Abstract Interpretation (1/2)

Martin Kellogg



Reading quiz: abstract interpretation



Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest

for handling procedure calls in an abstract interpretation?
A. summarization

B. inlining
C. refinement
D. concretization

Q2: The reading uses to represent programs, where
the condition of an if statement is always a variable and the

right-hand side of an assignment is always an expression with only
one operator.




Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest
for handling procedure calls in an abstract interpretation?
summarization
inlining
C. refinement
D. concretization

Q2: The reading uses to represent programs, where
the condition of an if statement is always a variable and the
right-hand side of an assignment is always an expression with only
one operator.




Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest
for handling procedure calls in an abstract interpretation?
summarization
inlining
C. refinement
D. concretization

Q2: The reading uses 3-address code to represent programs, where
the condition of an if statement is always a variable and the
right-hand side of an assignment is always an expression with only
one operator.




Agenda: abstract interpretation

e Today: definitions, examples, soundness (?)
e Next week: more theory and examples, practical demo



Agenda: abstract interpretation

e Today: definitions, examples, soundness
e Next week: more theory and examples, practical demo



What is an abstract interpretation (formally)?



What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:



What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:
e an abstract domain over which to reason



What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:
e an abstract domain over which to reason
e asetof transfer functions that tell the abstract interpreter how
to reason over that abstract domain



What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:
e an abstract domain over which to reason
e asetof transfer functions that tell the abstract interpreter how
to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:



What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:
e an abstract domain over which to reason
e asetof transfer functions that tell the abstract interpreter how
to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:
e the“domain”is the concrete values that the machine can
represent, like “64-bit integers”



What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:
e an abstract domain over which to reason
e asetof transfer functions that tell the abstract interpreter how
to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:
e the“domain”is the concrete values that the machine can
represent, like “64-bit integers”
e the “transfer functions” are the concrete semantics of the
programming language, such as what “+” actually means
(“dispatch the operators to the ALU")



What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:
e an abstract domainover whichtor - -
When dealing with a
e asetof transfer functions that tell ?’ 5 \
to reason over that abstract domai

concrete language, we
don’t usually get to

. ‘ the domain or the
A concrete interpreter for a real progr: semantics. But in abstract

CPython, Node.js) also has these two c interpretation, we do!

e the“domain”is the concrete values thattnemacnmecanm——
represent, like “64-bit integers”

e the “transfer functions” are the concrete semantics of the

programming language, such as what “+” actually means
(“dispatch the operators to the ALU")




Domains

Definition: a domain is a set of possible values



Domains

Definition: a domain is a set of possible values
e e.g., you might have heard the terms “domain” and “range” applied
to functions in your previous math classes



Domains

Definition: a domain is a set of possible values

e e.g., you might have heard the terms “domain” and “range” applied
to functions in your previous math classes

e we areinterested in two kinds of domains:



Domains

Definition: a domain is a set of possible values
e e.g,you might have heard the terms “domain” and “range” applied
to functions in your previous math classes
e we areinterested in two kinds of domains:
o the concrete domain of a variable is the set of values that the
variable might actually take on during execution
m probably familiar to you already
m thisis what the computer computes



Domains

Definition: a domain is a set of possible values
e e.g,you might have heard the terms “domain” and “range” applied
to functions in your previous math classes
e we are interested in two kinds of domains:
o the concrete domain of a variable is the set of values that the
variable might actually take on during execution
m probably familiar to you already
m thisis what the computer computes
o anabstract domain is a layer of indirection on top of the
concrete domain that splits the concrete domaininto a
smaller number of sets



Domains: concrete vs abstract example



Domains: concrete vs abstract example

e concrete domain = natural numbers:



Domains: concrete vs abstract example

e concrete domain = natural numbers:
o {0,1,2,3,4,...}



Domains: concrete vs abstract example

e concrete domain = natural numbers:
o {0,1,2,3,4,...}
e abstract domains:



Domains: concrete vs abstract example

e concrete domain = natural numbers:
o {0,1,2,3,4,..}
e abstract domains:
o even/odd
o prime/composite
o positive/nonnegative
o many more!



Domains: concrete vs abstract example

e concrete domain = natural numbers:
o {0,1,2,3,4,...}
e abstract domains:

O O O O

even/odd
prime/composite
positive/nonnegative
many more!

Important property of an
abstract domain: it must
completely cover the

concrete domain

\_




Domains: concrete vs abstract

e More formally:



Domains: concrete vs abstract

e More formally:
o let Cbethe concrete domain of interest (e.g., natural numbers)



Domains: concrete vs abstract

e More formally:
o let Cbethe concrete domain of interest (e.g., natural numbers)
o an A= {Ar A, .. An} is a set of subsets of C that
fulfills the following properties:



Domains: concrete vs abstract

e More formally:
o let Cbethe concrete domain of interest (e.g., natural numbers)
o an A= {Az’ A, .. An} is a set of subsets of C that
fulfills the following properties:
m Vv Ai E A, A,. cC



Domains: concrete vs abstract

e More formally:
o let Cbethe concrete domain of interest (e.g., natural numbers)
o an A= {Az’ A, .. An} is a set of subsets of C that
fulfills the following properties:
m Vv Ai E A, A,. cC
m AUALUL.UA=C



Domains: concrete vs abstract

e More formally:
o let Cbethe concrete domain of interest (e.g., natural numbers)
o an A= {Ar A, .. An} is a set of subsets of C that
fulfills the following properties:
m Vv Ai E A, A,. cC
m AUALUL.UA=C
o eachA.represents an abstract value



Domains: concrete vs abstract

e More formally:
o let Cbethe concrete domain of interest (e.g., natural numbers)
o an A= {Az’ A, .. An} is a set of subsets of C that
fulfills the following properties:
m Vv Ai E A, A,. cC
m AUALUL.UA=C
o eachA.represents an abstract value

m e.g., ‘oddintegers”, “Strings that match my regular
expression’, etc.



