
Oracles
Martin Kellogg

Reading Quiz: oracles

Q1: TRUE or FALSE: CSmith uses both static analysis and run-time
checks to avoid undefined or unspecified behaviors in the C programs
that it generates

Q2: The main example in section 2 of the Daikon paper was:
A. a hash table
B. a trie
C. a stack
D. a C program

Reading Quiz: oracles

Q1: TRUE or FALSE: CSmith uses both static analysis and run-time
checks to avoid undefined or unspecified behaviors in the C programs
that it generates

Q2: The main example in section 2 of the Daikon paper was:
A. a hash table
B. a trie
C. a stack
D. a C program

Reading Quiz: oracles

Q1: TRUE or FALSE: CSmith uses both static analysis and run-time
checks to avoid undefined or unspecified behaviors in the C programs
that it generates

Q2: The main example in section 2 of the Daikon paper was:
A. a hash table
B. a trie
C. a stack
D. a C program

Oracle generation

● Generating input is of limited value if we don’t know what the
program is supposed to do with that input

Oracle generation

● Generating input is of limited value if we don’t know what the
program is supposed to do with that input

● Key question: if we generate an input for a given path, how do we
tell if the program behaved correctly?

Oracle generation: difficulty

● Oracles are tricky.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”
○ It is expensive both for humans and for machines.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”
○ It is expensive both for humans and for machines.

■ and, for machines, sometimes impossible!

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these

definitely bad things

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these

definitely bad things

Definition: an implicit oracle is one associated with the language or
architecture, rather than program-specific semantics (e.g., “don't
segfault”, “don't loop forever”).

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these

definitely bad things

Definition: an implicit oracle is one associated with the language or
architecture, rather than program-specific semantics (e.g., “don't
segfault”, “don't loop forever”).

Implicit oracles like
these are used by many
test generation tools
(e.g., most fuzzers) in
the real world.

Implicit oracles: a key weakness

Implicit oracles: a key weakness

● limited to facts that are true about all programs

Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!

Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!
● compare to the way that humans write tests:

○ select an input
○ select an oracle
○ compare the two

Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!
● compare to the way that humans write tests:

○ select an input
○ select an oracle
○ compare the two

Implicit oracles: a key weakness

● limited to facts that are true about all programs
○ most bugs in most programs don’t manifest as crashes

■ an implicit oracle cannot detect such bugs!
● compare to the way that humans write tests:

○ select an input
○ select an oracle
○ compare the two

● that is, human testing usually samples the concrete behaviors of a
program

Can we do better than sampling?

Can we do better than sampling?

● the key idea behind all of the techniques for producing better
oracles that we’ll discuss today is each gives us a more general way
to describe what the program should do

Can we do better than sampling?

● the key idea behind all of the techniques for producing better
oracles that we’ll discuss today is each gives us a more general way
to describe what the program should do
○ we call these partial oracles, because they are less specific

about what exactly the program should do than traditional,
human-written oracles

Can we do better than sampling?

● the key idea behind all of the techniques for producing better
oracles that we’ll discuss today is each gives us a more general way
to describe what the program should do
○ we call these partial oracles, because they are less specific

about what exactly the program should do than traditional,
human-written oracles

○ you can view a partial oracle as an abstraction of testing:

Can we do better than sampling?

● the key idea behind all of the techniques for producing better
oracles that we’ll discuss today is each gives us a more general way
to describe what the program should do
○ we call these partial oracles, because they are less specific

about what exactly the program should do than traditional,
human-written oracles

○ you can view a partial oracle as an abstraction of testing:
■ concrete (traditional) oracle: x = 5

Can we do better than sampling?

● the key idea behind all of the techniques for producing better
oracles that we’ll discuss today is each gives us a more general way
to describe what the program should do
○ we call these partial oracles, because they are less specific

about what exactly the program should do than traditional,
human-written oracles

○ you can view a partial oracle as an abstraction of testing:
■ concrete (traditional) oracle: x = 5
■ abstract (partial) oracle: ∀x : x > 0

Can we do better than sampling?

