Using SMT Solvers (to

reason about programs)
Martin Kellogg

Reading quiz: SMT solvers

Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?

A. polygons

B. equality of uninterpreted functions

C.linear real arithmetic

D. arrays

Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?

A. polygons

B. equality of uninterpreted functions

C.linear real arithmetic

D. arrays

Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?
. polygons
B. equality of uninterpreted functions
C.linear real arithmetic
D. arrays

Agenda: SMT solvers

Motivation: reasoning about formulas

SAT solving: DPLL

SMT solving: Nelson-Oppen and DPLL(T)
SMT in practice: brief intro to Z3 and SMT-LIB

Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class

Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths

Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths
m goal: create test cases that definitely increase coverage

Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths
m goal: create test cases that definitely increase coverage
e Atthetime, we deferred the question of how we would solve
path predicates automatically

Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths
m goal: create test cases that definitely increase coverage
e Atthetime, we deferred the question of how we would solve
path predicates automatically
o recall that a path predicate is a formula over program
variables that is true when a particular path is executed

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath (int a, int b) {
assert(b > 0);
if(a + b == a * b) {
return 1;

}

return 0;

}

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover

assert (b > 0); T
if(a+Db=a*b) | __ thisline (return 1)

return 1; <+
}

return 0;

}

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover
assert (b > 0); T
if(a+Db=a*b) | _ trHS|H1e(return 1)
return 1; <
) what’s its path predicate?

return 0;

}

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover
assert (b > 0); T
if(a+Db=a*b) | _ trHS|H1e(return 1)
return 1; <
) what’s its path predicate?

return 0;

} b>0&8a+b==a*b

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover
assert (b > 0); T
if(a+Db=a*b) | _ trHS|H1e(return 1)
return 1; <
) what’s its path predicate?

return 0;

} b>0&8a+b==a*b

Key question: are there a, b
such that this is true?

Motivation: reasoning about formulas

e Asahuman,itisrelatively easy to solve the example on the
previous slide

Motivation: reasoning about formulas

e Asahuman,itisrelatively easy to solve the example on the
previous slide
o but real examples are many orders of magnitude larger!

Motivation: reasoning about formulas

e Asahuman,itisrelatively easy to solve the example on the
previous slide
o but real examples are many orders of magnitude larger!
o wedliketo the task of checking if there’s a solution

Motivation: reasoning about formulas

e Asahuman,itisrelatively easy to solve the example on the
previous slide
o but real examples are many orders of magnitude larger!
o we'd like to the task of checking if there’s a solution
e |[nourlecture onsymbolic execution, | briefly mentioned that
SMT solvers are the modern tool that we'd use to do so

Motivation: reasoning about formulas

e Asahuman,itisrelatively easy to solve the example on the
previous slide
o but real examples are many orders of magnitude larger!
o wedliketo the task of checking if there’s a solution
e |[nourlecture onsymbolic execution, | briefly mentioned that
SMT solvers are the modern tool that we'd use to do so
o let’'sdoit now: https:/www.philipzucker.com/z3-rise4fun/

https://www.philipzucker.com/z3-rise4fun/

Motivation: reasoning about formulas

e Reasoning about formulas is useful for more than symbolic
execution

Motivation: reasoning about formulas

e Reasoning about formulas is useful for more than symbolic
execution
e Other applications include:

Motivation: reasoning about formulas

e Reasoning about formulas is useful for more than symbolic
execution
e Other applications include:
o reasoning about program correctness (automating
pen-and-paper proofs!)
o reasoning about program equivalence (cf. equivalent mutant
problem)
o program synthesis
O program repair
o etc.

What is an SMT solver, exactly?

