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Reading Quiz: mutation testing

Q1: At what time does Google surface the results of mutation testing 
to developers?
A. in the IDE
B. when the developer runs the tests locally
C. at code review time
D. after the code is deployed

Q2: Write a one-line snippet of code that is obviously arid, as defined 
by the paper.   logging/printlns, initial collection size, etc.



Agenda: mutation testing

● motivation and definitions
● assumptions and implications
● practicality
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Mutation testing: motivation

● “Quis custodes ipsos custodiet?”
- Decimus Ivnivs Ivvenalis (“Juvenal”), Roman satirist

● usually translated into English as “who watches the watchers?”
○ this question is recursive: whatever the answer, we can ask the 

same question about the it!
● what does this have to do with testing?

○ a key question that we need to ask ourselves is “how do we test 
that our tests are actually good?”
■ after all, tests are programs, too, and we only need to test 

because we know that most programs contain bugs…
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Mutation testing: what tests the tests?

● one possible answer that we’ve already discussed: coverage
○ better coverage = better tests, right?

■ not really, because coverage is an imperfect metric - it 
doesn’t take into account oracle quality, etc.

○ coverage is at best a rough guideline to the actual quality of a 
test suite

● our question for today: how can we do better?
○ key question: can a test suite quality metric naturally consider 

both input quality and oracle quality?
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● there is a general technique for solving “who watches the 
watchers”-style problems: intentionally introduce a small number 
of known-in-advance problems into the system
○ and then see whether the “watchers” actually detect the 

known problems!
■ this general technique can be applied recursively:

● add some fake “known problems”…
■ but it’s generally very expensive: more “watchers of 

watchers of watchers …” are always being added
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● how can we apply this technique to testing?
○ in the analogy: tests are the watchers

■ what are they watching for? bugs
● so, to apply the general technique, we need to intentionally 

introduce some known problems into the system and see if the 
watchers can detect them
○ in the analogy, known problems are fake bugs

■ that is, we intentionally introduce some changes to the 
program that we expect to cause the tests to fail
● this idea is the essense of mutation testing!
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Definition: Mutation testing (or mutation analysis) is a test suite 
adequacy metric in which the quality of a test suite is related to the 
number of intentionally-added defects it finds
● Informally: “You claim your test suite is really great at finding 

security bugs? Well, I'll just intentionally add a bug to my source 
code and see if your test suite finds it!”
○ recall the truffle-sniffing pig analogy from a few weeks ago:

■ to evaluate truffle-sniffing pigs, hide some truffles
■ the best pig is the one that finds the most truffles!
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● In the truffle-pig analogy from a few weeks ago, if every truffle I 
hide in my backyard is next to a smelly red flower, a pig that finds 
them all may not actually do well in the real world 
○ The truffle placements I made up were not indicative of 

real-world truffles
● Similarly, if I add a bunch of defects to my software that are not 

the sort of defects real humans would make, then mutation 
testing is uninformative
○ Implication: mutation testing requires us to know what real 

bugs look like
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Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing 
a defect into a program. 
● The defect introduced is typically intentionally similar to defects 

introduced by real developers. 
● The seeding is typically done by changing the source code. 
● For mutation testing, defect seeding is typically done 

automatically (given a model of what human bugs look like)
○ however, you can do “lightweight” mutation testing yourself!

■ e.g., regression testing and TDD can both be viewed as 
forms of manual mutation testing
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Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program 
point. In mutation testing, the mutation operators are modeled on 
historical human defects.
● Example mutations:

○ if (a < b) → if (a <= b)
○ if (a == b) → if (a != b)
○ a = b + c → a = b - c
○ f(); g(); → g(); f();
○ x = y → x = z

Key questions in mutation testing 
are what operators to use and how 
often to use each operator.
● I’m intentionally not giving you a 

ton of advice on the answers to 
these questions - I want you to 
figure it out yourselves in HW6
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Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program 
produced by applying one or more mutation operators to one or 
more program locations. 
Definition: The order of a mutant is the number of mutation 
operators applied. A higher-order mutant has order 2 or more.

// original                // 2nd-order mutant 
if (a < b): if (a <= b): 

x = a + b → x = a – b 
print(x) print(x) 
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● A test suite is said to kill (or detect, or reveal) a mutant if the 
mutant fails a test that the original passes. 

● Mutation testing of a test suite proceeds by making a number of 
mutants and measuring the fraction of them killed by that test 
suite. This fraction is called the mutation adequacy score (or just 
mutation score).
○ A test suite with a higher score is better.

● (Sorry for all of the vocabulary!)

Mutation testing: killing mutants



Agenda: mutation testing

● motivation and definitions
● assumptions and implications
● practicality
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Suppose that I have two programs, each with its own test suite:
● Program A’s test suite has an 80% mutation score. 
● Program B’s test suite has a 50% mutation score.

