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e static analysisin practice



Review: static vs dynamic analyses

Dynamic analyses: Static analyses:
e Concrete execution e Abstract domain
o slow if exhaustive o slow if precise
e Precise e Conservative
o no approximation o due to abstraction
e Unsound e Sound

o does not generalize o duetoconservatism



Static vs dynamic analyses

Dynamic analyses: Static analyses:
e Concrete execution e Abstract domain
o slow if exhaustive o slow if precise
e Precise e Conservative
o no approximation o due to abstraction
° e Sound

o does not generalize o duetoconservatism



Sound dynamic analysis?



Sound dynamic analysis?

e Observe every possible execution!



Sound dynamic analysis?

e Observe every possible execution!
e Problem: infinite number of executions



Sound dynamic analysis?
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e Problem: infinite number of executions
e Solution: test case selection and generation
o Efficiency tweaks to an algorithm that works perfectly in
theory but exhausts resources in practice
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e Reason over full program state!
e Problem: infinite number of executions
e Solution: data or execution abstraction
o Efficiency tweaks to an algorithm that works perfectly in
theory but exhausts resources in practice
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Different subsets

e Dynamic analysis focuses on a subset of executions
o l.e., the executions in the test suite, the executions that
random input produces, etc.
o typically about other executions
m i.e., assume that they will be bug-free
e Static analysis focuses on a subset of data structures
o more precise for data or control described by the abstraction
o typically conservative / pessimistic elsewhere
m i.e., assume that unmodeled state is unsafe



Agenda: dataflow analysis

e |astfew slides of static vs dynamic analysis
e keyideas in static analysis design

e dataflow analysis

o nullness analysis example

o secure information flow analysis example
e |imitations of static analysis
e static analysisin practice



Review: what is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

e static analysis the program
o incontrast to adynamic analysis, such as testing, which does
execute the program
e an abstraction, in this context, is a of the
program that is simpler to analyze
o key idea: the abstraction will have fewer states to explore
m hopefully, many fewer!
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Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
e Abstraction
o Capture semantically-relevant details
o Elide other details
o Handle “l don't know”: think about developers
e Programs As Data
o Programs are just trees, graphs or strings
o And we know how to analyze and manipulate those (e.g., visit
every node in a graph)
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Treating programs as data: three ways

#1: treat the program as a string

e allows usto easily decide properties
o for example, checking if a program contains the text “foo”
e keydownside: cannot use the program’s semantics
o semantics is a fancy word for “meaning”
o semantics are relevant for properties related to - that
is, where the question to be decided depends on the rest of the
program
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Treating programs as data: three ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

e usually produced by a parser
e nodesinthe tree represent syntactic constructs
o parent-child relationships in the AST represent

in the source code (e.g., a “plus node” might have
two children: the left and right side expressions)
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Example: 5 + (2 + 3)
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Treating programs as data: AST example

Example: 5 +[(2 + 3)

+

<

<

1\

<

<

grouping parentheses and
other disambiguation is no
longer necessary (AST is
unambiguous, unlike text)




Treating programs as data: three ways

#3: treat the program as a graph

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution



Treating programs as data: three ways

#3: treat the program as a graph

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

e thisistheinternal representation used by most static analysis
tools
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Dataflow analysis

e Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
o Dataflow analysis is the behind most static analyses
e We first abstract the program to an AST or CFG
e We then abstract what we want to learn (e.g., to help developers)
down to a small set of abstract values
e We finally give rules for computing those abstract values
o Dataflow analyses take programs as input
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Example dataflow analyses

Throughout this lecture, we'll use two examples of dataflow analyses:
1. ananalysis for finding definite null-pointer dereferences

“Whenever execution reaches *ptr at program location L, ptr will
be NULL"

2. ananalysis for finding potential secure information leaks

“We read in a secret string at location L, but there is a possible
future public use of it”
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Definite vs potential

A “definite” null-pointer dereference exists if and only the pointer is
NULL on program execution

A “potential” secure information leak exists if and only if the secure

information leaks on any program e}&ution

The use of “ ”and “any” A
here guarantee that we must
reason about through
the program!