Domains: orderings and lattices

e An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
o an abstract domain with an ordering is called a lattice



Domains: orderings and lattices

e An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
o an abstract domain with an ordering is called a lattice
e There are two ways to express the ordering:



Domains: orderings and lattices

e An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
o an abstract domain with an ordering is called a lattice
e There are two ways to express the ordering:
o define aless than relation (usually denoted by C), or



Domains: orderings and lattices

e An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
o an abstract domain with an ordering is called a lattice
e There are two ways to express the ordering:
o define aless than relation (usually denoted by C), or
o define aleast upper bound operator (usually denoted by L)



Domains: orderings and lattices

e An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
o an abstract domain with an ordering is called a lattice
e There are two ways to express the ordering:
o define aless than relation (usually denoted by C), or
o define aleast upper bound operator (usually denoted by L)
e Thesetwo approaches are : you can derive the LUB
from the less than relation and vice-versa



Domains: ordering: less than relation

e Review: informally, a relation on a set may, or may not, hold
between two given members of the set



Domains: ordering: less than relation

e Review: informally, a relation on a set may, or may not, hold
between two given members of the set
o formally, we define arelation as a set of ordered pairs



Domains: ordering: less than relation

e Review: informally, a relation on a set may, or may not, hold
between two given members of the set
o formally, we define arelation as a set of ordered pairs

e |[fxCy,thenwesaythatxislower orless, and thatyis higher or

greater



Domains: ordering: less than relation

e Review: informally, a relation on a set may, or may not, hold
between two given members of the set
o formally, we define arelation as a set of ordered pairs

e |[fxCy,thenwesaythatxislower orless, and thatyis higher or

greater

e Theless-than relation
o fortwo pointsel ande2,itis possible that neitherel Ce2 nor

e2Celistrue



Domains: ordering: least upper bound

e While the less than relation is in some ways better for doing a
proof, it can be unwieldy when thinking about programs



Domains: ordering: least upper bound

e While the less than relation is in some ways better for doing a
proof, it can be unwieldy when thinking about programs

e Theleast upper bound is often more useful, because it directly
models the join operator



Domains: ordering: least upper bound

e While the less than relation is in some ways better for doing a
proof, it can be unwieldy when thinking about programs

e Theleast upper bound is often more useful, because it directly
models the join operator
o thatis, it models what happens when two possible abstract

values flow to the same location (e.g., the then and else
branches of an if)



Least upper bound: relationship to types

e You are probably already
intuitively familiar with the
LUB operator from your
experience with



Least upper bound: relationship to types

e You are probably already

Object
intuitively familiar with the / \
LUB operator from your Animal Shape
experience with / | |\
Bird Mammal Circle Rect
/\ |

Dog Cat Square



Least upper bound: relationship to types

e You are probably already Object
intuitively familiar with the / \
LUB operator from your Animal Shape
experience with / | |\
Bird Mammal Circle Rect
o any time that you've / 0\ |
answered the question Dog Cat Square

“what is the closest
supertype that these two

types share”, you're doing a
LUB



Domains: ordering: least upper bound

e There are twoimportant requirements on the LUB operator:



Domains: ordering: least upper bound

e There are twoimportant requirements on the LUB operator:
o it must be complete: thatis, Vv X,Y € A.XtY must be defined



Domains: ordering: least upper bound

e There are twoimportant requirements on the LUB operator:
o it must be complete: thatis, Vv X,Y € A.XtY must be defined
o it must be monotonic: thatis, it preserves the ordering
relationship.



Domains: ordering: least upper bound

e There are twoimportant requirements on the LUB operator:
o it must be complete: thatis, Vv X,Y € A.XtY must be defined
o it must be monotonic: thatis, it preserves the ordering
relationship.
m LUB s abinary function; for a binary function f,

monotonicity is defined as
e Vab,cd.aEb A cCd=f(a,c)Cf(b,d)



Domains: ordering: least upper bound

e There are twoimportant requirements on the LUB operator:
o it must be complete: thatis, Vv X,Y € A.XtY must be defined
o it must be monotonic: thatis, it preserves the ordering
relationship.
m LUB s abinary function; for a binary function f,
monotonicity is defined as
e Vab,cd.aEb A cCd=f(a,c)Cf(b,d)
m Note that thisis not the same as:
o VXV.f(x,y)Ix A flx,y)2y!
e though this property is also true of the LUB operator



Domains: ordering: least upper bound

e There are twoimportant requirements on the LUB operator:
o it must be complete: thatis, Vv X,Y € A.XtY must be defined
o it must be monotonic: thatis, it preserves the ordering
relationship.
m LUB s abinary function; for a binary function f,
monotonicity is defined as KI—Iint: | like to ask exam )
e Vab,cd.akb A ctd guestions like “why is this
m Note that thisis not the same property required?” or
o Vxvy.fxy)Ix Aflx,y)] “what would happen if it
e though this property is a|5\weren’t true?” )




Domains: lattices = abstract domain + order

e A lattice formally has two components:
o the abstract domain
o theorderingrelation



Domains: lattices = abstract domain + order

e A lattice formally has two components:
o the abstract domain
o theorderingrelation

e Thatis,alatticeisa set



Domains: lattices = abstract domain + order

e A lattice formally has two components:
o the abstract domain
o theorderingrelation

e Thatis,alatticeisa set

A set is partially ordered iff 3 a binary
relationship < that is:

e reflexive: x < x

e anti-symmetric: xS yAysx=>x=y
\o transitive: x <y Ay<z=>x<z Y




Domains: lattices = abstract domain + order

e Alattice formally has two components:
o the abstract domain
o theorderingrelation
e Thatis,alatticeisa set
o join semilattices and meet semilattices are special kinds of
partially-ordered sets



Domains: lattices = abstract domain + order

e Alattice formally has two components:
o the abstract domain
o theorderingrelation
e Thatis,alatticeisa set
o join semilattices and meet semilattices are special kinds of
partially-ordered sets
m join semilattices have a unique top element