● the key idea behind all of the techniques for producing better
oracles that we’ll discuss today is each gives us a more general way
to describe what the program should do
○ we call these partial oracles, because they are less specific

about what exactly the program should do than traditional,
human-written oracles

○ you can view a partial oracle as an abstraction of testing:
■ concrete (traditional) oracle: x = 5
■ abstract (partial) oracle: ∀x : x > 0

Today’s key theme: combine test
input generation (e.g., fuzzing)
with abstract, partial oracles

Sources of partial oracles

Sources of partial oracles

● Option 1: ask a human to write a partial oracle instead of a
concrete oracle. Humans turn out to be pretty good at this.
○ leads to property-based testing

Sources of partial oracles

● Option 1: ask a human to write a partial oracle instead of a
concrete oracle. Humans turn out to be pretty good at this.
○ leads to property-based testing

● Option 2: exploit known relationships between different inputs or
programs (humans provide the relationships)
○ leads to metamorphic testing

Sources of partial oracles

● Option 1: ask a human to write a partial oracle instead of a
concrete oracle. Humans turn out to be pretty good at this.
○ leads to property-based testing

● Option 2: exploit known relationships between different inputs or
programs (humans provide the relationships)
○ leads to metamorphic testing

● Option 3: run the program and automatically observe invariants
that happen to be true on human-written tests
○ leads to dynamic invariant detection

Agenda: remainder of today’s lecture

● Property-based testing
● Metamorphic testing
● Dynamic invariant detection

Property-based testing

Definition: property-based testing (PBT) is a testing technique in which a
human writes a partial oracle that is specific to the system under test

Property-based testing

Definition: property-based testing (PBT) is a testing technique in which a
human writes a partial oracle that is specific to the system under test
● almost always paired with random input generation

○ can be viewed as “fuzzing, but using a human-written,
program-specific oracle instead of an implicit oracle”

Property-based testing

Definition: property-based testing (PBT) is a testing technique in which a
human writes a partial oracle that is specific to the system under test
● almost always paired with random input generation

○ can be viewed as “fuzzing, but using a human-written,
program-specific oracle instead of an implicit oracle”

● note that PBT requires knowledge about the system being tested
○ if you can apply a partial oracle to any SUT, it’s probably an

implicit oracle instead

Property-based testing: benefits

Property-based testing: benefits

● Tests can have a clear, mathematical presentation
○ makes it easier for future developers to understand what is

and is not being tested

Property-based testing: benefits

● Tests can have a clear, mathematical presentation
○ makes it easier for future developers to understand what is

and is not being tested
● Can avoid finding and writing every case for each property

○ allows tester to focus on the what not the how

Property-based testing: benefits

● Tests can have a clear, mathematical presentation
○ makes it easier for future developers to understand what is

and is not being tested
● Can avoid finding and writing every case for each property

○ allows tester to focus on the what not the how
● Can decrease maintenance costs with the same (or sometimes

even greater!) coverage

Property-based testing in practice

● Historically, PBT was developed first for functional languages
○ Originated with QuickCheck for Haskell in 2000
○ PBT has the same kind of mathematical vibe as FP

Property-based testing in practice

● Historically, PBT was developed first for functional languages
○ Originated with QuickCheck for Haskell in 2000
○ PBT has the same kind of mathematical vibe as FP

● Now there are PBT frameworks available for mainstream
programming languages
○ Hypothesis for Python and Java (https://hypothesis.works/)
○ DeepState for C/C++ (https://github.com/trailofbits/deepstate)
○ etc.

https://hypothesis.works/
https://github.com/trailofbits/deepstate

Agenda: remainder of today’s lecture

● Property-based testing
● Metamorphic testing
● Dynamic invariant detection

Metamorphic testing*

Definition: metamorphic testing is a property-based testing technique
in which oracles are defined by metamorphic relations (MRs) between
related inputs or programs

* Chen et al. coined the term “metamorphic testing” in 1998, but the key idea was first described by Ammann and Knight as “data diversity” in 1988.

Metamorphic testing*

Definition: metamorphic testing is a property-based testing technique
in which oracles are defined by metamorphic relations (MRs) between
related inputs or programs
● we’re using relation here in the mathematical sense:

* Chen et al. coined the term “metamorphic testing” in 1998, but the key idea was first described by Ammann and Knight as “data diversity” in 1988.

