Mutation Testing

Martin Kellogg

Reading Quiz: mutation testing

Reading Quiz: mutation testing

Q1: At what time does Google surface the results of mutation testing

to developers?

A. inthelDE

B. when the developer runs the tests locally
C. atcodereviewtime

D. after the code is deployed

Q2: Write a one-line snippet of code that is obviously arid, as defined
by the paper.

Reading Quiz: mutation testing

Q1: At what time does Google surface the results of mutation testing

to developers?

A. inthelDE

B. when the developer runs the tests locally
at code review time

D. after the code is deployed

Q2: Write a one-line snippet of code that is obviously arid, as defined
by the paper.

Reading Quiz: mutation testing

Q1: At what time does Google surface the results of mutation testing

to developers?

A. inthelDE

B. when the developer runs the tests locally
at code review time

D. after the code is deployed

Q2: Write a one-line snippet of code that is obviously arid, as defined
by the paper.

Agenda: mutation testing

e motivation and definitions
e assumptions and implications
e practicality

Mutation testing: motivation

e “Quis custodes ipsos custodiet?”

Mutation testing: motivation

e “Quis custodes ipsos custodiet?”
- Decimus Ivnivs Ivvenalis (“Juvenal”), Roman satirist

Mutation testing: motivation

e “Quis custodes ipsos custodiet?”
- Decimus Ivnivs Ivvenalis (“Juvenal”), Roman satirist
e usually translated into English as “who watches the watchers?”

Mutation testing: motivation

e “Quis custodes ipsos custodiet?”
- Decimus Ivnivs Ivvenalis (“Juvenal”), Roman satirist
e usually translated into English as “who watches the watchers?”
o this question is recursive: whatever the answer, we can ask the
same question about the it!

Mutation testing: motivation

e “Quis custodes ipsos custodiet?”
- Decimus Ivnivs Ivvenalis (“Juvenal”), Roman satirist
e usually translated into English as “who watches the watchers?”
o this question is recursive: whatever the answer, we can ask the
same question about the it!
e what does this have to do with ?

Mutation testing: motivation

e “Quis custodes ipsos custodiet?”
- Decimus Ivnivs Ivvenalis (“Juvenal”), Roman satirist
e usually translated into English as “who watches the watchers?”
o this question is recursive: whatever the answer, we can ask the
same question about the it!
e what does this have to do with ?
o akey question that we need to ask ourselves is “how do we test
that our tests are actually good?”
m after all, tests are programs, too, and we only need to test
because we know that most programs contain bugs...

Mutation testing: what tests the tests?

e one possible answer that we've already discussed: coverage

Mutation testing: what tests the tests?

e one possible answer that we've already discussed: coverage
o better coverage = better tests, right?

Mutation testing: what tests the tests?

e one possible answer that we've already discussed: coverage
o better coverage = better tests, right?
m notreally, because coverage is an imperfect metric - it
doesn’t take into account oracle quality, etc.

Mutation testing: what tests the tests?

e one possible answer that we've already discussed: coverage
o better coverage = better tests, right?
m notreally, because coverage is an imperfect metric - it
doesn’t take into account oracle quality, etc.
o coverageis at besta to the actual quality of a
test suite

Mutation testing: what tests the tests?

e one possible answer that we've already discussed: coverage
o better coverage = better tests, right?
m notreally, because coverage is an imperfect metric - it
doesn’t take into account oracle quality, etc.
o coverageis at besta to the actual quality of a
test suite
e our question for today: how can we do better?

Mutation testing: what tests the tests?

e one possible answer that we've already discussed: coverage
o better coverage = better tests, right?
m notreally, because coverage is an imperfect metric - it
doesn’t take into account oracle quality, etc.
o coverageis at besta to the actual quality of a
test suite
e our question for today: how can we do better?
o key question: can a test suite quality metric naturally consider
both and oracle quality?

Mutation testing: quis custodes ipsos custodiet

e thereisageneral technique for solving “who watches the
watchers”-style problems: intentionally introduce a small number
of known-in-advance problems into the system

Mutation testing: quis custodes ipsos custodiet

e thereisageneral technique for solving “who watches the
watchers”-style problems: intentionally introduce a small number
of known-in-advance problems into the system

o and then see whether the “watchers” the
known problems!

Mutation testing: quis custodes ipsos custodiet

e thereisageneral technique for solving “who watches the
watchers”-style problems: intentionally introduce a small number
of known-in-advance problems into the system

o and then see whether the “watchers” the
known problems!
m this general technique can be applied recursively:
e add some fake “known problems”...