Domains: lattices /Join semilattice\’lain + order

example:
e Alattice formally has T
o the abstract dom: / \
o theorderingrelat A B
e Thatis,alatticeisa |
o join semilattices a C D Jre special kinds of
partially-ordered

m join semilattices have a unique top element



Domains: lattices = abstract domain + order

e Alattice formally has two components:
o the abstract domain
o theorderingrelation
e Thatis,alatticeisa set
o join semilattices and meet semilattices are special kinds of
partially-ordered sets
m join semilattices have a unique top element
m meet semilattices have a unique bottom element



Domains: lattices /Meet semilattice\ain + order

example:
e Alattice formally has A B
o the abstract dom: |
o theorderingrelat C D
e Thatis, alatticeis a \ /
o join semilattices a L e special kinds of
partially-ordered /

m join semilattices have a unique top element
m meet semilattices have a unique bottom element



Domains: lattices = abstract domain + order

e Alattice formally has two components:
o the abstract domain
o theorderingrelation
e Thatis,alatticeisa set
o join semilattices and meet semilattices are special kinds of
partially-ordered sets
m join semilattices have a unique top element
m meet semilattices have a unique bottom element
o alattice formally is both a join and a meet semilattice



Domains: lattices = abstract domain + order

e Alattice formally has two components:
o the abstract domain
o theorderingrelation
e Thatis,alatticeisa set
o join semilattices and meet semilattices are special kinds of
partially-ordered sets
m join semilattices have a unique top element
m meet semilattices have a unique bottom element
o alattice formally is both a join and a meet semilattice
e \We saw some examples of lattices last week
o e.g.,the null pointer analysis example’s lattice with T, ¢,and L



Al = Lattice + Transfer functions



Al = Lattice + Transfer functions

e the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language



Al = Lattice + Transfer functions

e the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
o thatis, the transfer function for an operation answers the
question “what does this operation mean in the context of the
abstract domain”?



Al = Lattice + Transfer functions

e the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
o thatis, the transfer function for an operation answers the
question “what does this operation mean in the context of the
abstract domain”?
e formally, an abstract interpretation requires a transfer function for



Al = Lattice + Transfer functions

e the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
o thatis, the transfer function for an operation answers the
qguestion “what does this operation mean in the context of the
abstract domain”?
e formally, an abstract interpretation requires a transfer function for

o in practice, though, we usually assume that most are obvious
and focus on the ones that might be interesting, which is what
I’ll do in the examples on the next few slides



Example Al: even/odd integers



Example Al: even/odd integers

Example lattice:



Example Al: even/odd integers

Example lattice:

{even,odd}=top

/ \
{feven} {odd}
\ /

{} = bottom



Example Al: even/odd integers

Example lattice: /A note about top: )
e toprepresents
{even,odd}=top on the
/ \ possible values
{eve\n} {o;jd} e equivalently, every value
is a member of to
{} = bottom \ P /




Example Al: even/odd integers

—
Example lattice: /
P Similarly for bottom: \

{even, odd } = top e bottomrepresents

/ \ I

feven}  {odd} >onvalues
\ / \ e equivalently, no values
bers of bottom




Example Al: even/odd integers

Example lattice: Example transfer function:
{even, odd } = top + T 'even odd _L
/ \ T
{even} {odd}
\ / even
{} = bottom
odd
1




Example Al: even/odd integers

Example lattice: Example transfer function:
{even, odd } = top + T 'even odd _L
/ \
{even}  {odd} T T T T 1
\ / even| T even odd L
{} = bottom
odd| T odd even _L
1 A 1 1 A1




Example Al: even/odd integers

Let’s apply this Al to an example:

x = 0;

y = read even();
x =y + 1;

y = 2 * X;

X =y - 2

y = x / 2;



Example Al: even/odd integers

Let’s apply this Al to an example:

< = 0 ﬁoncrete execution\
y = read even () {x=0; y=undef)
_ ' {x=16; y=18}
= x / 2;
Y {x=16; y=8} 4//




Example Al: even/odd integers

Let’s apply this Al to an example:
@oncrete executionwbstract interpr. \

>; _ géad even () {x=0; vy=undef} {x=7?; vy=2}

x =y + 1; {x=0; y=8} {x=2; y=2}

vy = 2 % x; {x=9; y=8} {x=2; y=?}

x =y - 2; {x=9; y=18} {x=?; y=2}

v = x / 2; {x=16,; y=18} {x=7?; vy=?}
(x=16; y=8}  ANUx=2?; y=?}




Example Al: even/odd integers

Let’s apply this Al to an example:
@oncrete executionwbstract interpr. \

>; _ géad even () {x=0; vy=undef} {x=e; vy=7}

x =y + 1; {x=0; y=8} {x=2; y=2}

vy = 2 % x; {x=9; y=8} {x=2; y=?}

x =y - 2; {x=9; y=18} {x=?; y=2}

v = x / 2; {x=16,; y=18} {x=7?; vy=?}
(x=16; y=8}  ANUx=2?; y=?}




Abstraction function

e Howdid we know that O was even?



Abstraction function

e How did we know that O was even?
o anabstraction function (typically denoted by a) tells us which
abstract domain a particular concrete element belongs to



Abstraction function

e How did we know that O was even?
o anabstraction function (typically denoted by a) tells us which
abstract domain a particular concrete element belongs to

concrete
domain




Abstraction function

e How did we know that O was even?
o anabstraction function (typically denoted by a) tells us which
abstract domain a particular concrete element belongs to

concrete
domain

{1} {4} {8}
|
0



Abstraction function

e How did we know that O was even?
o anabstraction function (typically denoted by a) tells us which
abstract domain a particular concrete element belongs to

abstract
domain

concrete
domain

{..,4,6,8, ..}

N | —
(1} {4} {8)
|
0



Abstraction function

e How did we know that O was even?
o anabstraction function (typically denoted by a) tells us which
abstract domain a particular concrete element belongs to

concrete abstract
domain (468 .) domain
N | — |
{1} {4} {8} e.g..
N | a(4) = even

o a(f}) = bottom



Concretization function

e What about going the other way?