Nl Y




Definite vs potential = false positives vs negatives
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Definite vs potential = false positives vs negatives

.
X
(Useful analyses\
in practice

often have both
false positives

and false

\ negatives. )

Did a1

Can X actually happen?

YES NO
r N
ﬂ‘ True False
> positive positive
\ J
False True
CZ)‘ negative negative

checking for
“potential”
properties usually
comes with false
positives
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J

ptr = new AVL();

if (B > 0)

/\

ptr = 0;

X =2 * 3;

=

peint (pte=>data) ;
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(Q: what does “pt r always null” actually

Nul I-pointer ana |YE require about assignments toptr?

Question: is pt r always nullNvrerrrsoerererercea

must have been null (=0 in C)

A:on all paths, the last assignmenttoptr

~N

J

ptr = new AVL() ;

1f (B > ON_

pLE =

0y X =22 3;

print lptr—>data)|; dereference
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Common traits of dataflow analysis

e The analysis depends on knowing a property P at a particular point
in program execution
o for “definite” analyses: for all executions, is P true at this point?
o for “potential” analyses: does there exist an execution for

which P is true at this point?

e Knowing P at any specific program point usually requires
knowledge of the entire method body

e Property P is typically undecidable
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Undecidability of program properties

e Rice’s Theorem: All interesting dynamic properties of a program are
undecidable: e ~

“interesting” in this context means
“not trivial’, i.e., not uniformly true

or false for all programs
\§ J
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Undecidability of program properties

e Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:

o Does the program halt on all (some) inputs?

This is called the halting problem

o Istheresult of a function F always positive?

Assume we can answer this question precisely
Oops: We can now solve the halting problem.
Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; }toseeifithasapositiveresult
Contradiction!



Undecidability of program properties

e Rice’s Theorem: All interesting dynamic properties of a program are
undecidable: \

o Does the program hall Rice’s theorem caveats:
m Thisiscalledthehy e onlyappliesto
o lIsthe result of a funct properties (syntactic

m Assume we can an{ properties are decidable)
e “programs” only includes

m Oops: Wecanno rograms with loops
m lake functionHavrk\ Prog i /'

F(x) = { H(x); return 1; }toseelfithasapositive result
m Contradiction!
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Loops

e Almost every important program has a
o Often based on user input
e Analgorithm always terminates (remember your theory class!)
o So adataflow analysis algorithm must terminate even if the
input program loops
e Thisisone source of
o “ " =“not always getting the right answer”
o Suppose you dereference the null pointer on the 500th

iteration but we only analyze 499 iterations
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Conservative program analysis

e Because our analysis must run on a computer, we need the
analysis itself to be decidable
e But, because of Rice’'s Theorem, we know that finding the right
answer all the time is undecidable :(
e Solution: when in doubt, allow the analysis to answer “l don’t
know”
o thisis called conservative analysis
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Conservative program analysis

e It's always correct to say “l don’t know”
o key challenge in program analysis: say “l don’t know” as
rarely as possible

Definition: a sound program analysis has no false negatives
e always answers “l don't know” if there is a potential bug

Definition: a complete program analysis has no false positives
e always answers “l don't know” if there isn’t a bug
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Soundness vs completeness

e Building a sound or complete analysis is easy
o trivially sound analysis: report a bug
o trivially complete analysis: report a bug

e Building asound and precise (= “few false positives”) analysis or a
complete analysis with high recall (= “few false negatives”) is
very hard
o “sound and precise” analyses are my research area:)

» o«

o alsorelevantin practice: “fast”, “easy to use” etc.
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Soundness vs completeness

e Whichis more important: soundness or completeness?
e Answer:itdepends!

o Areyou writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.

m ‘|l don’t know” =don’t issue a warning

o Areyou writing a bug-finding analysis for aircraft autopilots?
False negatives cause crashes, so choose soundness.

m ‘|l don’t know” = doissue a warning
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Soundness vs completeness

e |n practice, most static analyses are neither sound nor complete
o e.g., FindBugs from today’s reading has both false positives and
false negatives

o most common exception: most type systems are sound
m typesystems are just another static analysis!

o few complete static analyses exist in practice
m theoryisunderdeveloped, but another area of active

research! (ask me more after class!)