Metamorphic testing*

Definition: metamorphic testing is a property-based testing technique
in which oracles are defined by metamorphic relations (MRs) between
related inputs or programs
● we’re using relation here in the mathematical sense:

○ formally, a relation R over a set X can be seen as a set of
ordered pairs (x,y) of members of X. The relation R holds
between x and y if (x,y) is a member of R. [Wikipedia]

* Chen et al. coined the term “metamorphic testing” in 1998, but the key idea was first described by Ammann and Knight as “data diversity” in 1988.

Metamorphic testing: programs vs inputs

● We’re going to cover two kinds of metamorphic testing today

Metamorphic testing: programs vs inputs

● We’re going to cover two kinds of metamorphic testing today
○ metamorphic testing where the outputs of two related

programs on the same input have a metamorphic relationship
■ traditionally called differential testing
■ today’s reading on CSmith is an example of this

Metamorphic testing: programs vs inputs

● We’re going to cover two kinds of metamorphic testing today
○ metamorphic testing where the outputs of two related

programs on the same input have a metamorphic relationship
■ traditionally called differential testing
■ today’s reading on CSmith is an example of this

○ metamorphic testing where the output of the same program
on two related inputs have a metamorphic relationship
■ this is usually what’s meant by “metamorphic testing” in the

literature

Metamorphic testing: differential testing

Metamorphic testing: differential testing

Observation: there are many programs with similar or identical
specifications

Observation: there are many programs with similar or identical
specifications
● if we are building such a program, we can use another

implementation as an oracle

Metamorphic testing: differential testing

Observation: there are many programs with similar or identical
specifications
● if we are building such a program, we can use another

implementation as an oracle
● e.g., if we’re writing a C compiler, we can compare our output to gcc

Metamorphic testing: differential testing

Observation: there are many programs with similar or identical
specifications
● if we are building such a program, we can use another

implementation as an oracle
● e.g., if we’re writing a C compiler, we can compare our output to gcc

Definition: differential testing is a technique for testing two related
programs by comparing their output on generated test inputs. Any
difference indicates non-conformance in one of the two.

Metamorphic testing: differential testing

Advantages and disadvantages of differential testing:

Metamorphic testing: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

Metamorphic testing: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

Metamorphic testing: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct

Metamorphic testing: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct
○ and sometimes neither is!

Metamorphic testing: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct
○ and sometimes neither is!

● but, differential testing provides a much stronger oracle than most
other techniques (true of metamorphic testing generally!)

Metamorphic testing: differential testing

● What’s the metamorphic relation in differential testing?
○ hint: think about how the outputs of e.g., two C compilers are

related

Metamorphic testing: differential testing MR

● What’s the metamorphic relation in differential testing?
○ hint: think about how the outputs of e.g., two C compilers are

related
○ it’s the identity function: we’re checking if the two programs

have the same output!
■ this is the most common MR! But not the only one…

Metamorphic testing: differential testing MR

● What’s the metamorphic relation in differential testing?
○ hint: think about how the outputs of e.g., two C compilers are

related
○ it’s the identity function: we’re checking if the two programs

have the same output!
■ this is the most common MR! But not the only one…

● What other MRs could we use for differential testing?

Metamorphic testing: differential testing MR

● What’s the metamorphic relation in differential testing?
○ hint: think about how the outputs of e.g., two C compilers are

related
○ it’s the identity function: we’re checking if the two programs

have the same output!
■ this is the most common MR! But not the only one…

● What other MRs could we use for differential testing?
○ Inversion: forall X. unzip(zip(X)) = X
○ Convergence / Idempotency: forall X. sort(sort(X)) = sort(X)

Metamorphic testing: differential testing MR

● Many programs transform data from one format to another (cf.
adapter design pattern)

Aside: designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter design pattern)

● If the program is implementing a function with similar domain and
range, you can often get high-coverage tests “for free” by
composing the program with itself

Aside: designing for testing: tests for free

Aside: designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter design pattern)

● If the program is implementing a function with similar domain and
range, you can often get high-coverage tests “for free” by
composing the program with itself
○ If possible, design your program so that this is possible

