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“I realized that it would be very time consuming and also
difficult for me to manually collect a high coverage test suite...| wrote a
script that would select an image if it increases the coverage value”

e thisisan excellent approach to a problem like this!
o always consider automation if a task is repetitive and manual
o this student treated coverage as a fitness function, much like a
mutational fuzzer (more details later)



Fuzzing: agenda

story time

mutational fuzzing

grammar-based fuzzing

fuzzing in the real world

start symbolic execution (if there is enough time left)
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Story Time

e oOna in Wisconsinin 1988...
e a CSprofessor was connected to the computer in
his office

e thethunderstorm outside caused “fuzz” on the line
o this was a well-known problem in the days of telephones
o onaphonecall, you'd just hear static
e the fuzz caused many of the Unix utilities that the professor was
using to crash
o insight: just a few bits of random inputs are enough!
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e Asahuman, often choosing good test inputs is the hardest part
of writing a test

e For acomputer, that’s not true: computers can pick inputs very
fast (given some policy)

e Key problem: which inputs should we pick?
o Lens of Statistics: choose inputs “at random”
o Lens of : choose inputs that will maximize coverage

[Modern fuzzers combine ]

these two ideas.
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e What are all the inputs to a test?
o Many programs (especially student programs) read from a file
or stdin...
o Butwhatelseis“readin” by a program and may influence its
behavior?



Test data

e What are all the inputs to a test?

Rt : le
NVhat else besides “input” can influence program behavior? \

e User Input (e.g., GUI)
e Environment Variables, Command-Line Args
e Scheduler Interleavings
e Datafrom the Filesystem
o User configuration, data files
e Datafrom the Network

\ o Server and service responses /
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What is fuzzing?

Definition: fuzzing (or fuzz testing) is an automated testing technique

that involves providing ra?{

and monitoring for violati Truly-random input example:
] "IT7#S"F#0=)$;%6%;>638:*>80"=</> ("
e typical oracle:

o but any other implicit oracle will work (we’'ll discuss more
implicit oracles in a few weeks)
e thesimplest fuzzers use truly-random input
o but that rarely works well in practice except to test the code
that reads input (why?)
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Safely reading input

e originally, fuzzing was most effective for detecting bugs in
input-handling code
o thatis, code that might be exposed to the outside
o such code shouldn’t crash under any circumstances
m even when presented with invalid input!
e however, most code in most programs is not input-handling code
o because most programs accept inputin a
o implication: fuzzing with random input produces tests that
have low coverage
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e Asanexample, consider a program that accepts a URL:

scheme://netloc/path?query#fragment

scheme is the protocol to be used, including http, https, ftp...
netlocisthe host to connectto, e.g., www.google.com
path is the path on that host

query is a list of key/value pairs, such as g=fuzzing
fragment is a marker for a location in the retrieved document
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scheme://netloc/path?query#fragment

scheme is the protocol to be used, including http, https, ftp...
netlocisthe host to connectto, e.g., www.google.com
path is the path on that host

query is a list of key/value pairs, such as g=fuzzing
fragment is a marker for a location in the retrieved document
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Achieving high coverage

e For programs with , random input generation is
insufficient to achieve high coverage
o we need away to generate inputs that pass the program’s
input validation
e Most of today’s lecture will be about various ways to do that:
o by using seed inputs from the user to help
o by taking advantage of a known grammar for the inputs
o by using program analysis to find on the input that
will allow it to pass various checks



Review: genetic algorithms



Review: genetic algorithms

e genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem



Review: genetic algorithms

e genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
o maintain a fixed-size population of possible solutions



Review: genetic algorithms

e genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
o maintain a fixed-size population of possible solutions
o define aset of that combine (parts of)
solutions from the population to create new solutions



Review: genetic algorithms

e genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
o maintain a fixed-size population of possible solutions
o define aset of that combine (parts of)
solutions from the population to create new solutions
o apply the mutation operators to the current population to a
create a new “generation” of solutions



Review: genetic algorithms

e genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem

O

O

maintain a fixed-size population of possible solutions

define a set of that combine (parts of)
solutions from the population to create new solutions
apply the mutation operators to the current populationto a
create a new “generation” of solutions

use a fitness function to prune the starting population + the
new generation back down to the fixed population size



Review: genetic algorithms

e genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem

O

O

maintain a fixed-size population of possible solutions

define a set of that combine (parts of)
solutions from the population to create new solutions
apply the mutation operators to the current populationto a
create a new “generation” of solutions

use a fitness function to prune the starting population + the
new generation back down to the fixed population size
repeat until some stopping condition
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e genetic algorithms are a kind of
o typically, they work best when the space of possible solutions
is very large
e agood fithess function is critical to an effective genetic algorithm
o what are some properties of a good fitness function?
m continuous
m monotonic (or at least with few local optima)
m cheaptoevaluate
o what might make a good fitness function for a fuzzer?
m coverage!
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e typically, a mutational fuzzer is starts with an initial population of
seed inputs provided by the user
o for example, in our URL parsing example, these would be URLs

that we know are valid

e thechoice of seed inputs is one of the most important inputs to
the fuzzer
o ‘“garbagein, garbage out” is very true for this kind of fuzzer
o can also significantly impact performance
o HWS3 hint: choose seed images carefully
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e you might think that the choice of mutation operator would also
have a big impact on performance
o but, surprisingly, techniques like bit flipping or random string
mutation WOI".k J.USt fine ( ~
m aslongasitischeapy A mutation is one that '
input, we can create 4 does not impact fitness. E.g.,
e using low-level mutations mgq goggle.comisalso avalid URL.
mutants into higher-order T — rpores )
o our genetic algorithm lets us do this easily, because
mutations naturally accumulate in the population
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e we caneasily build a fuzzer that uses line/statement coverage as
its fitness function