Null-pointer analysis example

Question: is pt r always null when it is dereferenced?

ptr = new AVL();
1LE (B = 0)

ptr = 0;
1F (B &= 0)

foo = myAVL;

ptr =

07

/

pEinE (pEr-2data) ;

~.

prEint {pte->data) ;




Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

n Y

ptr = new AVL();
1LE (B & 0)

ptr = 0; I X =2 * 3; 4

.

pEinE (pEr-2data) ;

prEint (ptE—>data) ;




Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

ptr = new AVL();‘ [ pEE = O3 ]
if (B > 0) if (B/O)

p tw/
print (ptr->data) ; print (ptr—>data) ;

kln' ﬁl"\l\l cnma'l-imac mi III VEC' "\I\Al"\\l(’ mi III
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Null-pointer analysis example: abstraction

Formalizing our reasoning:
e We associate one of the following abstract values with ptr at

every program point:
o T(“top”) = “don’t know if X is a constant”

o constantc = “the last assignment to X was X =c¢”
o L (“bottom”) = “Xhasnovalue here”



Null-pointer analysis example: formalized

Get out a piece of paper. Fill in these blanks:

- X=T
X:=3 — X =
B>0
Yi=Z+W Y:=0 T =“don’t know”

il . e c = constant
B P sl 1 =unreachable




Null-pointer analysis example: formalized

Get out a piece of paper. Fill in these blanks:

Xe}
AES L Teg
B>0
XV\X-3 Recall:
X =3 _ S A= T = “don’t know”
X:i=4 /x=3 Cc = constant
X=4 — — X=T 1 =unreachable
A=Zz® X
— X=T
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Issuing warnings

e Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to issue a
warning

o Simply inspect the x = 7 associated with a statement using x
o Ifxisthe constant O at that point, issue a warning!

e But how canan algorithm compute x =7



Key idea behind dataflow analysis

The analysis of a complicated program can be expressed as a
combination of simple rules relating the change in information
between adjacent statements
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Key idea behind dataflow analysis

Explanation:

e Theideaisto “push” or “transfer” information from one statement

to the next

e [or eachstatements, we compute information about the value of x

immediately before and after s:
o Cin(x,s) = value of x before s
o C_.(xs)=valueof x after s

-
Definition: a transfer function

expresses the relationship

between C. (x, s) and Cout(x, S)
\

~N

J




Transfer functions: rule 1

— X=? C...(x, x:=c)=cifcisaconstant




Transfer functions: rule 2

Zout(x, s) = bottom if C__(x, s) = bottom

4 )

Recall bottom =
“unreachable code”

g )




Transfer functions: rule 3




Transfer functions: rule 3

\ 4
(This is a conservative % X = f()
approximation! f(...) l — X=T

might always return O,
\but we don'’t even try! y




Transfer functions: rule 4

I — X=a

yi=...

\ — X=a




Transfer functions: rule 4

s N i

How hardis it to I T X=a
check if x #y on all yi=...
executions?

\_ ) | «— X=a



Transfer functions: rule 4

s A i

How hardis it to ' T X=a
check if x #y on all yi=...
executions? (oh no)

\_ ) | «— X=a
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Propagation between statements

e Rules 1-4 relate the in of a statement to the out of the same
statement
o they propagate information statements
e Wealso need rules relating the out of one statement to the in of
the successor statement
o to propagate information forward along paths
e Inthefollowingrules, let statement s have immediate predecessor

statementsp.,....p,



Transfer functions: rule 5

if Cout(x, p, ) =T for some i, then Cin(x, s)

T



Transfer functions: rule 5

(If there’s any path
on which we don't
know, then we
\don’t know at all

~N

J

if C_.(x,p;) =T forsomei, thenC. (x,s)

T



Transfer functions: rule 6

ifC, (% p)=candC_ (x,p)=dandd#cthenC, (x,;s)=T



Transfer functions: rule 6

A =i ' X=? (Wedon'tknow
which of the paths a
given execution will
— X=T \take (soassume T) y

ifC, (% p)=candC_ (x,p)=dandd#cthenC, (x,;s)=T



Transfer functions: rule 7

if C_.(x,p;) = corbottom for alli, then C. (x,s) =c



Transfer functions: rule 7

(If X has the same
value (or bottom)

