Using SMT Solvers (to

reason about programs)
Martin Kellogg



Reading quiz: SMT solvers



Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?

A. polygons

B. equality of uninterpreted functions

C.linear real arithmetic

D. arrays



Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?

A. polygons

B. equality of uninterpreted functions

C.linear real arithmetic

D. arrays



Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?
. polygons
B. equality of uninterpreted functions
C.linear real arithmetic
D. arrays



Agenda: SMT solvers

Motivation: reasoning about formulas

SAT solving: DPLL

SMT solving: Nelson-Oppen and DPLL(T)
SMT in practice: brief intro to Z3 and SMT-LIB



Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class



Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths



Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths
m goal: create test cases that definitely increase coverage



Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths
m goal: create test cases that definitely increase coverage
e Atthetime, we deferred the question of how we would solve
path predicates automatically



Motivation: reasoning about formulas

e Recall our discussion of from earlier in this
class
o effectively, it to figure out which values of each

variable will cause the program to take particular paths
m goal: create test cases that definitely increase coverage
e Atthetime, we deferred the question of how we would solve
path predicates automatically
o recall that a path predicate is a formula over program
variables that is true when a particular path is executed



Motivation: reasoning about formulas

For example, consider this program:

int simpleMath (int a, int b) {
assert(b > 0);
if(a + b == a * b) {
return 1;

}

return 0;

}



Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover

assert (b > 0); T
if(a+Db=a*b) | __ thisline (return 1)

return 1; <+
}

return 0;

}




Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover
assert (b > 0); T
if(a+Db=a*b) | _ trHS|H1e(return 1)
return 1; <
) what’s its path predicate?

return 0;

}



Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover
assert (b > 0); T
if(a+Db=a*b) | _ trHS|H1e(return 1)
return 1; <
) what’s its path predicate?

return 0;

} b>0&8a+b==a*b



Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) { suppose we want to cover
assert (b > 0); T
if(a+Db=a*b) | _ trHS|H1e(return 1)
return 1; <
) what’s its path predicate?

return 0;

} b>0&8a+b==a*b

Key question: are there a, b
such that this is true?
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e Asahuman,itisrelatively easy to solve the example on the
previous slide
o but real examples are many orders of magnitude larger!
o wedliketo the task of checking if there’s a solution
e |[nourlecture onsymbolic execution, | briefly mentioned that
SMT solvers are the modern tool that we'd use to do so
o let’'sdoit now: https:/www.philipzucker.com/z3-rise4fun/
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Motivation: reasoning about formulas

e Reasoning about formulas is useful for more than symbolic
execution
e Other applications include:
o reasoning about program correctness (automating
pen-and-paper proofs!)
o reasoning about program equivalence (cf. equivalent mutant
problem)
o program synthesis
O program repair
o etc.
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What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.
e note “tries to”: boolean satisfiability is
e “theories” refers to non-boolean parts of the formula
o for example, a solver might support a
e different solvers might support different theories
o much of today’s reading was about various theories that Z3
supports, such as Equality of Uninterpreted Functions (EUF) and

the theory of Arrays
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How SMT solvers are used

e the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
o “reduce” here means “do areduction”, like in your theory class
e for example, symbolic execution reduces covering a particular line
of code to the problem of whether a path predicate is satisfiable
o then usesthe SMT solver as an
e note thatinthe symbolic execution case, we're interested in the
satisfying assignment (it’s the test case)
o inmany other interesting cases, we want to check a formula’s
validity: that is, whether it is true for all values of its inputs
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Validity vs satisfiability

e Suppose we have some formula F
o we want to prove V x. F(x) is true Ghis means that we can \

m (x herestands for the free varid use an SMT solver to
think of as the inputs) check either validity or
o we have an oracle for satisfiability!
solver) e useful for e.g. proving
e Two-step transformation: program equivalence/

o VX F(x)istrue->-3x. F(x)isfalse
o -3x.F(x)isfalse->-3x. -F(x)istrue
m Thisis exactly equivalent to asking if =F(x) is satisfiable
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e Goal #1: understand the basics of how an SMT solver works
o | don’t expect you to be able to go out and build one right away
o buttouse atool effectively, it’s important to understand the
basic ideas that make it work
e Goal #2: understand how to use and apply an SMT solver to
real-world program analysis problems
o thisis what the homework will ask you to do
m and was also the main subject of today’s reading
o hopefully you will also get a sense for to
apply an SMT-based tool
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Review: basics of SAT

e Yoush SAT
proble{ Example boolean formulas: ourse

o bul @ aV b -c
e PAQ VI(QA-R)

