
DevOps
Martin Kellogg

Reading quiz: DevOps

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SREs aren’t supposed to spend more
than half their time on operations. If they do start to spend more
than 50% of their time, the software engineering teams responsible
for the system (not the SREs) must handle the extra operations load.

Q2: TRUE or FALSE: a blameless post-mortem culture is motivated
by the fact that you can’t "fix" people, but you can fix systems and
processes to better support people making the right choices when
designing and maintaining complex systems

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SREs aren’t supposed to spend more
than half their time on operations. If they do start to spend more
than 50% of their time, the software engineering teams responsible
for the system (not the SREs) must handle the extra operations load.

Q2: TRUE or FALSE: a blameless post-mortem culture is motivated
by the fact that you can’t "fix" people, but you can fix systems and
processes to better support people making the right choices when
designing and maintaining complex systems

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SREs aren’t supposed to spend more
than half their time on operations. If they do start to spend more
than 50% of their time, the software engineering teams responsible
for the system (not the SREs) must handle the extra operations load.

Q2: TRUE or FALSE: a blameless post-mortem culture is motivated
by the fact that you can’t "fix" people, but you can fix systems and
processes to better support people making the right choices when
designing and maintaining complex systems

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running
● deploying new versions of the software

Operations: the traditional approach

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role
● this approach is best when systems change rarely

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media
○ other advantages: easy to staff for, off-the-shelf tooling, etc.

Traditional ops in different business models

● two business models:

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated

operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated

operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

Traditional approach to operations
can work in either of these models!

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

These problems do not mean that the
traditional approach to operations is
bad in all circumstances!
● But, they are serious concerns for

modern systems with high release
cadences, especially those that are:
○ microservices
○ delivered via the web
○ use “continuous delivery”

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

These problems do not mean that the
traditional approach to operations is
bad in all circumstances!
● But, they are serious concerns for

modern systems with high release
cadences, especially those that are:
○ microservices
○ delivered via the web
○ use “continuous delivery”

Operations: the DevOps approach

Operations: the DevOps approach

Key idea: combine the development and operations teams

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices

Aside: microservices

[https://microservices.io/]

Aside: microservices

https://microservices.io/

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

Aside: microservices

https://microservices.io/

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

Aside: microservices

https://microservices.io/

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

Aside: microservices

https://microservices.io/

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

Aside: microservices

https://microservices.io/

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

● Owned by a small team

Aside: microservices

https://microservices.io/

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

● Owned by a small team

Microservice architectures are
very common in industry. Why?

Aside: microservices

https://microservices.io/

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

● Owned by a small team
(makes management easy)

Microservice architectures are
very common in industry. Why?

Aside: microservices

https://microservices.io/

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles
● encourage operators to automate toil

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles
● encourage operators to automate toil
● may still have some dedicated ops roles (e.g., SREs at Google)

Operations: the DevOps approach

figure credit: Atlassian

Operations: toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

A key advantage of DevOps is that it
encourages removing toil
● if operators are separate from devs,

devs have no incentive to avoid toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even
the second time, this work is not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even
the second time, this work is not toil

● automatable: if human judgment is essential for the task, there’s a
good chance it’s not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up

linearly with service size, traffic volume, or user count, that task is
probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up

linearly with service size, traffic volume, or user count, that task is
probably toil

A task doesn’t need to have all of these
attributes to be toil. But, the more closely
work matches one or more of these
descriptors, the more likely it is to be toil.

Operations: toil

Things that aren’t toil:

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

○ tasks like team meetings, setting and grading goals, and HR
paperwork (that are not tied to operations) are overhead

Operations: toil

What’s so bad about toil?

Operations: toil

What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Operations: toil

What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Despite all this, a little bit of toil is often
okay. After all, engineers only have so
many productive hours in every day, and
sometimes a mental break is nice :)

DevOps example: Google SREs

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
○ SRE team manages ops for all of these systems

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
○ SRE team manages ops for all of these systems

● SRE motto: “Hope is not a strategy”

Another DevOps example: AWS

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features
and reducing operational burden

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features
and reducing operational burden
■ makes technical debt riskier to take on (why?)

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Achieving reliability

● DevOps teams usually have a goal: make their service reliable

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be
correct

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be
correct
○ so, availability is the first thing we need to worry about when

trying to make a service reliable

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)
■ throughput (how many requests can you serve per hour)

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)
■ throughput (how many requests can you serve per hour)
■ durability (how much of your data can you still retrieve

after a fixed time has passed)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations
a. optionally, publish these as a service level agreement (“SLA”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations
a. optionally, publish these as a service level agreement (“SLA”)

Sometimes SLAs are written into
contracts with your customers!