Concretization function

e What about going the other way?
o an concretization function (typically denoted by y) tells us which
concrete element are associated with an abstract value



Concretization function

e What about going the other way?
o an concretization function (typically denoted by y) tells us which
concrete element are associated with an abstract value

abstract
domain



Concretization function

e What about going the other way?
o an concretization function (typically denoted by y) tells us which
concrete element are associated with an abstract value

abstract
domain



Concretization function

e What about going the other way?
o an concretization function (typically denoted by y) tells us which
concrete element are associated with an abstract value

abstract
domain

concrete
domain

{..,4,6,8, ..}

N | —
{1} {4} {8}
|
0



Role of abstr., concr., and transfer fcns.

{ Concrete state J




Role of abstr., concr., and transfer fcns.

concrete
1 execution
Concrete state Concrete state

)




Role of abstr., concr., and transfer fcns.

concrete
) execution
Concrete state Concrete state

)

abstraction
function

{ Abstract state ]




Role of abstr., concr., and transfer fcns.

concrete

abstraction
function

{ Abstract state

~N

execution
{ Concrete state } { Concrete state ]

transfer

J

functions { Abstract state J




Role of abstr., concr., and transfer fcns.

concrete
execution
{ Concrete state } { Concrete state ]

abstraction
function

T concretization

function
transfer

functions { Abstract state J

~N

{ Abstract state

J




Example Al: even/odd integers

Let’s apply this Al to an example:
@oncrete executionwbstract interpr. \

>; _ géad even () {x=0; vy=undef} {x=e; vy=7}

x =y + 1; {x=0; y=8} {x=2; y=2}

vy = 2 % x; {x=9; y=8} {x=2; y=?}

x =y - 2; {x=9; y=18} {x=?; y=2}

v = x / 2; {x=16,; y=18} {x=7?; vy=?}
(x=16; y=8}  ANUx=2?; y=?}




Example Al: even/odd integers

Let’s apply this Al to an example:
@oncrete executionwbstract interpr. \

zj _ géad even () {x=0; y=undef} {x=e; vy=J1}

x =y + 1; {x=0; y=8} {x=2; y=2}

vy = 2 % x; {x=9; y=8} {x=2; y=?}

x =y - 2; {x=9; y=18} {x=?; y=2}

v = x / 2; {x=16,; y=18} {x=7?; vy=?}
(x=16; y=8}  ANUx=2?; y=?}




Example Al: even/odd integers

Let’s apply this Al to an example:
@oncrete executionwbstract interpr. \

zj _ géad even () {x=0; y=undef} {x=e; vy=J1}

x =y + 1; {x=0; y=8} {x=e; y=e}

vy = 2 % x; {x=9; y=8} {x=2; y=?}

x =y - 2; {x=9; y=18} {x=?; y=2}

v = x / 2; {x=16,; y=18} {x=7?; vy=?}
(x=16; y=8}  ANUx=2?; y=?}




Example Al: even/odd integers

Let’s apply this Al to an example: transfer function for +!
« = 0 ﬁoncrete executionwbstractinterpr. \
y = read even () {x=0; y=undef} {x=e; vy=J1}
_ 7. {x=0; y=8} {x=e; y=e}
x =y + 1;
vy = 2 * x; {x=9; y=8} {x=0; vy=e}
X =y - 2; {x=9; y=18} {x=?; y=2}
v x / 2; {x=16; y=18} {x=7?,;, y=?}

- (x=16; y=8}  ANUx=2?; y=?}




Example Al: even/odd integers

Let’s apply this Al to an example:
ﬁoncrete executionwbstract interpr. \

zj _ Séad even () {x=0; y=undef} {x=e; vy=J1}
x =y + 1; {x=0; y=8} {x=e; y=e}
vy = 2 % x; {x=9; y=8} {x=0; y=e}
x =y - 2; {x=9; y=138} {x=0; y=e}
v % / 2 {x=16; y=18} {x=7?,;, y=?}

N {x=16; y=8} N}F?; V=7 ) /




Example Al: even/odd integers

Let’s apply this Al to an example:
ﬁoncrete executionwbstract interpr. \

zj _ Séad even () {x=0; y=undef} {x=e; vy=J1}
x =y + 1; {x=0; y=8} {x=e; y=e}
vy = 2 % x; {x=9; y=8} {x=0; y=e}
x =y - 2; {x=9; y=138} {x=0; y=e}
v % / 2 {x=16; y=18} {x=e; y=e}

N ' (x=16; y=8}  Adx=2; y=2} /J




Example Al: even/odd integers

Let’s apply this Al to an example:
ﬁoncrete executionwbstract interpr. \

zj _ Séad even () {x=0; y=undef} {x=e; vy=J1}
x =y + 1; {x=0; y=8} {x=e; y=e}
vy = 2 % x; {x=9; y=8} {x=0; y=e}
x =y - 2; {x=9; y=138} {x=0; y=e}
v % / 2 {x=16; y=18} {x=e; y=e}

) ' (x=16; y=8}  AJx=e; y=e?} /J




Example Al: even/odd integers

Let’s apply this Al to an example:
ﬁoncrete execution\ﬂbstract interpr. \

x = 0;
y = read even () {x=0; y=undef} {x=e; vy=J1}
x =y + 1; {x=0; y=8} {x=e; y=e}
vy = 2 % x; {x=9; y=8} {x=0; y=e}
X =y 5 {x=9; vy=18} {x=0; y=e}
Y X

= ; 2: {x=1l6; y=18} (x=e; y=e



Example Al: even/odd integers

What'’s the transfer function for division?

/- | T 'even odd L

T
even

odd




Example Al: even/odd integers

What'’s the transfer function for division?

/= | T 'even odd L
T T T T 1
even| T T T 1
odd | T T T 1
L L L L

Notes for online readers:
even/even is top:
6/2=3

8/2=4
odd/odd is top:
5/5=1
11/5=2

@)
@)

@)
@)

integer division!