Definition| ® etc. ., symbols
thatcanb

(A for logical and, V for logical or, and - for logical negation)

e abooleanformulais iff there exists an assignment of

the variables to true and false that makes the formula as a whole
evaluate to true
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SAT solving goal: find an assighnment

e You can think of an assignment as a mapping from variables to
values
e Examples:
o isX V Ysatisfiable?
m yes: X->true, Y->falseis asatisfying assignment
o isX A -Xsatisfiable?
m no:thereis no choice of X that makes both X and =X true
at the same time
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e If I’'masking, it’s probably difficult. But how hard?
e Answer: NP-Complete
o Thisis the classic Cook-Levin theorem (proved in the 1970s)
m boolean SAT is the “original” NP-complete problem!
m in NP because you can verify that an assignment makes
the formula true by just evaluating the formula
m NP-hard by reduction to polynomial-time acceptance by
a nondeterministic Turing machine
e Naive solution: try all possible assignments
o Takes O(2") time for a formula with n variables (slow!)
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SAT solving in practice

e |'ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast
o they can solve (some) formulas with millions or billions of
clauses very quickly (under 30 seconds)
e Sohow do they manage to be so fast when the underlying
problem is so hard?
o WEe'll discuss two core algorithms:
m the DPLL algorithm for efficiently solving SAT
m the algorithm for efficiently solving SMT
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DPLL: input

e the DPLL algorithm assumes that the input formulaisin

conjunctive normal form (CNF):

o itis aset of clauses that are separated by (A)

o each clause contains zero or more disjunctions (V) of literals
(which may or may not be negated)

e iftheinputformulaisnotin CNF, we can transform it into CNF
automatically via DeMorgan’s laws, the double negative law, and
the distributives laws over boolean operators

o I'm not going to cover this, because you should have had a
discrete math class before. If you can’t confidently do this
now, you should practice before the exam.
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e the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
o here refers to a variable or its negation

e intuition: since the formulais in CNF, for the formula to be

satisfig?” I

o fofl Consider this CNF formula: e true!
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e thesecond DPLL heuristicis
o if avariableis never negated, set it to true

o ifavariableis ,set it tofalse
e intuition: a variable that only appears positively can only help us
satisfy”Continuing the example: )
(@¥~b) A (-c) A (-a-¥-€) A (b-V¥-¢€)

e bonlyappears positively, so we can set it

\ to true /
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DPLL: fallback

e if neither DPLL heuristic applies, then we fallback to the naive

algorithm

e thatis, we guess
o modern solvers use sophisticated heuristics to choose what

variable to set in such a guess, but we're going to skip over that
o generally you can pick whatever variable you'd like if | ask you
to do DPLL (e.g., on an exam) when you are stuck

e itisimportantto what you guessed
o if youreach an unsatisfiable result, you need to backtrack to

the point where you made the guess (and try the other option)



DPLL: algorithm

function DPLL ()

// unit propagation:

while there is a unit clause {I} in ® do
® — unit-propagate(l, ®);

// pure literal elimination:

while there is a literal 1 that occurs pure in @ do
® — pure-literal-assign(1, ®);

// stopping conditions:

if & is empty then
return true;

if & contains an empty clause then
return false;

// DPLL procedure:

1l — choose-literal (®);

return DPLL(® A {1}) or DPLL(® A {-1})

pseudo-code from https://en.wikipedia.org/wiki/DPLL algorithm
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DPLL: algorithm

function DPLL ()

// unit propagation:

(. . . .
Heuristic: try unit propagation
first because it creates more

kunits and pure literals.

~

while there is a unit clause {1} in & do

® — unit-propagate(1, ®);
// pure literal elimination:

while there is a literal 1 that occurs pure in @ do

® — pure-literal-assign(l,
// stopping conditions:

if & is empty then

return true;

@) ;

if ® contains an empty clause then

pseudo-code from

return false;
// DPLL procedure:
1l « choose-literal () ;

return DPLL(® A {1}) or DPLL(® A {=1})

https://en.wikipedia.org/wiki/DPLL algorithm
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(] is tried
DPLL: algorithm second because it only
eliminates entire clauses (it can’t
function DPLL(®) \ Create new units or pure literals).