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.

e note “tries to”: boolean satisfiability is NP-complete

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.
e note “tries to”: boolean satisfiability is
e “theories” refers to non-boolean parts of the formula
o for example, a solver might support a

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.

e note “tries to”: boolean satisfiability is

e “theories” refers to non-boolean parts of the formula

o for example, a solver might support a
e different solvers might support different theories

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.
e note “tries to”: boolean satisfiability is
e “theories” refers to non-boolean parts of the formula
o for example, a solver might support a
e different solvers might support different theories
o much of today’s reading was about various theories that Z3
supports, such as Equality of Uninterpreted Functions (EUF) and

the theory of Arrays

How SMT solvers are used

How SMT solvers are used

e the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
o “reduce” here means “do areduction”, like in your theory class

How SMT solvers are used

e the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
o “reduce” here means “do areduction”, like in your theory class
e for example, symbolic execution reduces covering a particular line
of code to the problem of whether a path predicate is satisfiable
o then usesthe SMT solver as an

How SMT solvers are used

e the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
o “reduce” here means “do areduction”, like in your theory class
e for example, symbolic execution reduces covering a particular line
of code to the problem of whether a path predicate is satisfiable
o thenusesthe SMT solver as an
e note thatinthe symbolic execution case, we're interested in the
satisfying assignment (it’s the test case)

How SMT solvers are used

e the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
o “reduce” here means “do areduction”, like in your theory class
e for example, symbolic execution reduces covering a particular line
of code to the problem of whether a path predicate is satisfiable
o then usesthe SMT solver as an
e note thatinthe symbolic execution case, we're interested in the
satisfying assignment (it’s the test case)
o inmany other interesting cases, we want to check a formula’s
validity: that is, whether it is true for all values of its inputs

Validity vs satisfiability

e Suppose we have some formula F

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true
m (x herestands for the free variables of F, which you can
think of as the inputs)

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true
m (x here stands for the free variables of F, which you can
think of as the inputs)
o we have an oracle for finding satisfying assignments (the SMT
solver)

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true
m (x here stands for the free variables of F, which you can
think of as the inputs)
o we have an oracle for finding satisfying assignments (the SMT
solver)
e [wo-step transformation:
o VX F(x)istrue->

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true
m (x here stands for the free variables of F, which you can
think of as the inputs)
o we have an oracle for finding satisfying assignments (the SMT
solver)
e [wo-step transformation:
o VX F(x)istrue->-3x.F(x)isfalse

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true
m (x herestands for the free variables of F, which you can
think of as the inputs)
o we have an oracle for (the SMT
solver)
e [wo-step transformation:
o VX F(x)istrue->-3x.F(x)isfalse
o =3x. F(x)isfalse->-3x. -F(x)istrue

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true
m (x herestands for the free variables of F, which you can
think of as the inputs)
o we have an oracle for (the SMT
solver)
e [wo-step transformation:
o VX F(x)istrue->-3x.F(x)isfalse
o =3x. F(x)isfalse->-3x. -F(x)istrue
m Thisis exactly equivalent to asking if =F(x) is satisfiable

Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true Ghis means that we can \

m (x herestands for the free varid use an SMT solver to
think of as the inputs) check either validity or
o we have an oracle for satisfiability!
solver) e useful for e.g. proving
e Two-step transformation: program equivalence/

o VX F(x)istrue->-3x. F(x)isfalse
o -3x.F(x)isfalse->-3x. -F(x)istrue
m Thisis exactly equivalent to asking if =F(x) is satisfiable

Goals for today

Goals for today

e Goal #1:understand the basics of how an SMT solver works

Goals for today

e Goal #1: understand the basics of how an SMT solver works
o | don’t expect you to be able to go out and build one right away

Goals for today

e Goal #1:understand the basics of how an SMT solver works
o | don’t expect you to be able to go out and build one right away
o buttouse atool effectively, it’s important to understand the
basic ideas that make it work

Goals for today

e Goal #1:understand the basics of how an SMT solver works
o | don’t expect you to be able to go out and build one right away
o buttouse atool effectively, it’s important to understand the
basic ideas that make it work
e Goal #2: understand how to use and apply an SMT solver to
real-world program analysis problems