~

on all input edges, it

\has that valueins )

if C_.(x,p;) = corbottom for alli, then C. (x,s) =c




Transfer functions: rule 8

if Cout(x, p. ) = bottom for all i, then Cin(x, s) = bottom



A static analysis algorithm



A static analysis algorithm

e Forevery entry point e to the program, setC. (x,e) =T



(Deﬁnition: an entry point of a A
program is any program location
L for which there exists an

@xecution trace beginning with L)

e Foreveryentry point e to the program, set Cin(x, e)=1

A static analysis alg
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A static analysis algorithm

e Foreveryentry point e to the program, set Cin(x, e)=T
o why top? Top models “we don’t know”, and we don’t know the
inputs to the program.
e Set Cin(x, S) = Cout(x, s) = bottom everywhere else
e Repeat until all points satisfy rules 1-8:
o Pick s not satisfying rules 1-8 and update using the appropriate
rule



. . This is a fixpoint (or fixed point) \
Astatic ana|YSIS alg/iteration algorithm. Such algorithms

are characterized by a finite set of
e Foreveryentry pointetq rules, which are applied until they
o why top? Top models| “reach fixpoint”, which means that

_ _ B&hange. /
o Set Cin(x, S) = Cout(x, s)=b i
e Repeat until all points satisfy rules 1-8:
o Pick s not satisfying rules 1-8 and update using the appropriate
rule

-
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Why do we need bottom?

e Tounderstand why we need to set non-entry points to bottom
initially, consider a program with a loop:

X=T
S
B>0
: X=3 — — X=3
iseasy! |[Y=Z+W Y:=0
X:\/
Ai=2*X

A<B




Why do we need bottom?

e Tounderstand why we need to set non-entry points to bottom
initially, consider a program with a loop:

¥=T
A28 L xeg
B>0
: X=3 — — X=3
This way
- Yi=Z+W y=0
Is easy! K _
- 7N
X=3 = /
A=2*X

A<B
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Why do we need bottom?

e Tounderstand why we need to set non-entry points to bottom
initially, consider a program with a loop.

e Because of cycles, all points must have values at all times during
the analysis

e Intuitively, assigning some initial value allows the analysis to break
cycles

e Theinitial value bottom means “

)



Another example: dealing with loops

Let’s do it on paper!

Xi=3
B>0 Analyze the value of X.

Y=Z+W




Another example: dealing with loops

((We went through h
this answer on the

\whiteboard.)
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Lattices & Orderings

e You may have observed that there is a natural order to the different
abstract values in our nullness analysis
o (Most) locations start as bottom
o Locations whose current value is bottom might becomecor T
o Locations whose current value is ¢ might become T
m but never go back to bottom!
o Locations whose current value is T never change
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This structure between values is called a lattice:



Lattices & Orderings

This structure between values is called a lattice:

/How toread a lattice: \

e abstract values higher in the

// | \\ lattice are more general (e.g., T
1 0 1 .. is true of more things than 0)

e easytocompute

\\ | // . it’s the lowest common

bot \ ancestor of two abstract values/
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Lattices (continued)

e |east upper bound (“lub”) has useful properties:
O : implicitly captures that values only flow in one
direction as the analysis progresses
o we canrewrite rules 5-8 in our nullness analysis using lub:

C. (x,s) =lub{ Cout(x, p) | pis a predecessor of s }



Lattices (continued)

e |east upper bound (“lub”) has useful properties:
O : implicitly captures that values only flow in one
direction as the analysis progresses
o we canrewrite rules 5-8in

| lubis the reason dataflow
C.(x,s)=lub{C_,(x,p)|pi analysis is an algorithm:
because lub is monotonic, we
only need to analyze each
loop as many times as the
lattice is tall /