Aside: subtleties in metrics

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”
○ The latter may hide much higher instantaneous request rates

in bursts that last for only a few seconds

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”
○ The latter may hide much higher instantaneous request rates

in bursts that last for only a few seconds

E.g., consider two systems:
● system A serves 200

requests in every
even-numbered second, and
0 requests in every
odd-numbered second

● system B serves 100
requests every second

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

purple is
50th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

green is
85th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

red is
95th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

blue is
99th %
latency

Advice: choosing metrics

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)
● avoid absolutes

○ e.g., don’t promise “infinite scaling” or “100% availability”

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)
● avoid absolutes

○ e.g., don’t promise “infinite scaling” or “100% availability”
● include as few metrics as possible while still covering what matters

○ avoid metrics that aren’t useful in arguing for priorities

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

● How do we think about how to do this?

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

● How do we think about how to do this?
○ insight: there is a hierarchy of system components that need to

be working well in order to meet an SLA

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Maslow’s Hierarchy of Needs

[Image credit: https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571]

https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

our focus in
the rest of
this course

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

our focus
today

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Ops challenge example: deployment
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring
○ incident/emergency response
○ post-mortems + learning from failure

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working
● you want to be aware of problems before your users notice them

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working
● you want to be aware of problems before your users notice them

Monitoring is why logging is so
important in practice: if your
monitoring depends on your logging
framework, it is a very important
component of your service!

Monitoring: alerting

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

● email alert = alert sent to an email alias for a human to respond to
during their next work day

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

● email alert = alert sent to an email alias for a human to respond to
during their next work day

● page = alert send directly to a human (via a pager)

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

■ (less ideal but still good: you get paged if and only if there is
an emergency)

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

■ (less ideal but still good: you get paged if and only if there is
an emergency)

● Example from earlier: “cleaning up a service’s alerting config” =
fixing what corresponds to pages vs email alerts vs tickets

Monitoring: being on-call

● Being on-call is a major source of toil in most services

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

● The person on-call typically assumes all operational burden (i.e.,
toil) for the service for the duration of their on-call shift

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

● The person on-call typically assumes all operational burden (i.e.,
toil) for the service for the duration of their on-call shift
○ but can (and should) page other team members in an

emergency

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Service Reliability Hierarchy:
Incident/Emergency Response

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Emergency Response

● So you’re the on-call, and you get a page. What happens next?

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

● What constitutes an emergency?

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

● What constitutes an emergency?
○ depends on your service, but typically these qualify:

■ big % of user requests aren’t getting responses
■ big % of user requests have really high latency
■ lots of your servers are unavailable/down (even if users

aren’t yet impacted)

Emergency Response: causes of emergencies

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

■ less likely to have tests for failure cases!

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

■ less likely to have tests for failure cases!

[Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. Yuan et al. OSDI 2014.]

[Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. Yuan et al. OSDI 2014.]

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

■ less likely to have tests for failure cases!

vast majority would be easy to catch!

Emergency Response: causes of emergencies

● configuration changes:
○ especially for services, how the servers that run the system are

configured is often as important as the code itself

Emergency Response: causes of emergencies

● configuration changes:
○ especially for services, how the servers that run the system are

configured is often as important as the code itself
○ changes to the infrastructure (e.g., adding or removing servers)

are just as risky as changes to the code
■ but testing them is harder!

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years
○ law of large numbers: suppose you have 10,000 hard disks.

What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
■ get out a piece of paper and do the math

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years
○ law of large numbers: suppose you have 10,000 hard disks.

What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
■ get out a piece of paper and do the math

○ almost 100%!
■ each disk lasts 365*5 = 1825 days. 10k disks = ~5 fail/day

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years
○ law of large numbers: suppose you have 10,000 hard disks.

What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
■ get out a piece of paper and do the math

○ almost 100%!
■ each disk lasts 365*5 = 1825 days. 10k disks = ~5 fail/day

Implication: in large systems, you
must plan for hardware failures,
because they will occur

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?
■ of course you have! we all make mistakes sometimes!

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?
■ of course you have! we all make mistakes sometimes!