// unit propagation:
while there is a unit clause {1} in & do
® — unit-propagate(1, ®);
// pure literal elimination:
while there is a literal 1 that occurs pure in @ do
® — pure-literal-assign(1, ®);
// stopping conditions:
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// DPLL procedure:
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DPLL: algorithm

function DPLL ()
// unit propagation:
while there is a unit clause {1} in & do
® — unit-propagate(l, ®);
// pure literal elimination:
while there is a literal 1 that occurs pure in @ do

® —~ pure-literal-assign(l1, ®%; a\

// stopping conditions: . .

if © is empty then Fallback: try both assignments to
return true; arandom literal. (Note the

if & contains an empty clause the short-circuiting “Or” operator.)
return false; \_ W,

// DPLL procedure:
1l « choose-literal () ;
return DPLL(® A {1}) or DPLL(® A {=1})

pseudo-code from https://en.wikipedia.org/wiki/DPLL algorithm
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DPLL: putting it all together

Try to do DPLL in pairs on the following formula:

(a@aVbAa@Vc)A(-aVc)AaV-c)A(-aV-c)A(-d)
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From SAT to SMT

e We'd like to solve formulas that contain more complex
subcomponents than just booleans
o e.g.,involving linear arithmeticlike x > 10

e For the moment, we will assume the existence of solvers for these

(such as linear arithmetic)
o but note that separate satisfying assignments for two theories
might not be compatible!

e Coreideaof SMT: solve theories ,butuse DPLL to

combine them (called DPLL(T))
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SMT: Nelson-Oppen

e Provides a procedure for solving fragments of various theories in
the same formula separately
e Requires some assumptions about the theories:
o fragments (“conjunctive”)
o equality is the only symbol in their intersection
o both must be stably infinite (don’t worry about this)
e Key idea: replace expressions from each theory with variables
o variables introduced by Nelson-Oppen can be shared between
theories
o solve the whole formula with a modified variant of DPLL, then
ask the theory solvers if the satisfying assignment makes sense
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Let’s use the following formula as an example:

flfx)-fly)=a A flO)=a+2 A x=y

This formula has literals in two theories. Replace them with shared
variables for expressions:

e equality of uninterpreted functions (EUF): f(el) = a, e2 = f(x), e3 = f(y),
fled)=e5,x=y



At this pointin class, | tried to solve
this example on the board. | got it

S MT N e I SON -O ppe N wrong; it is not satisfiable. See next

week’s slides.

Let’s use the following formula as an example:

f(f(x)-fly)=a A f(O)=a+2 A x=y

This formula has literals in two theories. Replace them with shared
variables for expressions:
e equality of uninterpreted functions (EUF): flel) = a, e2 = f(x), €3 = f(y),
fled)=e5,x=y
o arithmetic;el=e2-e3,e4=0,e5=a+2,x=y



SMT: Nelson-Oppen

) . f . \
Let’s use the following formula as an example: | Note how theories
communicate using

f(f(x)-fly) =a A f(O)=a+2 A X=y _(only) equalities |

This formula has literals in two theories. Replace them with shared
variables for expressions:
e equality of uninterpreted functions (EUF): flel) = a, e2 = f(x), €3 = f(y),
fled)=e5,x=y
° cel=e2-e3,e4=0,e5=a+2,x=y
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SMT: DPLL(T) algorithm intuition

e DPLL(T) is avariant of DPLL for use with theories (T stands for
“theory” in DPLL(T))

O

Use Nelson-Oppen to purify the input formula so that each
fragment is in only one theory

Replace each theory fragment with a fresh boolean variable
Run normal DPLL (with one exception, which I'll mention soon)
Assuming we get a satisfying assignment, ask theories if

If not, add new clauses and re-run DPLL(T)
Continue until done



SMT: DPLL(T) example

Consider this formula as an example:

x>=0Ay=x+1A(y>2Vy<1)

4 :
Conveniently all clauses

 we can skip purification

are in linear arithmetic, so

J
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SMT: DPLL(T) example

Consider this formula as an example:

x>=0Ay=x+1A(y>2Vy<1)

\ \ \ R
pl A p2 A(p3V p4)

We now solve this with DPLL. We get a satisfying assignment (e.g., p1,
p2, p4 all true). Then, we check this with our theory:
e canpl, p2,and p4 all be true at the same time?
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