N\
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Termination

e |et’sformalize the argument that our nullness analysis terminates
o saying “repeat until nothing changes” doesn’t guarantee that
eventually nothing changes, after all
e theuse of lub explains why the algorithm terminates:
o values start as bottom and only increase
o bottom can change to a constant, and aconstantto T

o thus, C_(x, s) can change at most twice (= lattice height minus
one)
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(e.g., a password) potentially connects to a public sink, like a display
function



Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display
function

str := get password()

I£f B >0
str := sanitize(str) Y : =0

e

display(str)




Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display

function
source :-{get_password()l
I£f B >0
str := sanitize(str) Y : =0

e

display(str)




Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display

function
source -l get password() I
I£f B >0
str := sanitize(str) Y : =0

o oTe—

sink { display (str) ]




Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display

function
source :-{get_password()l

If B >0

sanitizer (stops ﬂL/\

str ™= sanitize(str) J Y : =0

sink

—)

display(str) ]




Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display

function

source

sanitizer (stops flow)

\

:-{get_password()l

If B >0

str :

sanitize(str)

sink

potential
insecure flow

—)

display(str) ]
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Taint analysis

Definition: A taint analysis (or reachability analysis) tracks whether
(any/all) value(s) from a set of sources reach a set of sinks

e applications in security: e.g., secure information flow
e stand-in here for a broad class of dataflow analyses
e how would we build it?
o we'll write a set of rules, just as we did for our nullness analysis
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Secure information flow analysis

e firststep: decide what abstract values to track
o only need asingle boolean: can it be sensitive
o Hin/out(x, s) = true if variable x can be sensitive
before/after statement s, = false otherwise
m note that we are abstracting away almost everything!
e second step: statement-by-statement rules to express how this

works

-
Note that the rules for this

analysis are intended to be

kapplied “backwards”




Secure information flow analysis: rule 1

«— X = true

display (x)

— X=2

H. (x,s) = true if s displays x publicly




Secure information flow analysis: rule 1

«— X = true

display (x)

— X=2?

H. (x,s) = true if s displays x publicly

Recall, true means “if this ends up
being a secret variable then we
have a bug!”




Secure information flow analysis: rule 2

H. (x,x:=e) =false — X = false

X := sanitize (x)

«— X =2




Secure information flow analysis: rule 2

H. (x,x:=e) =false «— X = false

N

X := sanitize (x)

This means any value that is

sanitized is not sensitive «— X=2?




Secure information flow analysis: rule 2

4 )
Does this rule say

anything about the

sanitize() method?

H. (x,x:=e) =false - J «— X = false
. . X := sanitize (x)

This means any value that is

sanitized is not sensitive = N5




Secure information flow analysis: rule 3

= H. (x,s)=H__ (x,59)

out
(if s does noturefer to x)




Secure information flow analysis: rule 4

«— X-=true

X=2 X=2 X = true X=2

H_.(x,p)=v{H. (x,s)|sisasuccessorofp]}




Secure information flow analysis: rule 4

if there is even one
way to have a leak, p
we might have a — X-=true
\Ieak!

X=2? X=2? X = true X=2?

H_.(x,p)=v{H. (x,s)|sisasuccessorofp]}




Secure information flow analysis: rule 5




Secure information flow analysis: rule 5

out

H. (y,x:=y)=H__ (X, x:=y)

(To see why, imagine the next
statement is display(x). Do
we care about y?)




Secure information flow analysis: algorithm



Secure information flow analysis: algorithm

1. letallH_ (...) =falseinitially



Secure information flow analysis: algorithm
N

1. letall H_(...) = false initially [false e e Myt

our nullness analysis!
y,




Secure information flow analysis: algorithm

1. letallH_ (...) =falseinitially
2. repeat until all statements s satisfy rules 1-5:
e pick astatement where one of the rules does not hold and
update using the appropriate rule



Secure information flow analysis: algorithm

1. letallH_ (...) =falseinitially
2. repeat until all statements s satisfy rules 1-5:
e pick astatement where one of the rules does not hold and
update using the appropriate rule
3. once the analysis reaches a fixed point, at any
source (X, s) where Hout(x, s) is true (= leaks sensitive information)



Secure information flow analysis: example

X := passwd()

<—H(X) = false

X := sanitize (X)
B >0 H(X) = false to the whiteboard!
H(X) = faww = false
Y '=Z + W Y :=0

