final is
in two weeks (5/9 at 6pm)
e Examreview pollis openon
Discord (review will be remote)
o Kazi will continue to hold
OH the next 2 weeks, too

Course Wrap-up: Logistics

e Reminder that the final is
in two weeks (5/9 at 6pm)

e Examreview pollis openon
Discord (review will be remote)
o Kazi will continue to hold

OH the next 2 weeks, too

e Please take a few minutes now
to fill out the course evaluation
(QR code on the slide)

Aside: cascading failures

e A common cause of failures in a microservice-based system is
cascading failures: one service fails (for any reason), which causes

other services that depend on it to fail, which causes other
services to fail, etc.

o cascading failures are typically much harder to recover from
m many parts of the system have failed, not just one!
o recall the Chaos Monkey testing technique?
m oneof its goal is to detect such cascading failures before
they actually happen in production

