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● Generating input is of limited value if we don’t know what the 
program is supposed to do with that input

● Key question: if we generate an input for a given path, how do we 
tell if the program behaved correctly?
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Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program 

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the 

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”
○ It is expensive both for humans and for machines.

■ and, for machines, sometimes impossible!
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Observation: there are some things programs definitely shouldn’t do 
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these 

definitely bad things

Definition: an implicit oracle is one associated with the language or 
architecture, rather than program-specific semantics (e.g., “don't 
segfault”, “don't loop forever”).

Implicit oracles like 
these are used by many 
test generation tools 
(e.g., most fuzzers) in 
the real world.



Implicit oracles: a key weakness



Implicit oracles: a key weakness

● limited to facts that are true about all programs



Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!



Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!
● compare to the way that humans write tests:

○ select an input
○ select an oracle
○ compare the two



Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!
● compare to the way that humans write tests:

○ select an input
○ select an oracle
○ compare the two



Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!
● compare to the way that humans write tests:

○ select an input
○ select an oracle
○ compare the two

● that is, human testing usually samples the concrete behaviors of a 
program
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Can we do better than sampling?

● the key idea behind all of the techniques for producing better 
oracles that we’ll discuss today is each gives us a more general way 
to describe what the program should do
○ we call these partial oracles, because they are less specific 

about what exactly the program should do than traditional, 
human-written oracles

○ you can view a partial oracle as an abstraction of testing:
■ concrete (traditional) oracle:        x = 5
■ abstract (partial) oracle:                  ∀x : x > 0

Today’s key theme: combine test 
input generation (e.g., fuzzing) 
with abstract, partial oracles
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Sources of partial oracles

● Option 1: ask a human to write a partial oracle instead of a 
concrete oracle. Humans turn out to be pretty good at this.
○ leads to property-based testing

● Option 2: exploit known relationships between different inputs or 
programs (humans provide the relationships)
○ leads to metamorphic testing

● Option 3: run the program and automatically observe invariants 
that happen to be true on human-written tests
○ leads to dynamic invariant detection
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● Property-based testing
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● Dynamic invariant detection
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Definition: property-based testing (PBT) is a testing technique in which a 
human writes a partial oracle that is specific to the system under test
● almost always paired with random input generation

○ can be viewed as “fuzzing, but using a human-written, 
program-specific oracle instead of an implicit oracle”

● note that PBT requires knowledge about the system being tested
○ if you can apply a partial oracle to any SUT, it’s probably an 

implicit oracle instead
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● Tests can have a clear, mathematical presentation
○ makes it easier for future developers to understand what is 

and is not being tested
● Can avoid finding and writing every case for each property

○ allows tester to focus on the what not the how
● Can decrease maintenance costs with the same (or sometimes 

even greater!) coverage
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Property-based testing in practice

● Historically, PBT was developed first for functional languages
○ Originated with QuickCheck for Haskell in 2000
○ PBT has the same kind of mathematical vibe as FP

● Now there are PBT frameworks available for mainstream 
programming languages
○ Hypothesis for Python and Java (https://hypothesis.works/) 
○ DeepState for C/C++ (https://github.com/trailofbits/deepstate)
○ etc.

https://hypothesis.works/
https://github.com/trailofbits/deepstate
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Metamorphic testing*

Definition: metamorphic testing is a property-based testing technique 
in which oracles are defined by metamorphic relations (MRs) between 
related inputs or programs
● we’re using relation here in the mathematical sense:

○ formally, a relation R over a set X can be seen as a set of 
ordered pairs (x,y) of members of X. The relation R holds 
between x and y if (x,y) is a member of R. [Wikipedia]

* Chen et al. coined the term “metamorphic testing” in 1998, but the key idea was first described by Ammann and Knight as “data diversity” in 1988.
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○ metamorphic testing where the output of the same program 
on two related inputs have a metamorphic relationship
■ this is usually what’s meant by “metamorphic testing” in the 

literature
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Observation: there are many programs with similar or identical 
specifications
● if we are building such a program, we can use another 

implementation as an oracle
● e.g., if we’re writing a C compiler, we can compare our output to gcc

Definition: differential testing is a technique for testing two related 
programs by comparing their output on generated test inputs. Any 
difference indicates non-conformance in one of the two.

Metamorphic testing: differential testing
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Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example, 
when writing a “fast” version of a routine, you can compare its 
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct
○ and sometimes neither is!

● but, differential testing provides a much stronger oracle than most 
other techniques (true of metamorphic testing generally!)

Metamorphic testing: differential testing
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● What’s the metamorphic relation in differential testing?
○ hint: think about how the outputs of e.g., two C compilers are 

related
○ it’s the identity function: we’re checking if the two programs 

have the same output!
■ this is the most common MR! But not the only one…

● What other MRs could we use for differential testing?
○ Inversion: forall X. unzip(zip(X)) = X
○ Convergence / Idempotency: forall X. sort(sort(X)) = sort(X)

Metamorphic testing: differential testing MR
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● Many programs transform data from one format to another (cf. 
adapter design pattern)

● If the program is implementing a function with similar domain and 
range, you can often get high-coverage tests “for free” by 
composing the program with itself
○ If possible, design your program so that this is possible
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● Simple case: related inputs with identical outcomes
○ expected output for a given input is unknown
○ two related inputs must result in the same output

■ example: forall x, abs(x) == abs(-x)
● Generalization: related inputs and related outputs

○ Input i1 
yields (unknown) o1   (initial input)

○ Ri : i1 -> i2 (follow-up input)
○ Ro : o1 -> o2 (necessary condition)

Metamorphic testing: related inputs
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Metamorphic testing has three requirements:
● a set of initial inputs (or a generator)
● a relation Ri that can generate follow-up inputs
● a relation Ro that gives the necessary correctness condition

MT: DWT: concrete SUT: jpeg2000 encoder
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● One of the most effective ways to test real systems
○ especially when combined with a fuzzer for random input 

generation
● Often difficult to apply

○ designing MRs requires domain expertise
○ but easier for some kinds of systems than others

● My advice: always be on the lookout for opportunities to carry out 
metamorphic testing
○ great value in terms of increasing your confidence in a system’s 

correctness vs effort you need to put in! 