Mutation testing: quis custodes ipsos custodiet

e thereisageneral technique for solving “who watches the
watchers”-style problems: intentionally introduce a small number
of known-in-advance problems into the system

o and then see whether the “watchers” the
known problems!
m this general technique can be applied recursively:
e add some fake “known problems”...
m butit's generally : more “watchers of
watchers of watchers...” are always being added

Mutation testing: quis custodes ipsos custodiet

e how can we apply this technique to testing?

Mutation testing: quis custodes ipsos custodiet

e how can we apply this technique to testing?
o inthe analogy: tests are the watchers
m what are they watching for?

Mutation testing: quis custodes ipsos custodiet

e how can we apply this technique to testing?
o inthe analogy: tests are the watchers
m Wwhat are they watching for? bugs

Mutation testing: quis custodes ipsos custodiet

e how can we apply this technique to testing?
o inthe analogy: tests are the watchers
m Wwhat are they watching for? bugs
e 5o0,toapply the general technique, we need to intentionally
introduce some known problems into the system and see if the
watchers can detect them

Mutation testing: quis custodes ipsos custodiet

e how can we apply this technique to testing?
o inthe analogy: tests are the watchers
m Wwhat are they watching for? bugs
e 5o0,toapply the general technique, we need to intentionally
introduce some known problems into the system and see if the
watchers can detect them
o inthe analogy, are

Mutation testing: quis custodes ipsos custodiet

e how can we apply this technique to testing?
o inthe analogy: tests are the watchers
m Wwhat are they watching for? bugs
e 5o0,toapply the general technique, we need to intentionally
introduce some known problems into the system and see if the
watchers can detect them
o inthe analogy, are
m thatis, weintentionally introduce some changes to the
program that we expect to cause the tests to fail

Mutation testing: quis custodes ipsos custodiet

e how can we apply this technique to testing?
o inthe analogy: tests are the watchers
m Wwhat are they watching for? bugs
e 5o0,toapply the general technique, we need to intentionally
introduce some known problems into the system and see if the
watchers can detect them
o inthe analogy, are
m thatis, weintentionally introduce some changes to the
program that we expect to cause the tests to fail
e thisideaisthe essense of mutation testing!

Mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds

Mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds
e Informally: “You claim your test suite is really great at finding
security bugs? Well, I'll just intentionally add a bug to my source

code and see if your test suite finds it!”

Mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds
e Informally: “You claim your test suite is really great at finding
security bugs? Well, I'll just intentionally add a bug to my source

code and see if your test suite finds it!”
o recall the from a few weeks ago:

m toevaluate truffle-sniffing pigs, hide some truffles
m the best pigis the one that finds the most truffles!

Mutation testing: verisimilitude

e [nthe truffle-pig analogy from a few weeks ago, if every truffle |
hide in my backyard is next to a smelly red flower, a pig that finds
them all may not actually do well in the real world

Mutation testing: verisimilitude

e [nthe truffle-pig analogy from a few weeks ago, if every truffle |
hide in my backyard is next to a smelly red flower, a pig that finds
them all may not actually do well in the real world

o The truffle placements | made up were not indicative of
real-world truffles

Mutation testing: verisimilitude

e [nthe truffle-pig analogy from a few weeks ago, if every truffle |
hide in my backyard is next to a smelly red flower, a pig that finds
them all may not actually do well in the real world

o The truffle placements | made up were not indicative of
real-world truffles

e Similarly, if | add a bunch of defects to my software that are not
the sort of defects real humans would make, then mutation

testing is

Mutation testing: verisimilitude

e [nthe truffle-pig analogy from a few weeks ago, if every truffle |
hide in my backyard is next to a smelly red flower, a pig that finds
them all may not actually do well in the real world

o The truffle placements | made up were not indicative of
real-world truffles

e Similarly, if | add a bunch of defects to my software that are not
the sort of defects real humans would make, then mutation
testing is

o Implication: mutation testing requires us to know what real
bugs look like

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing

a defect into a program.

e Thedefectintroduced is typically intentionally similar to defects
introduced by real developers.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing

a defect into a program.

e Thedefectintroduced is typically intentionally similar to defects
introduced by real developers.

e Theseedingis typically done by changing the source code.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing

a defect into a program.

e Thedefectintroduced is typically intentionally similar to defects
introduced by real developers.

e Theseedingis typically done by changing the source code.

e For mutation testing, defect seeding is typically done
automatically (given a model of what human bugs look like)

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.