Goals for today

e Goal #1: understand the basics of how an SMT solver works
o | don’t expect you to be able to go out and build one right away
o buttouse atool effectively, it’s important to understand the
basic ideas that make it work
e Goal #2: understand how to use and apply an SMT solver to
real-world program analysis problems
o thisis what the homework will ask you to do
m and was also the main subject of today’s reading

Goals for today

e Goal #1: understand the basics of how an SMT solver works
o | don’t expect you to be able to go out and build one right away
o buttouse atool effectively, it’s important to understand the
basic ideas that make it work
e Goal #2: understand how to use and apply an SMT solver to
real-world program analysis problems
o thisis what the homework will ask you to do
m and was also the main subject of today’s reading
o hopefully you will also get a sense for to
apply an SMT-based tool

Agenda: SMT solvers

Motivation: reasoning about formulas

SAT solving: DPLL

SMT solving: Nelson-Oppen and DPLL(T)
SMT in practice: brief intro to Z3 and SMT-LIB

Review: basics of SAT

Review: basics of SAT

e You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
o butjustincase youdid not...

Review: basics of SAT

e You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
o butjustincase youdid not...

Definition: a boolean formula is a set of boolean variables (i.e., symbols
that can be either true or false)

Review: basics of SAT

e You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
o butjustincase youdid not...

Definition: a boolean formula is a set of boolean variables (i.e., symbols
that can be either true or false) connected by the boolean operators
(A for logical and, V for logical or, and - for logical negation)

Review: basics of SAT

e You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
o butjustincase youdid not...

Definition: a boolean formula is a set of boolean variables (i.e., symbols
that can be either true or false) connected by the boolean operators
(A for logical and, V for logical or, and - for logical negation)
e abooleanformulais iff there exists an assignment of
the variables to true and false that makes the formula as a whole
evaluate to true

Review: basics of SAT

e Yoush SAT
proble{ Example boolean formulas: ourse

o bul @ aV b -c
e PAQ VI(QA-R)

Definition| ® etc. ., symbols
thatcanb

(A for logical and, V for logical or, and - for logical negation)

e abooleanformulais iff there exists an assignment of

the variables to true and false that makes the formula as a whole
evaluate to true

SAT solving goal: find an assighnment

e You can think of an assignment as a mapping from variables to
values

SAT solving goal: find an assighnment

e You can think of an assignment as a mapping from variables to
values

e Examples:
o isX V Ysatisfiable?

SAT solving goal: find an assighnment

e You can think of an assignment as a mapping from variables to
values
e Examples:

o isX V Ysatisfiable?
m yes: X->true, Y->falseis asatisfying assignment

SAT solving goal: find an assighnment

e You can think of an assignment as a mapping from variables to
values
e Examples:
o isX V Ysatisfiable?
m yes: X->true, Y->falseis asatisfying assignment
o isX A -Xsatisfiable?

SAT solving goal: find an assighnment

e You can think of an assignment as a mapping from variables to
values
e Examples:
o isX V Ysatisfiable?
m yes: X->true, Y->falseis asatisfying assignment
o isX A -Xsatisfiable?
m no:thereis no choice of X that makes both X and =X true
at the same time

SAT solving: how hard is it?

e If I’'masking, it’s probably difficult. But how hard?

SAT solving: how hard is it?

e If I’'masking, it’s probably difficult. But how hard?
e Answer: NP-Complete

SAT solving: how hard is it?

e If I’'masking, it’s probably difficult. But how hard?
e Answer: NP-Complete
o Thisis the classic Cook-Levin theorem (proved in the 1970s)
m boolean SAT is the “original” NP-complete problem!

