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Reading quiz: abstract interpretation

● today’s quiz is on paper, and also covers the topics of last week’s 
class

● you have 15 minutes to complete it. When you’re finished, bring 
it to Kazi in the back.

● you may use any hand-written notes that you took during last 
class
○ this includes notes on a tablet or similar, if you wrote them 

with a stylus
■ but I will be looking over your shoulder if you do :)
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Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how 
to reason over that abstract domain
○ one for each kind of operation in the underlying 

programming language (e.g., one for +, one for -, etc.)
○ usually represented as tables
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● the concrete domain of a variable is the set of values that the 
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete 
domain that splits it into a smaller number of sets

concrete 
domain

abstract 
domainγ

α
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execution
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abstraction 
function (α)

concretization 
function (γ)

transfer 
functions

soundness means that the green path is a subset of the orange path
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Review: clarifications

● last week, I went through an extended example of how to get a 
parity analysis to work on one program
○ however, that was just an example!

■ an abstract interpretation is applicable to any program
○ one of the key challenges in abstract interpretation design is 

figuring out the right set of examples to handle precisely
■ when you’re implementing your divide-by-zero analysis, I 

strongly recommend that you write out some examples 
as test cases!
● you can just add them to the existing test



Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo
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● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization of the result of applying 
the transfer function to the abstraction of 
the original concrete state (orange line)
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Consider the following program:

x = 0
while (x < 3):
  x = x + 1
print x

What value is printed?
How do you know?

Insight: anything you can figure 
out by reasoning through the 
program by hand, an abstract 
interpretation can do too!
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Refinement

Consider the following program:

x = 0
while (x < 3):
  x = x + 1
print x

(actually need to extend this to 4 layers, 
but there’s not room on the slide)

draw in the correct 
lattice here:

Does this permit us to prove 
the value of x at the end?
NO (need transfer function)
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Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they 
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the 
language
○ for our example, we need a refinement for >=
○ why >= and not < ?

■ loop guard is false, so we invert the operator



Refinement

Consider the following program:

x = 0
while (x < 3):
  x = x + 1
print x

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don’t erase it.)
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● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we 

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need 

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each 
time we need to reason about differently-sized sets

○ do you think that’s possible?
■ We can use widening operators to allow this (sort of)
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Widening

Definition: a widening operator is a predefined policy to take a 
particular upper bound if the abstract value at a particular location 
has changed too many times
● effectively, this guarantees termination by bounding the number 

of times that a particular value can change, even if the lattice is of 
infinite size

● this is safe because the analysis isn’t required to take the least 
upper bound so long as it chooses an upper bound

● example widening operator for constant propagation: 
○ if an abstract value has changed at least five times, go to top
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print x
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Let’s return to the previous example:

x = 0
while (x < 3 10):
  x = x + 1
print x
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Widening

● The main advantage of widening is that it permits lattices with 
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s 

okay
● A nice fact about implementing an abstract interpretation is that 

it is always safe to apply a widening operator
○ this means it’s easy to support complex language features: just 

immediately widen any values that they impact
■ “go to top” is a sound policy in all situations



Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo
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First question: does this 
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!
● all divisions are by 2

○ 2 != 0
● “constant propagation” 

can prove no divisions by 
zero!
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Another example: Stein’s algorithm

def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt

First question: does this 
program ever divide by zero?
Take a moment and discuss.

Next question: does this 
program terminate on all 
inputs? Take a moment and 
discuss. (Hint: draw a CFG.)

To prove termination, we need 
to show that both while loop 
guards are eventually false.
● 1st: a is odd or b is odd
● 2nd: a eventually equals b
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Another example: Stein’s algorithm: parity

def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt

Fortunately, we already know an 
analysis for parity. Let’s use it (on 
the board; requires a CFG).
● we ran into a problem: we 

can’t prove that a and b are 
eventually odd!
○ the transfer function for 

even / is2 returns T
● in this case, that’s actually 

correct!
○ the program does not 

terminate on all inputs
○ -1, 1 is a counterexample



Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo



Course announcements

● This week’s homework is individual (you may not work with a 
partner)
○ this is a difference from previous homeworks!

● early next week I will send out a survey (via Discord) about what 
topic we should cover in the last week of class (April 25)
○ please give this some serious thought!
○ the survey will be open until next week’s class, and I will 

announce the result during class