The defect introduced is typically intentionally similar to defects

introduced by real developers.

The seeding is typically done by changing the source code.

For mutation testing, defect seeding is typically done

automatically (given a model of what human bugs look like)

o however, you can do “lightweight” mutation testing yourself!
m e.g,regressiontesting and TDD can both be viewed as

forms of manual mutation testing

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are modeled on

historical human defects.

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are modeled on
historical human defects.

e Example mutations:

o 1f (a < Db) — 1f (a <= Db)
o 1f (a == Db) — 1f (a '= Db)
O a=>Db + c — a = b - ¢
o £(); g(); — g(); £0O)
O X =Yy — X = z

Mutation testing: mu

Definition: A mutation operato
point. In mutation testing, the
historical human defects.
e Example mutations:

o 1f (a < b)
1f (a == Db)

Q

I

O

+

Q
L b

TABLE 3

The First Set of Mutation Operators: The 22 “Mothra” Fortran
Mutation Operators (Adapted from [131])

Mutation

Operator ~ Description

AAR array reference for array reference replacement
ABS absolute value insertion

ACR array reference for constant replacement

AOR arithmetic operator replacement

ASR array reference for scalar variable replacement
CAR constant for array reference replacement

CNR comparable array name replacement

CRP constant replacement

CSR constant for scalar variable replacement

DER DO statement alterations

DSA DATA statement alterations

GLR GOTO label replacement

LCR logical connector replacement

ROR relational operator replacement

RSR RETURN statement replacement

SAN statement analysis

SAR scalar variable for array reference replacement
SCR scalar for constant replacement

SDL statement deletion

SRC source constant replacement

SVR scalar variable replacement

UOI unary operator insertion

Mutation testing: mu

TABLE 3

The First Set of Mutation Operators: The 22 “Mothra” Fortran

Mutation Operators (Adapted from [131])

Mutation
Operator ~ Description
Definition: A mutation operato e e
. . . ACR array reference for constant replacement
pOlnt. In mutat|0n test“’]g, the AOR arithmetic operator replacement
ASR arrav reference for scalar variable replacement
historical hu)))) rence 'replacement
. | Key questions in mutation testing R e
® replacemen
XamPI& - are what operators to use and how ple replacement

o 1f
o 1f
o a =
o f()
o X =

often to use each operator.

jons
t
ement

e [|'mintentionally not givingyoua femen

ton of advice on the answers to

llacement

reference replacement

these questions - | want you to cement
figure it out yourselves in HW6 juen

ment

UL

ohary vperacor umcl'ti()l]

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or

more program locations.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.

Definition: The order of a mutant is the number of mutation
operators applied. A higher-order mutant has order 2 or more.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.

Definition: The order of a mutant is the number of mutation
operators applied. A higher-order mutant has order 2 or more.

// original // 2nd-order mutant
if (a < b): if (a <= Db):
x =a + b — X =a - b

print (x) print (x)

Mutation testing: killing mutants

e Atestsuiteissaid to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

Mutation testing: killing mutants

e Atestsuiteissaid to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

e Mutation testing of a test suite proceeds by making a number of

mutants and measuring the fraction of them killed by that test
suite. This fraction is called the (or just

).

Mutation testing: killing mutants

e Atestsuiteissaid to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.
e Mutation testing of a test suite proceeds by making a number of

mutants and measuring the fraction of them killed by that test
suite. This fraction is called the

).

o Atest suite with a higher score is better.

(or just

Mutation testing: killing mutants

e Atestsuiteissaid to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

e Mutation testing of a test suite proceeds by making a number of

mutants and measuring the fraction of them killed by that test
suite. This fraction is called the

).
o Atest suite with a higher score is better.
e (Sorry for all of the vocabulary!)

(or just

Agenda: mutation testing

e motivation and definitions
e assumptions and implications
e practicality

Mutation testing: comparing scores

Suppose that | have two programs, each with its own test suite:

Mutation testing: comparing scores

Suppose that | have two programs, each with its own test suite:
e Program A’s test suite has an 80% mutation score.

Mutation testing: comparing scores

Suppose that | have two programs, each with its own test suite:
e Program A’s test suite has an 80% mutation score.
° 's test suite has a mutation score.

Mutation testing: comparing scores

Suppose that | have two programs, each with its own test suite:
e Program A’s test suite has an 80% mutation score.
° 's test suite has a mutation score.