SAT solving: how hard is it?

e If I’'masking, it’s probably difficult. But how hard?
e Answer: NP-Complete
o Thisis the classic Cook-Levin theorem (proved in the 1970s)
m boolean SAT is the “original” NP-complete problem!
m in NP because you can verify that an assignment makes
the formula true by just evaluating the formula

SAT solving: how hard is it?

e If I’'masking, it’s probably difficult. But how hard?

e Answer: NP-Complete
o Thisis the classic Cook-Levin theorem (proved in the 1970s)

boolean SAT is the “original” NP-complete problem!

in NP because you can verify that an assignment makes
the formula true by just evaluating the formula

NP-hard by reduction to polynomial-time acceptance by
a nondeterministic Turing machine

SAT solving: how hard is it?

e If I’'masking, it’s probably difficult. But how hard?
e Answer: NP-Complete
o Thisis the classic Cook-Levin theorem (proved in the 1970s)
m boolean SAT is the “original” NP-complete problem!
m in NP because you can verify that an assignment makes
the formula true by just evaluating the formula
m NP-hard by reduction to polynomial-time acceptance by
a nondeterministic Turing machine
e Naive solution: try all possible assignments

SAT solving: how hard is it?

e If I’'masking, it’s probably difficult. But how hard?
e Answer: NP-Complete
o Thisis the classic Cook-Levin theorem (proved in the 1970s)
m boolean SAT is the “original” NP-complete problem!
m in NP because you can verify that an assignment makes
the formula true by just evaluating the formula
m NP-hard by reduction to polynomial-time acceptance by
a nondeterministic Turing machine
e Naive solution: try all possible assignments
o Takes O(2") time for a formula with n variables (slow!)

SAT solving in practice

e |'ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast

SAT solving in practice

e |'ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast
o they can solve (some) formulas with millions or billions of
clauses very quickly (under 30 seconds)

SAT solving in practice

e |'ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast
o they can solve (some) formulas with millions or billions of
clauses very quickly (under 30 seconds)
e Sohow do they manage to be so fast when the underlying
problem is so hard?

SAT solving in practice

e |'ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast
o they can solve (some) formulas with millions or billions of
clauses very quickly (under 30 seconds)
e Sohow do they manage to be so fast when the underlying
problem is so hard?
o WEe'll discuss two core algorithms:
m the DPLL algorithm for efficiently solving SAT
m the algorithm for efficiently solving SMT

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

e Algorithm is still exponential in the worst case, but on many
problems is much faster than the naive algorithm

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

e Algorithm is still exponential in the worst case, but on many
problems is much faster than the naive algorithm

e Inputmustbein

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

e Algorithm is still exponential in the worst case, but on many
problems is much faster than the naive algorithm

e Inputmustbein

e Two key innovations/heuristics:

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

e Algorithm is still exponential in the worst case, but on many
problems is much faster than the naive algorithm

e Inputmustbein

e Two key innovations/heuristics:
o unit propagation

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

e Algorithm is still exponential in the worst case, but on many
problems is much faster than the naive algorithm

e Inputmustbein

e Two key innovations/heuristics:
o unit propagation

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

e Algorithm is still exponential in the worst case, but on many
problems is much faster than the naive algorithm

e Inputmustbein

e Two key innovations/heuristics:
o unit propagation

e Ifthose don’t apply, default to the naive algorithm

DPLL: overview

e DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

e Algorithm is still exponential in the worst case, but on many
problems is much faster than the naive algorithm

e Inputmustbein

e Two key innovations/heuristics:
o unit propagation

e Ifthose don’t apply, default to the naive algorithm

DPLL: input

e the DPLL algorithm assumes that the input formulaisin
conjunctive normal form (CNF):

DPLL: input

e the DPLL algorithm assumes that the input formulaisin
conjunctive normal form (CNF):
o itis aset of clauses that are separated by conjunctions (A)

DPLL: input

e the DPLL algorithm assumes that the input formulaisin
conjunctive normal form (CNF):
o itis aset of clauses that are separated by conjunctions (A)
o each clause contains zero or more disjunctions (V) of literals
(which may or may not be negated)

DPLL: input

e the DPLL algorithm assumes that the input formulaisin
conjunctive normal form (CNF):
o itis asetof clauses that are separated by (A)
o each clause contains zero or more disjunctions (V) of literals
(which may or may not be negated)