Which program has a better test suite? A or B?

Answer: we don’t know!
● Mutation scores are not comparable across different programs!

○ standard setting: same program, different test suites
■ in this case, higher mutation score test suite is better

Mutation testing: comparing scores



Mutation testing: assumptions

● Modern mutation testing relies on two important assumptions:
○ the competent programmer hypothesis
○ the coupling effect hypothesis
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● Modern mutation testing relies on two important assumptions:
○ the competent programmer hypothesis
○ the coupling effect hypothesis

● Let’s look at each in detail next.
○ Hint: a common style of test question that I like to ask is 

“consider some assumption that we discussed that a 
particular technique makes. How would that technique 
behave if the assumption wasn’t true?”
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Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are 
“coupled” to simple faults in such a way that a test suite that 
detects all simple faults in a program will detect a high 
percentage of the complex faults. 

● Is this true? 
○ Tests that detect simple mutants were also able to detect 

over 99% of second- and third-order mutants historically
■ are higher-order mutants a good proxy for real complex 

bugs? The jury is still out.
[A. J. Offutt. Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20, Jan. 1992. ]
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}
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public int min(int a, int b) 
{

return a; < b ? a : b;
}

Mutant 2:

public int min(int a, int b) 
{

return b; < b ? a : b;
}

Mutant 3:

public int min(int a, int b) 
{

return a >= b ? a : b;
}

Mutant 4:

public int min(int a, int b) 
{

return a <= b ? a : b;
}
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Mutation testing: concrete example

Original program:

public int min(int a, int b) {
return a < b ? a : b;

}

Four mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

In-class exercise: For each mutant, 
provide a test case that detects it
(i.e., passes on the original program 
but fails on the mutant) (5 mins)

a b original M1 M2 M3 M4

1 1 1 1 1 1 1

1 2 1 1 2 2 1

2 1 1 2 1 2 1

Did anyone find a test case that can 
detect M4? Does such a test case 
even exist?
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● Suppose you have “x = a + b; y = c + d;” and you swap 
those two statements. 

● The resulting program is a mutant, but it is semantically 
equivalent to the original. 
○ So it will pass and fail all of the tests that the original passes 

and fails. 
○ So it will dilute the mutation score 

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Remember when I 
mentioned reductions 
earlier? Now is a good 
time to do one!
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● Detecting these “equivalent mutants” is a big deal. How hard is it?
● It is undecidable! (= there is no algorithm for it that can always 

give the correct answer)
○ by direct reduction to the Halting Problem (or by Rice’s 

theorem)

def foo(): # foo halts if and only if 
if p1() == p2(): # p1 is equivalent to p2 

return 0
foo()
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● There have been many attempts to detect equivalent mutants
○ this is a theme in SE/PL: undecidable problems attract 

researchers who try to find good approximations
● We’ll discuss two, to give you a sense of the options:

○ a rough approximation that is cheap to compute: trivial 
compiler equivalence (TCE)

○ a more precise approximation that is more expensive to 
compute: reduction to SMT
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optimizing compiler produces the same result when compiling both
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Definition: trivial compiler equivalence (TCE) is an equivalent mutant 
detection that shows that two programs are equivalent if an 
optimizing compiler produces the same result when compiling both
● Key Idea: if a compiler optimizes away the differences between 

the mutant and the original program, then they must be the same!
○ take advantage of existing analyses built into compilers

■ this makes it relatively cheap
● in experiments, TCE could detect ~30% of all equivalent mutants

○ detects redundant mutants, too (we’ll come back to this soon)
[ Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective Equivalent Mutant Detection Technique. Papadakis, Jia, Harman, and Le Traon. ICSE 2015. ]
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● Alternative strategy: prove that mutants are equivalent by 
reduction to SMT
○ similar in spirit to symbolic execution, but instead asks the 

solver “is there an input that causes these two (related) 
programs to diverge”? If not, they must be equivalent.

● Key problems:
○ applicability: it’s difficult to reduce some mutations to SMT

■ e.g., what if the mutant modifies the heap?
○ efficiency: SMT solvers can be slow! Caching can help, though.

[Medusa: Mutant Equivalence Detection Using Satisfiability Analysis. Kushigian, Rawat, Just. International Workshop on Mutation Analysis (Mutation) 2019. ]



Mutation testing: concrete example

Original program:

public int min(int a, int b) {
return a < b ? a : b;

}

Four mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

In-class exercise: For each mutant, 
provide a test case that detects it
(i.e., passes on the original program 
but fails on the mutant) (5 mins)

a b original M1 M2 M3 M4

1 1 1 1 1 1 1

1 2 1 1 2 2 1

2 1 1 2 1 2 1
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Original program:

public int min(int a, int b) {
return a < b ? a : b;

}

Four mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

In-class exercise: For each mutant, 
provide a test case that detects it
(i.e., passes on the original program 
but fails on the mutant) (5 mins)

a b original M1 M2 M3 M4

1 1 1 1 1 1 1

1 2 1 1 2 2 1

2 1 1 2 1 2 1

Do we need all of M1, M2, and M3? In 
other words, is it possible to predict if any 
of these mutants will be killed based on 
whether the others are killed?
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Mutation testing: redundant mutants

Definition: A mutant is said to be redundant if its outcome
can be predicted based on the outcome of other mutants.