○ it is a mistake for a human to repeatedly perform a task that
could lead to catastrophic failure if it is not done perfectly

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?
■ of course you have! we all make mistakes sometimes!

○ it is a mistake for a human to repeatedly perform a task that
could lead to catastrophic failure if it is not done perfectly
■ computers are good at this!
■ analogy: just like hardware components sometimes fail, any

step carried out by humans should be assumed to have a
non-zero failure rate

Emergency Response: have a plan

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)
○ often, playbooks have specific guidance for particular alerts

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)
○ often, playbooks have specific guidance for particular alerts
○ playbooks also have a psychological function: prevent panic

Emergency Response: best practices

Emergency Response: best practices

● Know your priorities:

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

○ preserve evidence: save logs, etc., for post-mortem analysis

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

○ preserve evidence: save logs, etc., for post-mortem analysis
● Practice makes perfect

○ don’t wait for an actual emergency to find out if your playbook
works: simulate one instead!

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

■ make sure to commit things that might cause incidents if
they change to version control, e.g., your config files

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

■ make sure to commit things that might cause incidents if
they change to version control, e.g., your config files

Easy rollbacks are one motivation for
“infrastructure-as-code”: if your
infrastructure configuration is in
version control, it’s easy to go back to
the last working one!

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all
○ we can use many of the techniques that we discussed in this

class to help prevent emergencies!

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all
○ we can use many of the techniques that we discussed in this

class to help prevent emergencies!
● however, there are some DevOps-specific testing and

deployment strategies that can help:

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all
○ we can use many of the techniques that we discussed in this

class to help prevent emergencies!
● however, there are some DevOps-specific testing and

deployment strategies that can help:
○ integrating testing and monitoring
○ stress testing services
○ canaries and “baking the binary”

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!
● If we view our monitoring system this way, we can apply many of

the techniques that we have learned in this class to monitoring

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!
● If we view our monitoring system this way, we can apply many of

the techniques that we have learned in this class to monitoring
○ for example, should there be a metamorphic relationship

between a pair of metrics that we’re collecting?

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!
● If we view our monitoring system this way, we can apply many of

the techniques that we have learned in this class to monitoring
○ for example, should there be a metamorphic relationship

between a pair of metrics that we’re collecting?
■ if so, we can define an alert that goes off if that

relationship is ever violated - similar to a property-based
test that’s running on our real traffic!

Stress Testing

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”
○ “How many queries a second can be sent to an application

server before it becomes overloaded, causing requests to fail?”

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”
○ “How many queries a second can be sent to an application

server before it becomes overloaded, causing requests to fail?”
● Chaos Monkey is one example of a stress testing technique

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”
○ “How many queries a second can be sent to an application

server before it becomes overloaded, causing requests to fail?”
● Chaos Monkey is one example of a stress testing technique
● Others include intentionally scaling up another service

○ i.e., simulate a spike in demand with artificial traffic

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
○ in a staged deployment of a change, at first only a small

percentage of the active fleet is modified

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
○ in a staged deployment of a change, at first only a small

percentage of the active fleet is modified
■ this part of the fleet is monitored for failures, and if none

occur then more and more of the fleet is updated

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
○ in a staged deployment of a change, at first only a small

percentage of the active fleet is modified
■ this part of the fleet is monitored for failures, and if none

occur then more and more of the fleet is updated

This incubation period while the fleet
is partially upgraded is sometimes
called “baking the binary”.

Staged Deployment: concrete example

Staged Deployment: concrete example

● Consider a given underlying fault that:

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)
○ R = the rate of reports

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)
○ R = the rate of reports
○ K = the period over which the traffic grows by a factor of e

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)
○ R = the rate of reports
○ K = the period over which the traffic grows by a factor of e

Note that C, R, and K should all be
measurable by your monitoring system.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken
○ U=2: each request randomly damages data that a future request

may see.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken
○ U=2: each request randomly damages data that a future request

may see.
○ U=3: the randomly damaged data is also a valid identifier to a

previous request.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken
○ U=2: each request randomly damages data that a future request

may see.
○ U=3: the randomly damaged data is also a valid identifier to a

previous request.

Observe that order here is like big-O notation:
● U=1 means that only the request itself is impacted
● U=2 means that a linear-ish number of other requests will

be impacted
● U=3 means exponentially more requests will be impacted
● etc.