Example Al: even/odd integers

Let’s apply this Al to an example:
ﬁoncrete executionwbstract interpr. \

§ _ Séad even () {x=0; y=undef} {x=e; vy=J1}
x =y + 1; {x=0; y=8} {x=e; y=e}
vy = 2 % x; {x=9; y=8} {x=0; y=e}
x =y - 2; {x=9; y=138} {x=0; y=e}
v % / 2 {x=16; y=18} {x=e; y=e}

N . {x=16; y=8} 4/\ix=e; y=T} 1/




Example Al: even/odd integers

Let’s apply this Al to an example:
ﬁ:oncrete executionwbstract interpr. \

>; _ read even () {x=0; y=undef} {x=e; vy=J1}
x =y + 1; {x=0; y=8} {x=e; y=e}
v = 2 * x; {x=9; y=8} {x=0; y=e}
x =y - 2; {x=9; y=138} {x=0; y=e}
v = x / 2; {x=16,; y=18} | {x=e; vy=e}

{x=16,;,—v=87F /Q}Fe; v=T}

for x, our abstraction was precise




Example Al: even/odd integers

Let’s apply this Al to an example:
ﬁoncrete executionwbstract interpr. \

>; _ read even () {x=0; y=undef} {x=e; vy=J1}
x =y + 1; {x=0; y=8} {x=e; y=e}
v = 2 * x; {x=9; y=8} {x=0; y=e}
x =y - 2; {x=9; y=138} {x=0; y=e}
v = x / 2; {x=16,; y=18} {x=e; vy=e}

{x=16; y=8} = y=T}

for x, our abstraction was precise
but for vy, it was not




Approximation!

concrete

{ ) execution

Concrete state J

abstraction
function

transfer
functions

~N

{ Concrete state ]

T concretization

function

{ Abstract state

J

{ Abstract state J




Approximation!

-~

concrete
| execution
Concrete state J
abstraction
function transfer
D .
functions

>L Concrete state ]

T concretization

function

{ Abstract state

J

{ Abstract state J




Approximation!

concrete _
\| execution
Concrete state Concrete state

)

function

abstraction
function

T concretization

| transfer
{Abstract state functions 4 AbstractstateJ

\

4




Approximation!

concrete _
\| execution
Concrete state Concrete state

)

function

abstraction
function

T concretization

| transfer
{Abstract state functions 4 AbstractstateJ

\

4

Do the and paths always lead to the same abstract state?



Approximation!

{ Concrete state }

abstraction
function

~N

concrete
execution
{ Concrete state ]
concretization
function
transfer

{ Abstract state

Do the and

functions { Abstractstate}

paths always lead to the same concrete state?



Approximation!

VR )
We'll come back to this
question when we

kdiscuss soundness

concrete

{ Concrete state }

abstraction
function

~N

execution
{ Concrete state ]

T concretization

function
transfer

{ Abstract state

functions { Abstractstate}

Do the and paths always lead to the same concrete state?



Alternative example Al: even/odd integers

|s there an Al that we can use to conclude that y is even
after we analyze the example?

x = 0;

y = read even();
x =y + 1;

y = 2 * X;

X =y - 2

v = x / 2;



Alternative example Al: even/odd integers

|s there an Al that we can use to conclude that y is even
after we analyze the example?

x = 0;

y = read even(); 4 . . )
x =y + 1; In-classexe.ruse:Wltha .

y > x x» partner, design an alternative
X =y - 2; abstract interpretation that

v = x / 2; can conclude thaty is even.

\§ /




Alternative example Al: even/odd integers

Key property that we need to concludeisthatx / 2iseven.



Alternative example Al: even/odd integers

Key property that we need to concludeisthatx / 2iseven.
e askyourself: “for what x is that true?”



Alternative example Al: even/odd integers

Key property that we need to concludeisthatx / 2iseven.
e askyourself: “for what x is that true?”
o simplest answer: x.x%4 =0 -that s, all xs such that x is
divisible by 4



Alternative example Al: even/odd integers

Key property that we need to concludeisthatx / 2iseven.
e askyourself: “for what x is that true?”
o simplest answer: x.x%4 =0 -that s, all xs such that x is
divisible by 4
o alternative answer: abstract value tracks the number of 2s in
the prime factorization



Alternative example Al: even/odd integers

Key property that we need to concludeisthatx / 2iseven.
e askyourself: “for what x is that true?”
o simplest answer: x.x%4 =0 -that s, all xs such that x is
divisible by 4
o alternative answer: abstract value tracks the number of 2s in
the prime factorization
e cunning plan: add a “divisible by 4” abstract value (mod4) to our
lattice, then rebuild our transfer functions



Alternative example Al: even/odd integers

Next question: where does “divisible by 4” go in the ?

{even,odd}=top

/ \
{even} {odd}
\ /

{} = bottom



Alternative example Al: even/odd integers

Next question: where does “divisible by 4” go in the ?

{even,odd}=top
/ \
{even} {odd}

{ b
\ /

{} = bottom



Alternative example Al: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):



Alternative example Al: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

+ T even odd L
recall our original

transfer function for +: T T T T

even| T even odd

odd T | odd even

- E

1| L L L




Alternative example Al: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

+ T even  odd mod4 _L
recall our orig.inal T T T T N
transfer function for +:

even T even odd 1
we need to add a row
and a column for odd T odd  even L

mod4

1 1 1 1 1




Alternative example Al: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

+ T even  odd mod4 _L
recall our orig.inal T T T T T N
transfer function for +:
even T even  odd even _L
we need to add a row
and a column for odd T | odd even odd L
mod4| T even odd mod4 L
1 1 1 1 1 1



Alternative example Al: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

/— T even odd mod4 L
same thing for ; T T T T N
even | T T T 1
odd T T T 1
mod4
1 1 1 1 1




Alternative example Al: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

/- T even odd mod4 L
same thing for ; T T T T T N
oh no! why is mod4 even T T T T 1
divided by even top?
o we peed another modal|l T T T T n
lattice element to
make this work! 1 1 A 1 A 1



Alternative example Al: even/odd integers

Another lattice element: “is2”



Alternative example Al: even/odd integers

Another lattice element: “is2”
e sibling of mod4 in the lattice



Alternative example Al: even/odd integers

Another lattice element: “is2”
e sibling of mod4 in the lattice

{even,odd }=top

/ \
{feven}  {odd}

/ \ |

{mod4} {is2} |

\ |/

{} = bottom



Alternative example Al: even/odd integers

Another lattice element: “is2”
e sibling of mod4 in the lattice
e itsonlypurposeistobe
treated specially in the