4)
Example CNF formulas:

e (aVb) A (-c

o (aV-b)A(-aVc)A(bVc
_ ,

DPLL: input

e the DPLL algorithm assumes that the input formulaisin
conjunctive normal form (CNF):
o itis aset of clauses that are separated by conjunctions (A)
o each clause contains zero or more disjunctions (V) of literals

(which may or may not be negated)

e iftheinputformulaisnotin CNF, we can transform it into CNF
automatically via DeMorgan’s laws, the double negative law, and
the distributives laws over boolean operators

DPLL: input

e the DPLL algorithm assumes that the input formulaisin

conjunctive normal form (CNF):

o itis aset of clauses that are separated by (A)

o each clause contains zero or more disjunctions (V) of literals
(which may or may not be negated)

e iftheinputformulaisnotin CNF, we can transform it into CNF
automatically via DeMorgan’s laws, the double negative law, and
the distributives laws over boolean operators

o I'm not going to cover this, because you should have had a
discrete math class before. If you can’t confidently do this
now, you should practice before the exam.

DPLL: unit propagation

e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true

DPLL: unit propagation

e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
o here refers to a variable or its negation

DPLL: unit propagation

e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
o here refers to a variable or its negation
e intuition: since the formulais in CNF, for the formula to be
satisfiable then each clause must be true

DPLL: unit propagation

e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
o here refers to a variable or its negation
e intuition: since the formulais in CNF, for the formula to be
satisfiable then each clause must be true
o for aone-literal clause to be true, that literal must be true!

DPLL: unit propagation

e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
o here refers to a variable or its negation

e intuition: since the formulais in CNF, for the formula to be

satisfig?” I

o fofl Consider this CNF formula: e true!

(aVb)A(=c)A(-aVc)A(b Vc

N\ J

DPLL: unit propagation

e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
o here refers to a variable or its negation

e intuition: since the formulais in CNF, for the formula to be

satisfig?” I

o fofl Consider this CNF formula: e true!

(aVb)A(=c)A(-aVc)A(b Vc

e -cappears alone, so c must be false

N\ J

DPLL: unit propagation

e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
o here refers to a variable or its negation

e intuition: since the formulais in CNF, for the formula to be

satisfig?” I

o fofl Consider this CNF formula: e true!

(@ Vb) A (=c) A (-a¥-€) A (b-Y~€)

e -cappears alone, so c must be false

N\ J

DPLL: pure literal elimination

e thesecond DPLL heuristicis pure literal elimination:

DPLL: pure literal elimination

e thesecond DPLL heuristicis
o if avariableis never negated, set it to true

DPLL: pure literal elimination

e thesecond DPLL heuristicis
o if avariableis never negated, set it to true
o ifavariableis ,set it tofalse

DPLL: pure literal elimination

e thesecond DPLL heuristicis
o if avariableis never negated, set it to true
o ifavariableis ,set it tofalse

e intuition: a variable that only appears positively can only help us
satisfy the formula by being true, not by being false

DPLL: pure literal elimination

e thesecond DPLL heuristicis
o if avariableis never negated, set it to true

o ifavariableis ,set it tofalse
e intuition: a variable that only appears positively can only help us
satisfy”Continuing the example:)

(@ Vb) A (=c) A (-a¥-€) A (bV-€)

DPLL: pure literal elimination

e thesecond DPLL heuristicis
o if avariableis never negated, set it to true

o ifavariableis ,set it tofalse
e intuition: a variable that only appears positively can only help us
satisfy”Continuing the example:)

(@ Vb) A (=c) A (-a¥-€) A (bV-€)

e bonlyappears positively, so we can set it

\ to true /

DPLL: pure literal elimination

e thesecond DPLL heuristicis
o if avariableis never negated, set it to true

o ifavariableis ,set it tofalse
e intuition: a variable that only appears positively can only help us
satisfy”Continuing the example:)
(@¥~b) A (-c) A (-a-¥-€) A (b-V¥-¢€)

e bonlyappears positively, so we can set it

\ to true /

DPLL: fallback

e if neither DPLL heuristic applies, then we fallback to the naive
algorithm

DPLL: fallback

e if neither DPLL heuristic applies, then we fallback to the naive
algorithm
e thatis, we guess