Metamorphic testing: related inputs

● Simple case: related inputs with identical outcomes
○ expected output for a given input is unknown

Metamorphic testing: related inputs

● Simple case: related inputs with identical outcomes
○ expected output for a given input is unknown
○ two related inputs must result in the same output

■ example: forall x, abs(x) == abs(-x)

Metamorphic testing: related inputs

● Simple case: related inputs with identical outcomes
○ expected output for a given input is unknown
○ two related inputs must result in the same output

■ example: forall x, abs(x) == abs(-x)
● Generalization: related inputs and related outputs

Metamorphic testing: related inputs

● Simple case: related inputs with identical outcomes
○ expected output for a given input is unknown
○ two related inputs must result in the same output

■ example: forall x, abs(x) == abs(-x)
● Generalization: related inputs and related outputs

○ Input i1
yields (unknown) o1 (initial input)

Metamorphic testing: related inputs

● Simple case: related inputs with identical outcomes
○ expected output for a given input is unknown
○ two related inputs must result in the same output

■ example: forall x, abs(x) == abs(-x)
● Generalization: related inputs and related outputs

○ Input i1
yields (unknown) o1 (initial input)

○ Ri : i1 -> i2 (follow-up input)

Metamorphic testing: related inputs

● Simple case: related inputs with identical outcomes
○ expected output for a given input is unknown
○ two related inputs must result in the same output

■ example: forall x, abs(x) == abs(-x)
● Generalization: related inputs and related outputs

○ Input i1
yields (unknown) o1 (initial input)

○ Ri : i1 -> i2 (follow-up input)
○ Ro : o1 -> o2 (necessary condition)

Metamorphic testing: related inputs

Metamorphic testing: online service example

Metamorphic testing: online service example

related inputs

Metamorphic testing: online service example

related inputs

related outputs

MT: discrete wavelet transform example

MT: discrete wavelet transform example

MT: discrete wavelet transform example

MT: DWT: concrete SUT: jpeg2000 encoder

Metamorphic testing has three requirements:

MT: DWT: concrete SUT: jpeg2000 encoder

Metamorphic testing has three requirements:
● a set of initial inputs (or a generator)
● a relation Ri that can generate follow-up inputs
● a relation Ro that gives the necessary correctness condition

MT: DWT: concrete SUT: jpeg2000 encoder

MT: DWT: relations Ri and Ro

???

MT: DWT: relations Ri and Ro

1. R
i
: Transpose the input image

R
o
: ???

MT: DWT: concrete SUT: jpeg2000 encoder

1. R
i
: Transpose the input image

R
o
: The output components must also be transposed

MT: DWT: concrete SUT: jpeg2000 encoder

1. R
i
: Transpose the input image

R
o
: The output components must also be transposed

2. R
i
: Add a constant to all color values

R
o
: Only the DC components must change

3. R
i
: Invert the color values

R
o
: The color values of the output must be inverted

4. R
i
: Enlarge the input image (“zero-padding”)

R
o
: The output components must be shifted

MT: DWT: concrete SUT: jpeg2000 encoder

1. R
i
: Transpose the input image

R
o
: The output components must also be transposed

2. R
i
: Add a constant to all color values

R
o
: Only the DC components must change

3. R
i
: Invert the color values

R
o
: The color values of the output must be inverted

4. R
i
: Enlarge the input image (“zero-padding”)

R
o
: The output components must be shifted

MT: DWT: concrete SUT: jpeg2000 encoder

Some notes:
● these MRs are very

program-specific
○ domain knowledge!

● some MRs have interesting
properties
○ e.g., MR 1 is commutative!

● MR compositions are effective
in practice

1. R
i
: Transpose the input image

R
o
: The output components must also be transposed

2. R
i
: Add a constant to all color values

R
o
: Only the DC components must change

3. R
i
: Invert the color values

R
o
: The color values of the output must be inverted

4. R
i
: Enlarge the input image (“zero-padding”)

R
o
: The output components must be shifted

MT: DWT: concrete SUT: jpeg2000 encoder

Some notes:
● these MRs are very

program-specific
○ domain knowledge!

● some MRs have interesting
properties
○ e.g., MR 1 is commutative!