Which program has a better test suite? A or B5?

Mutation testing: comparing scores

Suppose that | have two programs, each with its own test suite:
e Program A’s test suite has an 80% mutation score.
° 's test suite has a mutation score.

Which program has a better test suite? A or B5?

Answer: we don’t know!
e Mutation scores are not comparable across different programs!
o standard setting: same program, different test suites
m inthiscase, higher mutation score test suite is better

Mutation testing: assumptions

e Modern mutation testing relies on two important assumptions:
o the competent programmer hypothesis
o the coupling effect hypothesis

Mutation testing: assumptions

e Modern mutation testing relies on two important assumptions:

o the competent programmer hypothesis

o the coupling effect hypothesis

e Let'slook at each in detail next.

o Hint: a common style of test question that | like to ask is
“consider some assumption that we discussed that a
particular technique makes. How would that technique
behave if the assumption wasn'’t true?”

Mutation testing: competent programmers

e The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.

Mutation testing: competent programmers

e The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.

o Programmers write programs that are largely correct. Thus
small mutants simulate the likely effect of real faults.

Mutation testing: competent programmers

e The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.

o Programmers write programs that are largely correct. Thus
small mutants simulate the likely effect of real faults.

o Therefore, if the test suite is good at catching the artificial
mutants, it will also be good at catching the unknown but
real faults in the program.

Mutation testing: competent programmers

e The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystr

o H Isthe competent programmer hypothesis true?\. Thus
i

ificial
n but

— =

Mutation testing: competent programmers

e The competent programmer hypothesis holds that program

faults are syntactically small and can be corrected with a few
keystr

o H Isthe competent programmer hypothesis true?\. Thus

4 e Yesandno.

e |[tistrue that humans often make simple
typos (e.g., + vs -).

e Butitisalso true that some bugs are much

|
\ than that! /

ificial
n but

— =

Mutation testing: coupling effect

e The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

Mutation testing: coupling effect

e The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

e |[sthistrue?

Mutation testing: coupling effect

e The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

e |[sthistrue?

o Tests that detect simple mutants were also able to detect
of second- and third-order mutants historically

Mutation testing: coupling effect

e The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

e |[sthistrue?

o Tests that detect simple mutants were also able to detect
of second- and third-order mutants historically

m are higher-order mutants a good proxy for real complex
bugs?

Mutation testing: coupling effect

e The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

e |[sthistrue?

o Tests that detect simple mutants were also able to detect
of second- and third-order mutants historically

m are higher-order mutants a good proxy for real complex
bugs? The jury is still out.

Mutation testing: concrete example

Original program:

public int min(int a, int b) {
return a < b ? a : b;

}

Mutation testing: concrete example

Original program:

public int min(int a, int b) {

return a < b ? a

}

: b,

/Mutant 1:

public int min(int a, int b)

{

\.

return a; ——a—1

~

J

Mutation testing: concrete example

Original program:

public int min(int a, int b) {

}

return a < b ? a

: b,

rMutant 2:

public int min (int a, int b)

{

return b; o

N

/

Mutation testing: concrete example

Original program:

public int min(int a, int b) {

return a < b ? a :

™~

b;
/f p Mutant 3: \

d public int min(int a, int b)

{1 {

}

return a > b ? a : b;

AL Y

Mutation testing: concrete example

Original program:

public int min(int a, 1int b)

}

return a < b ? a

: b,

{

(w

/Mutant 4:

{

\J

return a <= b ? a :

public int min(int a, int b)

b;

~

/

Mutation testing: concrete example

Original program:

public int min(int a, int b) {
return a < b ? a : b;

Four mutants:
Ml: return a;
M2: return b;
M3: return a > b ? a : b;
M4d: return a <= b ? a : b;

Mutation testing: concrete example

Original program:

public int min(int a, 1int b)

return a < b

}

Four mutants:
Ml: return a;
M2: return b;
M3: return a >=
M4: return a <=

7 a

b ? a :
b ? a :

{

provide a test case that detects it
(i.e., passes on the original program

Qaut fails on the mutant) (5 mins)

(In-class exercise: For each mutant,\

J

Mutation testing: concrete example

Orig

inal program:

publ

a b original

M1 M2 M3 M4

i

}

Four

M1 :
M2 :
M3:
M4 :

return b;
return a > = b ? a : b;
return a <= b ? a : b;

(i.e., passes on the original program
but fails on the mutant) (5 mins)