DPLL: fallback

e if neither DPLL heuristic applies, then we fallback to the naive
algorithm
e thatis, we guess
o modern solvers use sophisticated heuristics to choose what
variable to set in such a guess, but we're going to skip over that

DPLL: fallback

e if neither DPLL heuristic applies, then we fallback to the naive
algorithm
e thatis, we guess
o modern solvers use sophisticated heuristics to choose what
variable to set in such a guess, but we're going to skip over that
o generally you can pick whatever variable you'd like if | ask you
to do DPLL (e.g., on an exam) when you are stuck

DPLL: fallback

e if neither DPLL heuristic applies, then we fallback to the naive

algorithm

e thatis, we guess
o modern solvers use sophisticated heuristics to choose what

variable to set in such a guess, but we're going to skip over that
o generally you can pick whatever variable you'd like if | ask you
to do DPLL (e.g., on an exam) when you are stuck
e itisimportantto what you guessed

DPLL: fallback

e if neither DPLL heuristic applies, then we fallback to the naive

algorithm

e thatis, we guess
o modern solvers use sophisticated heuristics to choose what

variable to set in such a guess, but we're going to skip over that
o generally you can pick whatever variable you'd like if | ask you
to do DPLL (e.g., on an exam) when you are stuck

e itisimportantto what you guessed
o if youreach an unsatisfiable result, you need to backtrack to

the point where you made the guess (and try the other option)

DPLL: algorithm

function DPLL ()

// unit propagation:

while there is a unit clause {I} in ® do
® — unit-propagate(l, ®);

// pure literal elimination:

while there is a literal 1 that occurs pure in @ do
® — pure-literal-assign(1, ®);

// stopping conditions:

if & is empty then
return true;

if & contains an empty clause then
return false;

// DPLL procedure:

1l — choose-literal (®);

return DPLL(® A {1}) or DPLL(® A {-1})

pseudo-code from https://en.wikipedia.org/wiki/DPLL algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm

DPLL: algorithm

function DPLL ()

// unit propagation:

(. . . .
Heuristic: try unit propagation
first because it creates more

kunits and pure literals.

~

while there is a unit clause {1} in & do

® — unit-propagate(1, ®);
// pure literal elimination:

while there is a literal 1 that occurs pure in @ do

® — pure-literal-assign(l,
// stopping conditions:

if & is empty then

return true;

@) ;

if ® contains an empty clause then

pseudo-code from

return false;
// DPLL procedure:
1l « choose-literal () ;

return DPLL(® A {1}) or DPLL(® A {=1})

https://en.wikipedia.org/wiki/DPLL algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm

(] is tried
DPLL: algorithm second because it only
eliminates entire clauses (it can’t
function DPLL(®) \ Create new units or pure literals).

// unit propagation:
while there is a unit clause {1} in & do
® — unit-propagate(1, ®);
// pure literal elimination:
while there is a literal 1 that occurs pure in @ do
® — pure-literal-assign(1, ®);
// stopping conditions:
if & is empty then
return true;
if ® contains an empty clause then
return false;
// DPLL procedure:
1l — choose-literal (®);
return DPLL(® A {1}) or DPLL(® A {-1})

pseudo-code from https://en.wikipedia.org/wiki/DPLL algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm

DPLL: algorithm

function DPLL ()
// unit propagation:
while there is a unit clause {1} in & do
® — unit-propagate(l, ®);
// pure literal elimination:
while there is a literal 1 that occurs pure in @ do

® —~ pure-literal-assign(l1, ®%; a\

// stopping conditions: . .