● MR compositions are effective
in practice

1. R
i
: Transpose the input image

R
o
: The output components must also be transposed

2. R
i
: Add a constant to all color values

R
o
: Only the DC components must change

3. R
i
: Invert the color values

R
o
: The color values of the output must be inverted

4. R
i
: Enlarge the input image (“zero-padding”)

R
o
: The output components must be shifted

MT: DWT: concrete SUT: jpeg2000 encoder

Some notes:
● these MRs are very

program-specific
○ domain knowledge!

● some MRs have interesting
properties
○ e.g., MR 1 is commutative!

● MR compositions are effective
in practice

Metamorphic testing: practicality

● One of the most effective ways to test real systems
○ especially when combined with a fuzzer for random input

generation

Metamorphic testing: practicality

● One of the most effective ways to test real systems
○ especially when combined with a fuzzer for random input

generation
● Often difficult to apply

○ designing MRs requires domain expertise
○ but easier for some kinds of systems than others

Metamorphic testing: practicality

● One of the most effective ways to test real systems
○ especially when combined with a fuzzer for random input

generation
● Often difficult to apply

○ designing MRs requires domain expertise
○ but easier for some kinds of systems than others

● My advice: always be on the lookout for opportunities to carry out
metamorphic testing
○ great value in terms of increasing your confidence in a system’s

correctness vs effort you need to put in!

Metamorphic testing: practicality

Agenda: remainder of today’s lecture

● Property-based testing
● Metamorphic testing
● Dynamic invariant detection

Dynamic invariant detection: intuition

Observation: programs usually behave correctly

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test

Dynamic invariant detection: intuition

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should

have index == array_len - 1

Dynamic invariant detection: intuition

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should

have index == array_len - 1

Definition: an invariant is a predicate over program expressions that is
true on every execution

Dynamic invariant detection: intuition

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should

have index == array_len - 1

Definition: an invariant is a predicate over program expressions that is
true on every execution
● high-quality invariants can serve as test oracles

Dynamic invariant detection: intuition

Background: forward and backward reasoning

There are two ways to reason about what a program does:

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning:

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, …

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and

reasoning about what must be true after execution

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and

reasoning about what must be true after execution
○ given a precondition, what postcondition(s) are true?

Aside: pre- and postconditons

Aside: pre- and postconditons

Definition: a precondition (to a function) is a condition that must be
true when entering (the function).
● it may (but does not have to) include expectations about the

arguments

Aside: pre- and postconditons

Definition: a precondition (to a function) is a condition that must be
true when entering (the function).
● it may (but does not have to) include expectations about the

arguments

Definition: a postcondition (to a function) is a condition that must be
true when leaving (the function)
● it may (but does not have to) include expectations about the return

value (of the function) or about side-effects

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and

reasoning about what must be true after execution
○ given a precondition, what postcondition(s) are true?

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and

reasoning about what must be true after execution
○ given a precondition, what postcondition(s) are true?

● backward reasoning:

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and

reasoning about what must be true after execution
○ given a precondition, what postcondition(s) are true?

● backward reasoning: knowing a fact that is true after execution, …

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and

reasoning about what must be true after execution
○ given a precondition, what postcondition(s) are true?

● backward reasoning: knowing a fact that is true after execution, and
reasoning about what must be true before execution

Background: forward and backward reasoning

There are two ways to reason about what a program does:
● forward reasoning: knowing a fact that is true before execution, and

reasoning about what must be true after execution
○ given a precondition, what postcondition(s) are true?

● backward reasoning: knowing a fact that is true after execution, and
reasoning about what must be true before execution
○ given a postcondition, what precondition(s) are true?