{even,odd }=top

/ \
{feven}  {odd}

/ \ |

{mod4} {is2} |

\ |/

{} = bottom



Alternative example Al: even/odd integers

Another lattice element: “is2”
e sibling of mod4 in the lattice
e itsonlypurposeistobe
treated specially in the

o in particular, we add the
rule “mod4 /is2 -> even”

o full transfer functions left
as an exercise

{even,odd }=top
/ \
{feven}  {odd}
/ \ |
{mod4} {is2} |
\ |/
{} = bottom



Alternative example Al: let’s try it

ﬁAbstract interpr. \

x = 0; {x=7?; y=7?1}
y = read even(); (x=7; v="7}
X =y + 1; (x=2; y="7}
y = 2 * x; (x=7?; y="2}
X =Y -2 {x=2; y="2}
y o= x / 2; (=2 y=?)




Alternative example Al: let’s try it

ﬁAbstract interpr. \

Z : rei I?ven(), (x=7: v=2}

_ (x=2;  y=?}
y =2 % %; _ _

_ 5. {x=7; y="7}
=Y P {x=2; y=2}
LT ’ \ix=?; y=2} J




Alternative example Al: let’s try it

ﬁAbstract interpr. \

x = 0; {x=e; y=1}
y = read even(); (x=e; y=e}
= 2 * x; - i
Y - . 2'. {x=7; y=7?1}
X : Y '. {x=7?; y:?}
y o= x / 2; (=2 y=?)




Alternative example Al: let’s try it

ﬁAbstract interpr. \

x = 0; {x=e; y=J1}
y = read even(); B B
— {x=e; y=e }
x =y + 1;
{x=0; y=e}
y =2 % %; _ _
_ 5. {x=7; y="7}
=Y P {x=2; y=2}
Yy = % ’ \ix=?; y=2} J




Alternative example Al: let’s try it

ﬁAbstract interpr. \

x = 0; {x=e; y=J1}
y = read even(); B B
— {x=e; y=e }
x =y + 1;
{x=0; y=e}
y =2 % %; _ _
B 5. {x=0; y=e }
=Y P {x=2; y=2}
Yy = % ’ \ix=?; y=2} J




Alternative example Al: let’s try it

ﬁAbstract interpr. \

x = 0; {x=e; y=1 }
y = read even(); B B
— {x=e; y=e }
x =y + 1;
{x=0; y=e }
y =2 % %; _ _
B _ 5. {x=0; y=e }
X =Y , 2t {x=7; y="7}
y = = ’ \ix=?; y="2} )/

what should the transfer function for even - is2 be?



Alternative example Al: let’s try it

ﬁAbstract interpr. \

x = 0; {x=e; y=1 }
y = read even(); B B
— {x=e; y=e }
x =y + 1;
{x=0; y=e }
y =2 % %; _ _
B _ 5. {x=0; y=e }
X =Y , 2t {x=7; y="7}
y = = ’ \ix=?; y=2} J

what should the transfer function for even - is2 be?
e even! why not mod4?



Alternative example Al: let’s try it

ﬁAbstract interpr. \

x = 0; {x=e; y=1 }
y = read even(); B B
— {x=e; y=e }
x =y + 1;
{x=0; y=e }
y =2 % %; _ _
B _ 5. {x=0; y=e }
X =Y , 2t {x=7; y="7}
y = = ’ \ix=?; y="2} )/

what should the transfer function for even - is2 be?
e even! why not mod4? counterexample:8-2=6



Alternative example Al: let’s try it

MEOX K XK X

07
= read even();
Yy o+

2

- Y
X

*

/

{x=0;
{x=e;

\{x=2;

ﬁAbstract interpr.
{x=e;
{x=e;
{x=0;

y=Ad}
y=e}
y=e}
y=e}
y=e}
y="71}

~

J




Alternative example Al: let’s try it

MEOX K XK X

07
= read even();
Yy o+

2

- Y
X

*

/

{x=e;
{x=e;
{x=0;
{x=0;

ﬁAbstract interpr.

y=Ad}
y=e}
y=e}
y=e}
y=e}
y=T}

~

J




Alternative example Al: even/odd integers

e Whydid addingis2 and fail to fix the approximation problem
in the example?



Alternative example Al: even/odd integers

e Whydid addingis2 and fail to fix the approximation problem
in the example?
o the example relies on the fact that for all X, (X+ 1) *2-2=2X
m and if Xisinitially even, then this means that the result is
divisible by 4



Alternative example Al: even/odd integers

e Whydid addingis2 and fail to fix the approximation problem
in the example?
o the example relies on the fact that for all X, (X+ 1) *2-2=2X

m and if Xisinitially even, then this means that the result is
divisible by 4

e lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard! Keep this in mind on HW8.



Alternative example Al: even/odd integers

e Whydid addingis2 and fail to fix the approximation problem
in the example?
o the example relies on the fact that for all X, (X+ 1) *2-2=2X

m and if Xisinitially even, then this means that the result is
divisible by 4

e lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard! Keep this in mind on HW8.

e how could we get the right answer on this example?



Alternative example Al: even/odd integers

e Whydid addingis2 and fail to fix the approximation problem
in the example?
o the example relies on the fact that for all X, (X+ 1) *2-2=2X

m and if Xisinitially even, then this means that the result is
divisible by 4

e lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard! Keep this in mind on HW8.

e how could we get the right answer on this example?
o more complex abstract values, e.g., oddTimes2?
o store the mathematical expression for each variable?



Alternative example Al: even/odd integers

e Whydid addingis2 and fail to fix the approximation problem
in the example?
o the example relies on the fact that for all X, (X+ 1) *2-2=2X

m and if Xisinitially even, then this means that the result is
divisible by 4

e lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard! Keep this in mind on HW8.

e how could we get the right answer on this example? one more
o | more complex abstract values, e.g.,oddTimes2? |try...
O ore the mathematical expression for each variable?