Redundant mutants:
● Inflate the mutant detection ratio/mutation score
● Make it hard to assess progress and remaining effort

Can we formalize this notion? (Hint: we can, or I wouldn’t be asking.)
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Mutation testing: dynamic subsumption

Definition: Given a finite set of tests T, mutant M1 dynamically 
subsumes another mutant M2 with respect to T iff:
● some test in T kills M1
● all tests in T that kill M1 also kill M2

Note that dynamic subsumption is true subsumption iff T contains all 
possible tests (which can only occur if you’re testing exhaustively).

[Mutant Subsumption Graphs. Bob Kurtz, Paul Ammann, Marcio Delamaro, Jeff Offutt, Lin Deng.Mutation 2014. ]
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Mutation testing: mutant subsumption graph

We can model mutant subsumption with a graph:
● nodes represent a maximal set of indistinguished mutants
● edges represent the subsumption relationship

E.g., if M1 subsumes M2, which subsumes M3, we could represent 
that using this graph:

[Mutant Subsumption Graphs. Bob Kurtz, Paul Ammann, Marcio Delamaro, Jeff Offutt, Lin Deng.Mutation 2014. ]

M1 M2 M3
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Mutation testing: DMSG

A mutation testing tool can then maintain a dynamic mutant 
subsumption graph (DMSG) that keeps track of which mutants are 
actually subsumed or indistinguished.
● subsumed mutants occupy a node with in-degree > 0
● indistinguished mutants occupy the same node

[Mutant Subsumption Graphs. Bob Kurtz, Paul Ammann, Marcio Delamaro, Jeff Offutt, Lin Deng.Mutation 2014. ]
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Mutation testing: DMSG example

[Mutant Subsumption Graphs. Bob Kurtz, Paul Ammann, Marcio Delamaro, Jeff Offutt, Lin Deng.Mutation 2014. ]

key advantage 
of the DMSG: 
these minimal 
mutants are the 
only ones we 
need
● all others are 

redundant!



Agenda: mutation testing

● motivation and definitions
● assumptions and implications
● practicality
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test-goal utility and applies to any 
adequacy criterion.
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Mutation testing: productive mutants

Definition: a productive mutant is one that improves the quality of the 
software under test or of the test suite.
● The notion of productive mutants is fuzzy and subjective! 

○ “Quality” is notoriously difficult to define…
● A mutant is productive if it either:

○ is detectable and elicits an effective test, or
○ is equivalent and advances code quality or knowledge

[An Industrial Application of Mutation Testing: Lessons, Challenges, and Research Directions. Petrović, Ivanković, Kurtz, Ammann, Just. ICST 2018. ]
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Is this mutant detectable?   Yes.
But is it productive?   Definitely not!
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Mutation testing: productive mutants

E.g., @ Google:

[Practical Mutation Testing at Scale: A view from Google. Petrović, Ivanković, Fraser, Just. TSE 2022. ]

mutant

feedback to dev whose code 
is under review

feedback to mutation testing 
tool developers
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Mutation testing: problems of scale

● Google encountered some interesting problems when they 
deployed mutation testing in this manner at scale
○ for example, is it a good idea to mutate logging statements?

■ No! These are always unproductive.

Definition: an arid code statement is a code statement that, if 
mutated, will always lead to unproductive mutants
● Google keeps a list of all known-arid kinds of statements, which 

avoids creating these unproductive mutants in the first place
[Practical Mutation Testing at Scale: A view from Google. Petrović, Ivanković, Fraser, Just. TSE 2022. ]
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Mutation testing: summary of pros and cons

● Has the potential to subsume other test suite adequacy criteria 
(it can be very good) 

● Difficult to do well:
○ Which mutation operators do you use? 
○ Where do you apply them? How often do you apply them?

■ Typically done at random, but how? 
● It is very expensive. If you make 1,000 mutants, you must now 

run your test suite 1,000 times!
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● Recall there is an exam during the first class after spring break
○ Note that you will be permitted to bring one letter-sized 

piece of paper with handwritten notes (double-sided)
■ printed copies of notes taken on an iPad or similar are ok, 

but handwriting must match (you’ll turn in your notes)
● You have two weeks for the next HW (HW6)

○ it requires a lot more programming than prior HWs
○ get started this week so that you can ask us useful questions 

after I finish lecturing next week
● Kazi’s OH this week will be slightly shorter (3:30-4:30)