Pros and cons: forward vs backward reasoning

Forward reasoning: Backward reasoning:

Pros and cons: forward vs backward reasoning

Forward reasoning:
● More intuitive for most people
● Helps understand what will

happen (simulates the code)
● Introduces facts that may be

irrelevant to the goal
● Set of facts may get large
● Takes longer to realize that the

task is hopeless

Backward reasoning:
● Usually more helpful
● Helps understand what should

happen
● Given a specific goal, indicates

how to achieve it
● Given an error, gives a test

case that exposes it

● Given a program location, if we could infer an invariant for that
location, we could have …

Dynamic invariant detection: insight

● Given a program location, if we could infer an invariant for that
location, we could have …
○ Function preconditions (location = entry)
○ Function postconditions (location = exit)
○ Loop invariants (location = loop entry)

Dynamic invariant detection: insight

● Given a program location, if we could infer an invariant for that
location, we could have …
○ Function preconditions (location = entry)
○ Function postconditions (location = exit)
○ Loop invariants (location = loop entry)

Dynamic invariant detection: insight

A loop invariant is an invariant that must hold
at both the start and end of each iteration of
the loop. We’ll come back to this concept
later in the semester, but for now don’t
worry too much about it.

● Given a program location, if we could infer an invariant for that
location, we could have …
○ Function preconditions (location = entry)
○ Function postconditions (location = exit)
○ Loop invariants (location = loop entry)

● Can we do this automatically?

Dynamic invariant detection: insight

● Given a program location, if we could infer an invariant for that
location, we could have …
○ Function preconditions (location = entry)
○ Function postconditions (location = exit)
○ Loop invariants (location = loop entry)

● Can we do this automatically?
● Two insights:

Dynamic invariant detection: insight

● Given a program location, if we could infer an invariant for that
location, we could have …
○ Function preconditions (location = entry)
○ Function postconditions (location = exit)
○ Loop invariants (location = loop entry)

● Can we do this automatically?
● Two insights:

○ An invariant always holds on all executions

Dynamic invariant detection: insight

● Given a program location, if we could infer an invariant for that
location, we could have …
○ Function preconditions (location = entry)
○ Function postconditions (location = exit)
○ Loop invariants (location = loop entry)

● Can we do this automatically?
● Two insights:

○ An invariant always holds on all executions
○ We can detect spurious false invariants

Dynamic invariant detection: insight

● What if we require that the program come equipped with inputs?
○ An indicative workload
○ High-coverage test cases

Dynamic invariant detection: high-level idea

● What if we require that the program come equipped with inputs?
○ An indicative workload
○ High-coverage test cases

● Since an invariant holds on every execution (by definition), any
candidate invariant that is false even once can be tossed out!

Dynamic invariant detection: high-level idea

● What if we require that the program come equipped with inputs?
○ An indicative workload
○ High-coverage test cases

● Since an invariant holds on every execution (by definition), any
candidate invariant that is false even once can be tossed out!

● Plan:

Dynamic invariant detection: high-level idea

● What if we require that the program come equipped with inputs?
○ An indicative workload
○ High-coverage test cases

● Since an invariant holds on every execution (by definition), any
candidate invariant that is false even once can be tossed out!

● Plan:
1. generate many candidate invariants

Dynamic invariant detection: high-level idea

● What if we require that the program come equipped with inputs?
○ An indicative workload
○ High-coverage test cases

● Since an invariant holds on every execution (by definition), any
candidate invariant that is false even once can be tossed out!

● Plan:
1. generate many candidate invariants
2. filter out the false ones by running the tests!

Dynamic invariant detection: high-level idea

● Given:
while b do c

Dynamic invariant detection: naive approach

● Given:
while b do c

● Instrument:
while b do print Inv1; print Inv2; ... ; c

Dynamic invariant detection: naive approach

● Given:
while b do c

● Instrument:
while b do print Inv1; print Inv2; ... ; c

● Then just run the tests and filter out those that are false

Dynamic invariant detection: naive approach

● Given:
while b do c

● Instrument:
while b do print Inv1; print Inv2; ... ; c

● Then just run the tests and filter out those that are false
● What’s wrong with this plan?

Dynamic invariant detection: naive approach

● Given:
while b do c

● Instrument:
while b do print Inv1; print Inv2; ... ; c

● Then just run the tests and filter out those that are false
● What’s wrong with this plan?

○ Hint: how many invariants are there?

Dynamic invariant detection: naive approach

● Given:
while b do c

● Instrument:
while b do print Inv1; print Inv2; ... ; c

● Then just run the tests and filter out those that are false
● What’s wrong with this plan?