J

Mutation testing: concrete example

Original program:

_—k b original | M1 M2 M3 M4
11 1
}
Four
M1 : '
M2: return b; (i.e., passes on the original program
M3: return a >= b ? a : b but fails on the mutant) (S mins)
M4d: return a <= Db ? a b

Mutation testing: concrete example

Original program:

a b original | M1 M2 M3 M4

publ

11 1 1 1 1 1 1
}
Four
M1 : '
M2: return b; (i.e., passes on the original program
M3: return a >= b ? a : b but fails on the mutant) (5 mins) p
M4: return a <= b ? a b

Mutation testing: concrete example

Original program:

oub1f @ b original | M1 M2 M3 M4
11 1 1 1 1 1 1
| 1 2
Four
M1 : '
M2: return b; (i.e., passes on the original program
M3: return a >= b ? a : b but fails on the mutant) (5 mins) P
M4d: return a <= Db ? a b

Mutation testing: concrete example

Original program:

a b original | M1 M2 M3 M4

publ
11 1 1 1 1 1 1

}

1 2 1 1 2 2 1
Four R
M1 : '
M2: return b; (i.e., passes on the original program
M3: return a >= b ? a : b but fails on the mutant) (5 mins) p
M4: return a <= b ? a b

Mutation testing: concrete example

Original program:

a b original | M1 M2 M3 M4

publ
11 1 1 1 1 1 1

}

1 2 1 1 2 2 1 N
Four 9 1
M1 : '
M2: return b; (i.e., passes on the original program
M3: return a >= b ? a : b but fails on the mutant) (5 mins) p
M4: return a <= b ? a b

Mutation testing: concrete example

Original program:

a b original | M1 M2 M3 M4

publ
11 1 1 1 1 1 1

}

1 2 1 1 2 2 1
Four , 1 1 2 1 2 1
M1 : '
M2: return b; (i.e., passes on the original program
M3: return a >= Db ? a : b; but fails on the mutant) (5 mins)
M4: return a <= b ? a : b;

J

Mutation testing: concrete example

. : 4)
Original program: Did find a test case that can L
oubl] b origin| detect M4? Does such a test case

11 1 1 ?

} l\ j_

1 2 1 1 2 2 1 N
Four 5 1 1 2 1 2 1
M1 : '
M2: return b; (i.e., passes on the original program
M3: return a >= b ? a : b; but fails on the mutant) (5 mins) p
M4: return a <= b ? a : b;

Mutation testing: equivalent mutant problem

e Supposeyouhave®x = a + b; v = ¢ + d;”andyouswap
those two statements.

Mutation testing: equivalent mutant problem

e Supposeyouhave®x = a + b; v = ¢ + d;”andyouswap
those two statements.

e Theresulting program is a mutant, but it is semantically
equivalent to the original.

Mutation testing: equivalent mutant problem

e Supposeyouhave®x = a + b; v = ¢ + d;”andyouswap
those two statements.
e Theresulting program is a mutant, but it is semantically
equivalent to the original.
o Soitwill pass and fail all of the tests that the original passes
and fails.

Mutation testing: equivalent mutant problem

e Supposeyouhave®x = a + b; v = ¢ + d;”andyouswap
those two statements.
e Theresulting program is a mutant, but it is semantically
equivalent to the original.
o Soitwill pass and fail all of the tests that the original passes
and fails.
o So it will dilute the mutation score

Mutation testing: equivalent mutant problem

e Supposeyouhave®x = a + b; v = ¢ + d;”andyouswap
those two statements.

e Theresulting program is a mutant, but it is semantically
equivalent to the original.
o Soitwill pass and fail all of the tests that the original passes

and fails.

o So it will dilute the mutation score

e Detecting these “equivalent mutants” is a big deal. How hard is it?

Mutation testing: equivalent mutant problem

e Supposeyouhave®x = a + b; v = ¢ + d;”andyouswap
those two statements.
e Theresulting program éa \ally

. . .| Remember when |
equivalent to the origir Mentionad

o Soitwillpassandfy earlier? Now is a good rinal passes

and fails. time to do one!
o Soit will dilute the Mrerrererorcore /

e Detecting these “equivalent mutants” is a big deal. How hard is it?

Mutation testing: equivalent mutant problem

e Detecting these “equivalent mutants” is a big deal. How hard is it?