H(X) = M) = false
+~— H(X) = false

display (X)

+—H(X) = false
X := passwd()
T H(X) = false

A<B

“—H(X) = false



Secure information flow analysis: example

X := passwd()

T T | I .
m' X := sanitize(x) |00 - oIS ((for those reading )
S\o)

PR

No PO (et B > 0 Mt TRUS online later, solved

rart! i
H?X) = wa) p— on the whiteboard.
\This is the solution.) y

Y :=%Z + W Y :=0 X) = TRUE

H(X) = M) = TRUE
+— H(X) = TRUE

display (X)
T H(X) = TRUE

/ w
& | a<g “THOX)TRUE
\BLE \E Wy

e

“—H(X) = TRUE



Agenda: dataflow analysis

e |astfew slides of static vs dynamic analysis
e keyideas in static analysis design

e dataflow analysis

o nullness analysis example

o secure information flow analysis example
e limitations of static analysis
e static analysisin practice
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Limitations of static analysis

e static analysis abstracts away information to remain decidable

o potential problem: what if the information that was abstracted
away is important?
m can we come up with a program for which one of our

example static analyses “gets the wrong answer”?

o canweeverhavea“ ” abstraction?
m of course not (Rice’s theorem again)
m but, in practice, we can get very close
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Limitations of static analysis

e static analysisis best when the rules it enforces are:
o simple to express to the computer
o hard for a human to apply
e implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
o this sort of situation comes up often:
m x86/64 calling convention
m complex API protocols (“call A then B then C then ...”)
m security rules, etc.



Static analysis in practice

You're likely to encounter:



Static analysis in practice

You're likely to encounter:
e static type systems (sound)



Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers ( = not dataflow)



Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers ( = not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses



Static analysis in practice

You're likely to encounter: [heuristic is a fancy ]
e static type systems (sound) word for “best effort
e linters or other style checkers ( = not dataflow)

e ‘“heuristic” bug-finding tools backed by dataflow analyses



Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers ( = not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs



Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers ( = not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs
o aim for low false positive rates



Static analysis in practice

You're likely to encounter:
e static type systems (sound)
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o built into modern IDEs
o aim for low false positive rates
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Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers ( = not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs

o aim for low false positive rates .
o widely used in industry: used in HW7

m ErrorProne at Google{ Infer at Meta, bpotBugs at many
places (including Amazon), Coverity, Fortify, etc.



https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
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Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java
o most common sound analysis (used by Google, Uber, others)
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What is a pluggable type?

@QPositive int x
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What is a pluggable type?

@Negative int x

\ v ) N
Type qualifier Basetype
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What is a pluggable type?

@NonConstant int x

| € v J \ J
Type qualifier  Basetype
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What is a pluggable type?

@QPositive int x

\ v ) N
Type qualifier Basetype
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What is a pluggable type?

@QPositive int x

| ¢ v Y] L\ ’
Type qualifier Basetype

Qualified type

261
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Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

o most common sound analysis (used by Google, Uber, others)
e formal verification

o you write a specification
o tool verifies that code matches that specification

o very high effort, but enables sound reasoning about complex
properties (= worth it for very high value systems)



Static analysis in practice: soundiness

o all“sound” static analyses have a trusted computing base (TCB)



Static analysis in practice: soundiness

o all“sound” static analyses have a trusted computing base (TCB)
o the TCBis the code whose correctness must be assumed for
the analysis to actually be sound



Static analysis in practice: soundiness

o all“sound” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses



Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)



Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)
o TCB for some formal verifiers is very small (< 1000 LoC)
m butthese tools (e.g., Coq) are much harder to use



Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)
o TCB for some formal verifiers is very small (< 1000 LoC)
m butthese tools (e.g., Coq) are much harder to use
e soundness theorems also usually make some about
the code being analyzed (e.g., no calls to native code, no reflection)



Course announcements

e Anyremaining time today: start HW7/
o HWY7 involves running the Infer static analyzer on some
subject programs and then analyzing the results (by hand)
e | have your midterms with me at the front of the room if you'd like
them back
o (they are sorted by UCID, so please tell me your UCID)