○ Hint: how many invariants are there?
○ infinitely many :(

Dynamic invariant detection: naive approach

● Key idea to keep the set of invariants finite: use a set of template
invariants that will likely be useful as oracles

Dynamic invariant detection: templates

● Key idea to keep the set of invariants finite: use a set of template
invariants that will likely be useful as oracles

● For example, given program variables x, y, and z:

Dynamic invariant detection: templates

● Key idea to keep the set of invariants finite: use a set of template
invariants that will likely be useful as oracles

● For example, given program variables x, y, and z:
○ x = c constants x < y ordering
○ x != 0 non-zero (x + y) % b = a math
○ x >= c bounds z = ax + by + c linear
○ y = ax + b linear

Dynamic invariant detection: templates

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

● Key idea to keep the set of invariants finite: use a set of template
invariants that will likely be useful as oracles

● For example, given program variables x, y, and z:
○ x = c constants x < y ordering
○ x != 0 non-zero (x + y) % b = a math
○ x >= c bounds z = ax + by + c linear
○ y = ax + b linear

● At most three variables => finite number of invariants to check

Dynamic invariant detection: templates

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

The Daikon invariant detection algorithm:

Dynamic invariant detection: Daikon

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

The Daikon invariant detection algorithm:
● For every program location:

○ For all triples of in-scope variables:
■ Instantiate templates to obtain candidate invariants
■ Instrument program

Dynamic invariant detection: Daikon

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

The Daikon invariant detection algorithm:
● For every program location:

○ For all triples of in-scope variables:
■ Instantiate templates to obtain candidate invariants
■ Instrument program

● For every test case:
○ Run instrumented program
○ Filter out any falsified candidate invariant

Dynamic invariant detection: Daikon

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

The Daikon invariant detection algorithm:
● For every program location:

○ For all triples of in-scope variables:
■ Instantiate templates to obtain candidate invariants
■ Instrument program

● For every test case:
○ Run instrumented program
○ Filter out any falsified candidate invariant

● Report surviving invariants

Dynamic invariant detection: Daikon

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

The Daikon invariant detection algorithm:
● For every program location:

○ For all triples of in-scope variables:
■ Instantiate templates to obtain candidate invariants
■ Instrument program

● For every test case:
○ Run instrumented program
○ Filter out any falsified candidate invariant

● Report surviving invariants

Dynamic invariant detection: Daikon

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

What’s the running time of the
Daikon algorithm?
● cubic in in-scope variables
● linear in test suite size,
● linear in program size

The Daikon invariant detection algorithm:
● For every program location:

○ For all triples of in-scope variables:
■ Instantiate templates to obtain candidate invariants
■ Instrument program

● For every test case:
○ Run instrumented program
○ Filter out any falsified candidate invariant

● Report surviving invariants

Dynamic invariant detection: Daikon

[Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely program invariants to support program evolution.]

What’s the running time of the
Daikon algorithm?
● cubic in in-scope variables
● linear in test suite size,
● linear in program size

In-class exercise: infer likely invariants

Program: (input= N >0)

i := 0
while i != N:

i := i + 1

In-class exercise: infer likely invariants

Program: (input= N >0)

i := 0
while i != N:

i := i + 1

In-class exercise: infer likely invariants

Invariants to evaluate:
• i=0
• i<0
• i<=0
• i>0
• i>=0
• N=0
• N<0
• N<=0

• N>=0

• N>0

• i==N

• i<N

• i<=N

• i>N

• i>=N

Program: (input= N >0)

i := 0
while i != N:

i := i + 1

Evaluate invariants at program
start, program end, and for the
loop itself (i.e., loop invariants)

In-class exercise: infer likely invariants

Invariants to evaluate:
• i=0
• i<0
• i<=0
• i>0
• i>=0
• N=0
• N<0
• N<=0

• N>=0

• N>0

• i==N

• i<N

• i<=N

• i>N

• i>=N

Program: (input= N >0)

i := 0
while i != N:

i := i + 1

Evaluate invariants at program
start, program end, and for the
loop itself (i.e., loop invariants)