Alternative example Al: even/odd integers

»

Yet another lattice element: “
{even,odd }=top

/ \
{feven}  {odd}

/ \ |

{mod4} {is2} |

\ |/

{} = bottom



Alternative example Al: even/odd integers

»

Yet another lattice element: “
e produced by multiplying an odd { even, odd } = top

number by 2 (i.e., transfer fcn / \
for odd * is2 -> odd2) {3ven}\ {Odld}

{mod4} {is2} |

\ |/

{} = bottom



Alternative example Al: even/odd integers

Yet another lattice element: “

»

produced by multiplying an odd teven, odd } = top

number by 2 (i.e., transfer fcn / \
for odd *is2 -> odd2) {even}  {odd}

where does it go in the lattice? /[ \ |

{mod4} {is2} |

\ |/

{} = bottom



Alternative example Al: even/odd integers

»

Yet another lattice element: “
e produced by multiplying an odd
number by 2 (i.e., transfer fcn / \

for odd *is2 -> odd?2) {even} {odd}
e where does it go in the lattice? /| 0\ |

o asibling of is2 and mod4? {mod4}\{i52}\{ | } /I

{} = bottom

{even,odd}=top



Alternative example Al: even/odd integers

»

Yet another lattice element: “
e produced by multiplying an odd
number by 2 (i.e., transfer fcn / \

for odd *is2 -> odd?2) {even} {odd}
e where does it go in the lattice? /N |

o—asiblinsofis2andmed42  1mod4} { } /
| /

o between even andis2! |
\ {is2} /

\ | /
{} = bottom

{even,odd}=top



Alternative example Al: even/odd integers

»

Yet another lattice element: “
e produced by multiplying an odd
number by 2 (i.e., transfer fcn / \

for odd *is2 -> odd?2) {even} {odd}
e where does it go in the lattice? /N |
o—asiblingefis2andmed42  (Mod4} { } /
o between even and is2! | | /
o now we can add a new rule: \\ {i5|2} //

{} = bottom

{even,odd}=top



Alternative example Al: even/odd integers

»

Yet another lattice element: “
e produced by multiplying an odd
number by 2 (i.e., transfer fcn / \

for odd *is2 -> odd?2) {even} {odd}
e where does it go in the lattice? /N |
o—asiblingefis2andmed42  (Mod4} { } /
o between even and is2! | | /
o now we can add a new rule: \ {is2} //

m odd2-is2->mod4 \ |
{} = bottom

{even,odd}=top



Alternative example Al: another attempt

_ ). ﬁAbstract interpr. \

X {x=7?; y="2}
y = read even(); (x=7; y="2}
x =v + 1; [x="7 v="7}
= 2 * x; ’
Y ’ {x=7; y=2?}
X =y - 23 {x=7?; y="21}
— 27
y X / {XZOI y:?} /




Alternative example Al: another attempt

_ ). ﬁAbstract interpr. \

8 {x=e; y=1 }
y = read even(); (x=7: v=2}
* -y (x=2;  y=2}
yoo et (x=2;  y=?)
XY o2 (x=2;  y=2}
y = x / 2; ux=?; y="71} /




Alternative example Al: another attempt

_ ). ﬁAbstract interpr. \

= {x=e; y=1 }
y = read even(); T =]
* -y (x=2;  y=2}
yoo et (x=2;  y=?)
XY o2 (x=2;  y=2}
y = x / 2; Qx=?; y="71} /




Alternative example Al: another attempt

_ ). ﬁAbstract interpr. \

= {x=e; y=1 }
y = read even(); T =]
A (x=0;  y=e]
yoo et (x=2;  y=?)
XY o2 (x=2;  y=2}
y = x / 2; Qx=?; y="71} /




Alternative example Al: another attempt

_ ). ﬁAbstract interpr. \

X {x=e; y=d1}

y = read even(); (x=e; y=e}

X z z 1 if {x=0; y=e}

}}Z ] ) 2'. {x=0; Y= J
y o= x / 2; (=2 y=?)




Alternative example Al: another attempt

_ ). ﬁAbstract interpr. \

X {x=e; y=1}
y = read even(); (x=e; y=e}
X z z 1 if {x=0; y=e}
Y ’ {x=0; Y= }
X =y - 2; {x= = }
) o r Y
y = x / 2; \[x=?; y=2)




Alternative example Al: another attempt

_ ). ﬁAbstract interpr. \

X [x=e; y=1 }
y = read even(); B B
- {x=e; y=e}
x =y + 1;
{x=0; y=e }
y = 2 * X;
’ {x=0; y= }
X =y - 2 _
= x / 2; 1 C :
Y ’ {x= ; y=e} 4//

Success!



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we
saw last week for dataflow analysis:



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we
saw last week for dataflow analysis:
1. convertthe programtoa CFG



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we
saw last week for dataflow analysis:

convert the program to a CFG

2. start with aninitial estimate at every program point (usually L)

=



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we
saw last week for dataflow analysis:

convert the program to a CFG

start with an initial estimate at every program point (usually L)
put each program point in a worklist

W



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we
saw last week for dataflow analysis:

convert the program to a CFG

start with an initial estimate at every program point (usually L)
put each program point in a worklist

until the worklist is empty, choose an item from the worklist and:

i A o



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we

saw last week for dataflow analysis:

convert the program to a CFG

start with an initial estimate at every program point (usually L)

put each program point in a worklist

until the worklist is empty, choose an item from the worklist and:

a. iftheitem s abasic block, abstractly execute it using the
transfer functions (and abstraction function, if applicable)

i A o



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we

saw last week for dataflow analysis:

convert the program to a CFG

start with an initial estimate at every program point (usually L)

put each program point in a worklist

until the worklist is empty, choose an item from the worklist and:

a. iftheitem s abasic block, abstractly execute it using the
transfer functions (and abstraction function, if applicable)

b. iftheitemisajoin point, use the LUB to combine its inputs

i A o



Formalizing the Al algor

ithm

e thecorealgorithm for abstract interpretation is the same one we
saw last week for dataflow analysis:

convert the program to a CFG

start with an initial estimate at
put each program pointin awo
until the worklist is empty, choc

i A o

f
Using LUB at join points

models the fact that the
program may take either

a. iftheitemisabasicblock, a\branch of anif statement.