if © is empty then Fallback: try both assignments to
return true; arandom literal. (Note the

if & contains an empty clause the short-circuiting “Or” operator.)
return false; _ W,

// DPLL procedure:
1l « choose-literal () ;
return DPLL(® A {1}) or DPLL(® A {=1})

pseudo-code from https://en.wikipedia.org/wiki/DPLL algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm

DPLL: putting it all together

Try to do DPLL in pairs on the following formula:

(a@aVbAa@Vc)A(-aVc)AaV-c)A(-aV-c)A(-d)

From SAT to SMT

From SAT to SMT

e We'd like to solve formulas that contain more complex
subcomponents than just booleans
o e.g.,involving linear arithmeticlike x > 10

From SAT to SMT

e We'd like to solve formulas that contain more complex
subcomponents than just booleans
o e.g.,involving linear arithmeticlike x > 10
e For the moment, we will assume the existence of solvers for these
(such as linear arithmetic)

From SAT to SMT

e We'd like to solve formulas that contain more complex
subcomponents than just booleans
o e.g.,involving linear arithmeticlike x > 10
e For the moment, we will assume the existence of solvers for these
(such as linear arithmetic)
o but note that separate satisfying assignments for two theories
might not be compatible!

From SAT to SMT

e We'd like to solve formulas that contain more complex
subcomponents than just booleans
o e.g.,involving linear arithmeticlike x > 10

e For the moment, we will assume the existence of solvers for these

(such as linear arithmetic)
o but note that separate satisfying assignments for two theories
might not be compatible!

e Coreideaof SMT: solve theories ,butuse DPLL to

combine them (called DPLL(T))

SMT: Nelson-Oppen

SMT: Nelson-Oppen

e Provides a procedure for solving fragments of various theories in
the same formula separately

SMT: Nelson-Oppen

e Provides a procedure for solving fragments of various theories in
the same formula separately
e Requires some assumptions about the theories:

SMT: Nelson-Oppen

e Provides a procedure for solving fragments of various theories in
the same formula separately
e Requires some assumptions about the theories:
o fragments (“conjunctive”)
o equality is the only symbol in their intersection
o both must be stably infinite (don’t worry about this)

SMT: Nelson-Oppen

e Provides a procedure for solving fragments of various theories in
the same formula separately
e Requires some assumptions about the theories:
o fragments (“conjunctive”)
o equality is the only symbol in their intersection
o both must be stably infinite (don’t worry about this)
e Key idea: replace expressions from each theory with variables

SMT: Nelson-Oppen

e Provides a procedure for solving fragments of various theories in
the same formula separately
e Requires some assumptions about the theories:
o fragments (“conjunctive”)
o equality is the only symbol in their intersection
o both must be stably infinite (don’t worry about this)
e Key idea: replace expressions from each theory with variables
o variables introduced by Nelson-Oppen can be shared between
theories

SMT: Nelson-Oppen

e Provides a procedure for solving fragments of various theories in
the same formula separately
e Requires some assumptions about the theories:
o fragments (“conjunctive”)
o equality is the only symbol in their intersection
o both must be stably infinite (don’t worry about this)
e Key idea: replace expressions from each theory with variables
o variables introduced by Nelson-Oppen can be shared between
theories
o solve the whole formula with a modified variant of DPLL, then
ask the theory solvers if the satisfying assignment makes sense

SMT: Nelson-Oppen

Let’s use the following formula as an example:

flfx)-fly)=a A flO)=a+2 A x=y

SMT: Nelson-Oppen

Let’s use the following formula as an example:

flfx)-fly)=a A flO)=a+2 A x=y

This formula has literals in two theories. Replace them with shared
variables for expressions:

SMT: Nelson-Oppen

Let’s use the following formula as an example:

flfx)-fly)=a A flO)=a+2 A x=y

This formula has literals in two theories. Replace them with shared
variables for expressions:
e equality of uninterpreted functions (EUF):