In-class exercise: infer likely invariants

Invariants to evaluate:
• i=0
• i<0
• i<=0
• i>0
• i>=0
• N=0
• N<0
• N<=0

• N>=0
• N>0
• i==N

• i<N

• i<=N

• i>N

• i>=N

i is not in scope at the
start of the program,
so we don’t need to
evaluate invariants

involving i

Program: (input= N >0)

i := 0
while i != N:

i := i + 1

Evaluate invariants at program
start, program end, and for the
loop itself (i.e., loop invariants)

In-class exercise: infer likely invariants

Invariants to evaluate:
• i=0
• i<0
• i<=0
• i>0
• i>=0
• N=0
• N<0
• N<=0

• N>=0
• N>0
• i==N
• i<N

• i<=N
• i>N

• i>=N

Program: (input= N >0)

i := 0
while i != N:

i := i + 1

Evaluate invariants at program
start, program end, and for the
loop itself (i.e., loop invariants)

In-class exercise: infer likely invariants

Invariants to evaluate:
• i=0
• i<0
• i<=0
• i>0
• i>=0
• N=0
• N<0
• N<=0

• N>=0

• N>0

• i==N

• i<N

• i<=N
• i>N

• i>=N

in class we evaluated
each invariant at both

the start and end of
the loop

Dynamic invariant detection: limitations

● False Negatives!

Dynamic invariant detection: limitations

● False Negatives!
○ If your invariant does not fit a template, Daikon cannot find it

■ Example: l + u – 1 <= 2p <= l + u (binary search pivot)

Dynamic invariant detection: limitations

● False Negatives!
○ If your invariant does not fit a template, Daikon cannot find it

■ Example: l + u – 1 <= 2p <= l + u (binary search pivot)
● Nothing prevents a Daikon-like algorithm from finding these

Dynamic invariant detection: limitations

● False Negatives!
○ If your invariant does not fit a template, Daikon cannot find it

■ Example: l + u – 1 <= 2p <= l + u (binary search pivot)
● Nothing prevents a Daikon-like algorithm from finding these

○ but templates are absolutely necessary to permit Daikon to
scale
■ and each additional template bloats the complexity

(especially if it involves more variables!)

Dynamic invariant detection: limitations

● False positives from limited input

Dynamic invariant detection: limitations

● False positives from limited input
○ if you only test your sorting program on the input [4, 2, 3,],

Daikon will learn the invariant output[0] = 2

Dynamic invariant detection: limitations

● False positives from limited input
○ if you only test your sorting program on the input [4, 2, 3,],

Daikon will learn the invariant output[0] = 2
○ but as we’ve learned, making high-coverage, high-adequacy

test suites is easy, right? (haha, no)

Dynamic invariant detection: limitations

● False positives from limited input
○ if you only test your sorting program on the input [4, 2, 3,],

Daikon will learn the invariant output[0] = 2
○ but as we’ve learned, making high-coverage, high-adequacy

test suites is easy, right? (haha, no)
● False positives from linguistic coincidence

Dynamic invariant detection: limitations

● False positives from limited input
○ if you only test your sorting program on the input [4, 2, 3,],

Daikon will learn the invariant output[0] = 2
○ but as we’ve learned, making high-coverage, high-adequacy

test suites is easy, right? (haha, no)
● False positives from linguistic coincidence

○ e.g., ptr % 4 == 0 or x <= MAX_INT

Dynamic invariant detection: limitations

● False positives from limited input
○ if you only test your sorting program on the input [4, 2, 3,],

Daikon will learn the invariant output[0] = 2
○ but as we’ve learned, making high-coverage, high-adequacy

test suites is easy, right? (haha, no)
● False positives from linguistic coincidence

○ e.g., ptr % 4 == 0 or x <= MAX_INT
○ not false, but not related to correctness (or useful as an oracle)

■ these are true of any program!

Dynamic invariant detection: limitations

● Two parts
○ run Daikon on a data structure of your choice
○ design some metamorphic relations for a real software system

of your choice

HW5

● Two parts
○ run Daikon on a data structure of your choice
○ design some metamorphic relations for a real software system

of your choice
● This homework expects you to make more decisions on your own

than prior homeworks
○ that is, there are fewer guard rails
○ my advice: if you get stuck because of a difficulty with a system

that you picked, remember that you can go back and choose a
different system! (The course staff won’t ever need to know!)

HW5