~

_/

1)

and:

transfer functions (and abstraction function, if applicable)
b. iftheitemisajoin point, use the LUB to combine its inputs



Formalizing the Al algorithm

e thecorealgorithm for abstract interpretation is the same one we

saw last week for dataflow analysis:

convert the program to a CFG

start with an initial estimate at every program point (usually L)

put each program point in a worklist

until the worklist is empty, choose an item from the worklist and:

a. iftheitem s abasic block, abstractly execute it using the
transfer functions (and abstraction function, if applicable)

b. iftheitemisajoin point, use the LUB to combine its inputs

c. ifeithera.orb.caused achange, re-add dependent blocks to
the worklist

i A o



What about loops?



What about loops?

e thisalgorithm terminates for the same reasons that any dataflow
algorithm does:



What about loops?

e thisalgorithm terminates for the same reasons that any dataflow
algorithm does:
o the latticeis of finite size
o LUB is monotonic



What about loops?

e thisalgorithm terminates for the same reasons that any dataflow

algorithm does:
o the lattice is of finite size
o LUB is monotonic

/You may be surprised that it is\
possible to build an abstract
interpretation using (some)
infinite-height lattices. Next
week, we'll discuss widening,

thich is the technique for this./




What about loops?

e thisalgorithm terminates for the same reasons that any dataflow
algorithm does:
o the latticeis of finite size
o LUB is monotonic
e thatis, each loop will be analyzed at most k-1 times for each
variable in the loop, where k is the height of the lattice



What about loops?

e thisalgorithm terminates for the same reasons that any dataflow
algorithm does:
o the latticeis of finite size
o LUB is monotonic
e thatis, each loop will be analyzed at most k-1 times for each
variable in the loop, where k is the height of the lattice
e otherwise, loops are just a join point and a back-edge in the CFG



Why start with bottom?



Why start with bottom?

e the abstract interpretations we've considered so far are
optimistic: they start with L and then go upwards in the lattice



Why start with bottom?

e the abstract interpretations we've considered so far are
optimistic: they start with L and then go upwards in the lattice
o these algorithms get the



Why start with bottom?

e the abstract interpretations we've considered so far are
optimistic: they start with L and then go upwards in the lattice
o these algorithms get the
o but their downside is that they must run to fixpoint - they
cannot be stopped early (the result might still be unsound)!



Why start with bottom?

e the abstract interpretations we've considered so far are
optimistic: they start with L and then go upwards in the lattice
o these algorithms get the
o but their downside is that they must run to fixpoint - they
cannot be stopped early (the result might still be unsound)!
e pessimistic algorithms are also possible



Why start with bottom?

e the abstract interpretations we've considered so far are
optimistic: they start with L and then go upwards in the lattice
o these algorithms get the
o but their downside is that they must run to fixpoint - they
cannot be stopped early (the result might still be unsound)!
e pessimistic algorithms are also possible
o start with T everywhere and move downwards in the lattice



Why start with bottom?

e the abstract interpretations we've considered so far are
optimistic: they start with L and then go upwards in the lattice
o these algorithms get the
o but their downside is that they must run to fixpoint - they
cannot be stopped early (the result might still be unsound)!
e pessimistic algorithms are also possible
o start with T everywhere and move downwards in the lattice
o can be stopped at any time (e.g., when a budget is reached), but
answer may not be precise



Another example



Another example

e Consider an abstract interpretation for constant propagation



Another example

e Consider an abstract interpretation for constant propagation
o the goal of constant propagation is to determine whether, for
each variable, its value can be known at compile time



Another example

e Consider an abstract interpretation for constant propagation
o the goal of constant propagation is to determine whether, for
each variable, its value can be known at compile time
o constant propagation is a standard compiler optimization



Another example

e Consider an abstract interpretation for constant propagation
o the goal of constant propagation is to determine whether, for
each variable, its value can be known at compile time
o constant propagation is a standard compiler optimization
o |attice:



Another example

e Consider an abstract interpretation for constant propagation
o the goal of constant propagation is to determine whether, for
each variable, its value can be known at compile time
o constant propagation is a standard compiler optimization

o |attice:
top
%\
-2 -10 1 2




Another example

Consider the following program:

5

read ()

1s even)
5

w t+ Vv

W
X

1t (

5 K
X

else
10

=K

DNl
* + K
s B



Correctness of Abstract Interpretation



Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses



Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives



Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function



Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
o ideally, we'd like V x, y(a(x)) = x



Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives
e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
o ideally, we'd like V x, y(a(x)) = x
o but thisis too strong: approximation may cause us to lose
information! So, the standard formalism is:
m VXX € y(a(x))



Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the

concretization of its abstractio
o ideally, wed like V x, y(a(x)] And, it's also necessary to show

o but this is too strong: apprd that the Galois connection holds
information! So, the standal for the transfer functions!

m VXX € y(a(x))



Approximation!

{ Concrete state }

abstraction
function

~N

Remember this
diagram from earlier?
concrete
execution
{ Concrete state ]
concretization
function
transfer

{ Abstract state

Do the and

functions { Abstractstate}

paths always lead to the same concrete state?



Approximation!

What we need to show )
is that for all transfer
functions, the

is a subset of the

{ Concrete state }

abstraction
function

~N

concrete \. j
execution
{ Concrete state ]
concretization
function
transfer

{ Abstract state

Do the and

functions { Abstractstate}

paths always lead to the same concrete state?



Course announcements

e Ifyou have not yet collected your exam, | have it at the front

e This week’s homework is individual (you may not work with a
partner)
o thisis adifference from previous homeworks!

e Next week’s homework:
o builds on this week’s - if you don’t do this week’s homework,

you will not be able to do next week’s

o isalso individual

e Thisweek’s homework involves designing an abstract
interpretation. Keep in mind the pitfalls that we talked about

today!