Metamorphic testing: practicality
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● Dynamic invariant detection
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Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have 

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should 

have index == array_len - 1

Definition: an invariant is a predicate over program expressions that is 
true on every execution
● high-quality invariants can serve as test oracles

Dynamic invariant detection: intuition
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● it may (but does not have to) include expectations about the 

arguments

Definition: a postcondition (to a function) is a condition that must be 
true when leaving (the function)
● it may (but does not have to) include expectations about the return 

value (of the function) or about side-effects
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Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and 

reasoning about what must be true after execution
○ given a precondition, what postcondition(s) are true?

● backward reasoning: knowing a fact that is true after execution, and 
reasoning about what must be true before execution
○ given a postcondition, what precondition(s) are true?
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Pros and cons: forward vs backward reasoning 

Forward reasoning: 
● More intuitive for most people
● Helps understand what will 

happen (simulates the code)
● Introduces facts that may be 

irrelevant to the goal
● Set of facts may get large
● Takes longer to realize that the 

task is hopeless

Backward reasoning: 
● Usually more helpful
● Helps understand what should 

happen
● Given a specific goal, indicates 

how to achieve it
● Given an error, gives a test 

case that exposes it
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A loop invariant is an invariant that must hold 
at both the start and end of each iteration of 
the loop. We’ll come back to this concept 
later in the semester, but for now don’t 
worry too much about it.
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● Given a program location, if we could infer an invariant for that  
location, we could have …
○ Function preconditions (location = entry)
○ Function postconditions (location = exit)
○ Loop invariants (location = loop entry)

● Can we do this automatically?
● Two insights:

○ An invariant always holds on all executions
○ We can detect spurious false invariants

Dynamic invariant detection: insight
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● What if we require that the program come equipped with inputs?
○ An indicative workload
○ High-coverage test cases

● Since an invariant holds on every execution (by definition), any 
candidate invariant that is false even once can be tossed out!

● Plan:
1. generate many candidate invariants
2. filter out the false ones by running the tests!

Dynamic invariant detection: high-level idea
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● Given:
while b do c

● Instrument:
while b do print Inv1; print Inv2; ... ; c

● Then just run the tests and filter out those that are false
● What’s wrong with this plan?

○ Hint: how many invariants are there?
○ infinitely many :(

Dynamic invariant detection: naive approach
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● Key idea to keep the set of invariants finite: use a set of template 
invariants that will likely be useful as oracles

● For example, given program variables x, y, and z:
○ x = c constants x < y ordering
○ x != 0 non-zero (x + y) % b = a math
○ x >= c bounds z = ax + by + c linear
○ y = ax + b linear

● At most three variables => finite number of invariants to check

Dynamic invariant detection: templates

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]
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The Daikon invariant detection algorithm:
● For every program location:

○ For all triples of in-scope variables:
■ Instantiate templates to obtain candidate invariants
■ Instrument program

● For every test case:
○ Run instrumented program
○ Filter out any falsified candidate invariant

● Report surviving invariants

Dynamic invariant detection: Daikon

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

What’s the running time of the 
Daikon algorithm?
● cubic in in-scope variables
● linear in test suite size,
● linear in program size
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i is not in scope at the 
start of the program, 
so we don’t need to 
evaluate invariants 

involving i
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Program: (input= N >0)

i := 0
while i != N:

i := i + 1

Evaluate invariants at program 
start, program end, and for the 
loop itself (i.e., loop invariants)

In-class exercise: infer likely invariants

Invariants to evaluate:
• i=0
• i<0
• i<=0
• i>0
• i>=0
• N=0
• N<0
• N<=0

• N>=0

• N>0

• i==N

• i<N

• i<=N
• i>N

• i>=N

in class we evaluated 
each invariant at both 

the start and end of 
the loop
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● False Negatives!
○ If your invariant does not fit a template, Daikon cannot find it 

■ Example: l + u – 1 <= 2p <= l + u (binary search pivot)
● Nothing prevents a Daikon-like algorithm from finding these

○ but templates are absolutely necessary to permit Daikon to 
scale
■ and each additional template bloats the complexity 

(especially if it involves more variables!)

Dynamic invariant detection: limitations
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● False positives from limited input
○ if you only test your sorting program on the input [4, 2, 3,], 

Daikon will learn the invariant output[0] = 2
○ but as we’ve learned, making high-coverage, high-adequacy 

test suites is easy, right? (haha, no)
● False positives from linguistic coincidence

○ e.g., ptr % 4 == 0 or x <= MAX_INT
○ not false, but not related to correctness (or useful as an oracle)

■ these are true of any program!

Dynamic invariant detection: limitations
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○ design some metamorphic relations for a real software system 
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● Two parts
○ run Daikon on a data structure of your choice
○ design some metamorphic relations for a real software system 

of your choice
● This homework expects you to make more decisions on your own 

than prior homeworks
○ that is, there are fewer guard rails
○ my advice: if you get stuck because of a difficulty with a system 

that you picked, remember that you can go back and choose a 
different system! (The course staff won’t ever need to know!)
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