Mutation testing: equivalent mutant problem

e Detecting these “equivalent mutants” is a big deal. How hard is it?
e Itisundecidable! (=thereis no algorithm for it that can always
give the correct answer)

Mutation testing: equivalent mutant problem

e Detecting these “equivalent mutants” is a big deal. How hard is it?
e Itisundecidable! (=thereis no algorithm for it that can always
give the correct answer)
o by direct reduction to the Halting Problem (or by Rice’s
theorem)

def foo(): # foo halts if and only if

if pl() == p2(): # pl is equivalent to p2
return 0O

foo ()

Mutation testing: equivalent mutant problem

e There have been many attempts to detect equivalent mutants

Mutation testing: equivalent mutant problem

e There have been many attempts to detect equivalent mutants
o thisisatheme in SE/PL: undecidable problems attract
researchers who try to find

Mutation testing: equivalent mutant problem

e There have been many attempts to detect equivalent mutants
o thisisatheme in SE/PL: undecidable problems attract
researchers who try to find
e We'll discuss two, to give you a sense of the options:

Mutation testing: equivalent mutant problem

e There have been many attempts to detect equivalent mutants
o thisisatheme in SE/PL: undecidable problems attract
researchers who try to find good approximations
e We'll discuss two, to give you a sense of the options:
o arough approximation that is cheap to compute: trivial
compiler equivalence (TCE)
O amore precise approximation that is more expensive to
compute: reduction to SMT

Mutation testing: equivalent mutants: TCE

Definition: trivial compiler equivalence (TCE) is an equivalent mutant

detection that shows that two programs are equivalent if an
optimizing compiler produces the same result when compiling both

Mutation testing: equivalent mutants: TCE

Definition: trivial compiler equivalence (TCE) is an equivalent mutant
detection that shows that two programs are equivalent if an
optimizing compiler produces the same result when compiling both
e Key ldea: if a compiler optimizes away the differences between
the mutant and the original program, then they must be the same!

Mutation testing: equivalent mutants: TCE

Definition: trivial compiler equivalence (TCE) is an equivalent mutant
detection that shows that two programs are equivalent if an
optimizing compiler produces the same result when compiling both
e Key ldea: if a compiler optimizes away the differences between
the mutant and the original program, then they must be the same!
o take advantage of built into compilers
m this makes it relatively cheap

Mutation testing: equivalent mutants: TCE

Definition: trivial compiler equivalence (TCE) is an equivalent mutant
detection that shows that two programs are equivalent if an
optimizing compiler produces the same result when compiling both
e Key ldea: if a compiler optimizes away the differences between
the mutant and the original program, then they must be the same!
o take advantage of built into compilers

m this makes it relatively cheap
e inexperiments, TCE could detect ~30% of all equivalent mutants

Mutation testing: equivalent mutants: TCE

Definition: trivial compiler equivalence (TCE) is an equivalent mutant
detection that shows that two programs are equivalent if an
optimizing compiler produces the same result when compiling both
e Key ldea: if a compiler optimizes away the differences between
the mutant and the original program, then they must be the same!
o take advantage of built into compilers

m this makes it relatively cheap
e inexperiments, TCE could detect ~30% of all equivalent mutants

o detects redundant mutants, too (we'll come back to this soon)

Mutation testing: equivalent mutants: SMT

e Alternative strategy: prove that mutants are equivalent by
reduction to SMT

Mutation testing: equivalent mutants: SMT

e Alternative strategy: prove that mutants are equivalent by
reduction to SMT
o similar in spirit to symbolic execution, but instead asks the
solver “is there an input that causes these two (related)
programs to diverge”? If not, they must be equivalent.

Mutation testing: equivalent mutants: SMT

e Alternative strategy: prove that mutants are equivalent by
reduction to SMT
o similar in spirit to symbolic execution, but instead asks the
solver “is there an input that causes these two (related)
programs to diverge”? If not, they must be equivalent.
e Key problems:

Mutation testing: equivalent mutants: SMT

e Alternative strategy: prove that mutants are equivalent by
reduction to SMT
o similar in spirit to symbolic execution, but instead asks the
solver “is there an input that causes these two (related)
programs to diverge”? If not, they must be equivalent.
e Key problems:
o applicability: it’s difficult to reduce some mutations to SMT
m e.g.,whatif the mutant modifies the heap?

Mutation testing: equivalent mutants: SMT

e Alternative strategy: prove that mutants are equivalent by
reduction to SMT
o similar in spirit to symbolic execution, but instead asks the
solver “is there an input that causes these two (related)
programs to diverge”? If not, they must be equi