SMT: Nelson-Oppen

Let’s use the following formula as an example:

flfx)-fly)=a A flO)=a+2 A x=y

This formula has literals in two theories. Replace them with shared
variables for expressions:
e equality of uninterpreted functions (EUF): f(el) = a, e2 = f(x), e3 = f(y),
fled)=e5,x=y

SMT: Nelson-Oppen

Let’s use the following formula as an example:

flfx)-fly)=a A flO)=a+2 A x=y

This formula has literals in two theories. Replace them with shared
variables for expressions:

e equality of uninterpreted functions (EUF): f(el) = a, e2 = f(x), e3 = f(y),
fled)=e5,x=y

At this pointin class, | tried to solve
this example on the board. | got it

S MT N e I SON -O ppe N wrong; it is not satisfiable. See next

week’s slides.

Let’s use the following formula as an example:

f(f(x)-fly)=a A f(O)=a+2 A x=y

This formula has literals in two theories. Replace them with shared
variables for expressions:
e equality of uninterpreted functions (EUF): flel) = a, e2 = f(x), €3 = f(y),
fled)=e5,x=y
o arithmetic;el=e2-e3,e4=0,e5=a+2,x=y

SMT: Nelson-Oppen

) . f . \
Let’s use the following formula as an example: | Note how theories
communicate using

f(f(x)-fly) =a A f(O)=a+2 A X=y _(only) equalities |

This formula has literals in two theories. Replace them with shared
variables for expressions:
e equality of uninterpreted functions (EUF): flel) = a, e2 = f(x), €3 = f(y),
fled)=e5,x=y
° cel=e2-e3,e4=0,e5=a+2,x=y

SMT: DPLL(T) algorithm intuition

SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))

SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
o Use Nelson-Oppen to purify the input formula so that each
fragment is in only one theory

SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
o Use Nelson-Oppen to purify the input formula so that each
fragment is in only one theory
o Replace each theory fragment with a fresh boolean variable

SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
o Use Nelson-Oppen to purify the input formula so that each
fragment is in only one theory
o Replace each theory fragment with a fresh boolean variable
o Run normal DPLL (with one exception, which I'll mention soon)

SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))

O

Use Nelson-Oppen to purify the input formula so that each

fragment is in only one theory
Replace each theory fragment with a fresh boolean variable

Run normal DPLL (with one exception, which I'll mention soon)
Assuming we get a satisfying assignment, ask theories if

SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))

O

Use Nelson-Oppen to purify the input formula so that each
fragment is in only one theory

Replace each theory fragment with a fresh boolean variable
Run normal DPLL (with one exception, which I'll mention soon)
Assuming we get a satisfying assignment, ask theories if

If not, add new clauses and re-run DPLL(T)

SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))

O

Use Nelson-Oppen to purify the input formula so that each
fragment is in only one theory

Replace each theory fragment with a fresh boolean variable
Run normal DPLL (with one exception, which I'll mention soon)
Assuming we get a satisfying assignment, ask theories if

If not, add new clauses and re-run DPLL(T)
Continue until done

SMT: DPLL(T) example

Consider this formula as an example:

x>=0Ay=x+1A(y>2Vy<1)

4 :
Conveniently all clauses

 we can skip purification

are in linear arithmetic, so

J

SMT: DPLL(T) example

Consider this formula as an example:

x>=0Ay=x+1A(y>2Vy<1)

\ \ \ R
pl A p2 A(p3V p4)

SMT: DPLL(T) example

Consider this formula as an example:

x>=0Ay=x+1A(y>2Vy<1)

\ \ \ R
pl A p2 A(p3V p4)

We now solve this with DPLL. We get a satisfying assignment (e.g., p1,
p2, p4 all true). Then, we check this with our theory:
e canpl, p2,and p4 all be true at the same time?

SMT: DPLL(T) example

Consider this formula as an example:

x>=0Ay=x+1A(y>2Vy<1)

\ \ \ R
pl A p2 A(p3V p4)

We now solve this with DPLL. We ge