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
○ if U=1, then we’re already okay: the rollback is sufficient,

because each failure only impacts the incoming request

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
○ if U=1, then we’re already okay: the rollback is sufficient,

because each failure only impacts the incoming request
○ if U > 1, we’ll need to do some operations work to rollback the

state of the system, in addition to rolling back the code
■ this might involve writing automation to trace all requests

that hit the bug, restoring from a backup, etc.

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
○ if U=1, then we’re already okay: the rollback is sufficient,

because each failure only impacts the incoming request
○ if U > 1, we’ll need to do some operations work to rollback the

state of the system, in addition to rolling back the code
■ this might involve writing automation to trace all requests

that hit the bug, restoring from a backup, etc.
● As we do all of this, it’s important to keep records

○ they’ll be useful later for writing the post-mortem (next topic!)

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Service Reliability Hierarchy:
Post-mortems

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

○ “blameless” = find the faults in the process, not the people

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

○ “blameless” = find the faults in the process, not the people
○ “actionable” = give specific guidance for how to avoid the

problem in the future (these become tickets)

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Historically, software engineering
adopted a lot of “blameless culture”
from aviation and medicine, where
mistakes can be fatal! We might not
have the same stakes, but all complex
systems are similar in a lot of ways.

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong
○ also enables engineers on different teams to learn from each

others’ mistakes

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]and 5 more…

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

this goes on for several pages!
● shows importance of keeping records

https://sre.google/sre-book/example-postmortem/

DevOps: takeaways

● Many modern engineering organizations prefer to combine, rather
than separate, development and operations
○ this works best when most systems are services

● Major benefit of DevOps approach is elimination of toil
○ developers are best at building automation

● Planning for incidents/emergencies is critical
○ Monitoring allows on-call to quickly identify problems
○ Have a plan (ideally, in a playbook) for incidents
○ Use post-mortems to learn from prior emergencies

■ not to blame people for causing them!

Course Wrap-up

● This course has been a tour of modern quality assurance methods
○ especially testing and static analysis

Course Wrap-up

● This course has been a tour of modern quality assurance methods
○ especially testing and static analysis

● While I hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some course themes that I want you to remember :)

Course Wrap-up

● This course has been a tour of modern quality assurance methods
○ especially testing and static analysis

● While I hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some course themes that I want you to remember :)
○ testing can show the presence of bugs, but not their absence

■ static analysis can show the absence of bugs

Course Wrap-up

● This course has been a tour of modern quality assurance methods
○ especially testing and static analysis

● While I hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some course themes that I want you to remember :)
○ testing can show the presence of bugs, but not their absence

■ static analysis can show the absence of bugs
○ dynamic analyses like testing are usually precise but unsound

Course Wrap-up

● This course has been a tour of modern quality assurance methods
○ especially testing and static analysis

● While I hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some course themes that I want you to remember :)
○ testing can show the presence of bugs, but not their absence

■ static analysis can show the absence of bugs
○ dynamic analyses like testing are usually precise but unsound
○ static analyses are usually conservative: sound but imprecise

Course Wrap-up

● This course has been a tour of modern quality assurance methods
○ especially testing and static analysis

● While I hope that you remember the specific techniques that we
discussed and find ways to apply them in your work going forward,
there are also some course themes that I want you to remember :)
○ testing can show the presence of bugs, but not their absence

■ static analysis can show the absence of bugs
○ dynamic analyses like testing are usually precise but unsound
○ static analyses are usually conservative: sound but imprecise
○ program analysis is powerful for QA, but getting it right is tricky

Course Wrap-up: Logistics

● Reminder that the final is here
in two weeks (5/9 at 6pm)

Course Wrap-up: Logistics

● Reminder that the final is here
in two weeks (5/9 at 6pm)

● Exam review poll is open on
Discord (review will be remote)
○ Kazi will continue to hold

OH the next 2 weeks, too

Course Wrap-up: Logistics

● Reminder that the final is here
in two weeks (5/9 at 6pm)

● Exam review poll is open on
Discord (review will be remote)
○ Kazi will continue to hold

OH the next 2 weeks, too
● Please take a few minutes now

to fill out the course evaluation
(QR code on the slide)

Aside: cascading failures

● A common cause of failures in a microservice-based system is
cascading failures: one service fails (for any reason), which causes
other services that depend on it to fail, which causes other
services to fail, etc.
○ cascading failures are typically much harder to recover from

■ many parts of the system have failed, not just one!
○ recall the Chaos Monkey testing technique?

■ one of its goal is to detect such cascading failures before
they actually happen in production