e however, statement coverage is actually a bit too coarse-grained
in practice

e practical fuzzers like AFL (used in HW3) use branch or path
coverage

o AFLs fitness function rewards an input for , even
if that path has the same branch coverage
m thismeanse.g., that an input that causes aloop to go
around is rewarded
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e consider a new generation of test inputs containing:
o one input that covered a new branch or path that was created
in the last round of mutation
o n-1inputs that have been in the population for at least a few
generations
e Wwhich input should we mutate?
o intuitively, we know that the new input should be mutated
more often in the next generation
o we implement this intuition via power schedules
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e apower schedule distributes fuzzing time among the seeds in the

population
o eachseed is assigned an energy value
m theodds of mutating a seed are proportional to its energy

o theusual policy is:
m newly-discovered seeds start with high energy
m when aseedis mutated to produce an input that increases
fitness, its energy increases
m when aseed is mutated, but doesn’'t produce an input that

increases fitness, its energy decreases
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Mutational fuzzing: power schedules

® Wwecanuse to assign energy
e examples:
o change the power schedule so that seeds that exercise
unusual paths have more energy
m “unusual” paths are those rarely covered by other seeds
m thistechnique can dramatically improve the fuzzer’s
performance
o change the power schedule to assign energy based on
distance to some objective
m calleddirected fuzzing



Mutational fuzzing: putting it all together

e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it



Mutational fuzzing: putting it all together

e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)



Mutational fuzzing: putting it all together

e let’s consider the URL parsing example again and walk through

how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)

Population of inputs:
https://www.google.com/

https://web.njit.edu/~mjk76/
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC51ZHU

http://3.149.230.63:50000

o
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e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)
o initially, each seed has equal energy
m choose aninput at random, weighted by energy
m mutate that input by changing a random character
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e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)
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e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)
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Mutational fuzzing: putting it all together

e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)
o initially, each seed has equal energy
m choose aninput at random, weighted by energy
m mutate that input by changing a random character
m evaluate whether coverage increases
e suppose that it does
m repeatthe process...



Mutational fuzzing: putting it all together

e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)
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Mutational fuzzing: putting it all together

e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)
o initially, each seed has equal energy
m choose aninput at random, weighted by energy
m mutate that input by changing a random character
m evaluate whether coverage increases
m repeatthe process...
o create a new generation and then start over



Mutational fuzzing: putting it all together

e let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
o we provide a set of seed inputs (valid and invalid URLSs)
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Grammar-based fuzzing

e Mutating seed inputs is effective in practice to find inputs that are
“near” the seeds
e But usually we know a lot more about a program'’s input format!

\

scheme:/ /netloC(Key idea: provide that structure
to the fuzzer, and only select
e Inour previous example, the| inputs that are valid!

each characterinthe URL - J
e But we know alot more about how URLSs are structured!
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Grammar-based fuzzing: review of grammars

e A formal grammar describes which strings from an alphabet of a
formal language are valid according to the language's syntax.

[Wikipedial

e For example, hereis agrammar for URLs:
URL=S:/N/P? scheme://netloc/path?query#fragment
S =http | https | ftp | ...
N = any string
P=anystring/P|P?Q]¢
Q=anystring| Q#F
F = any string
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Grammar-based fuzzing

Definition: a grammar-based fuzzer augments the input generation
part of a fuzzer with a formal grammar, which is used to produce new
valid inputs to the target program
e i.e,theseed inputs arereplaced with the grammar, and the
population is created by sampling from the grammar.
e mutation changes from “change a random character” or similar to
“change a part of the for aterm”
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Grammar-based fuzzing: usefulness

e grammar-based fuzzing is useful for programs with
highly-structured, well-defined inputs
o e.g.,compilers, APls, GUI applications

e for such programs, providing a grammar can dramatically improve
fuzzing efficiency
o downside: someone usually has to write the grammar
o but thisis an area of active research!
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grammar-based fuzzing

fuzzing in the real world

start symbolic execution (if there is enough time left)
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Fuzzing in practice

e Fuzzingis
o AFL (most famous coverage-guided fuzzer) was built at Google
o o0ss-fuzz project fuzzes many important open-source projects
constantly using industry resources
e Fuzzingis machine-intensive
o most inputs aren’t useful (grammars can help)
e Fuzzing finds real bugs
o especially useful for finding security bugs
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Fuzzing in practice: security

e Why is fuzzing useful for finding security bugs?
o most common cause of vulnerabilities: buffer overflows

e |tisstraightforward to augment a fuzzer to detect buffer
overflows in addition to crashes
o ~doubles running time for most C programs, but fuzzing is

o fuzzers have detected many important security issues
m e.g., Heartbleed in OpenSSL



Fuzzing: agenda

story time

mutational fuzzing
grammar-based fuzzing
fuzzing in the real world

ot cvmnbol ion it there] e tiemetofs
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Today’s in-class: HW3

e you'll use the AFL fuzzer to generate tests for libpng (same target
as last week’s homework)

e warning: AFL can take along time to achieve the needed coverage
(especially in a VM)
o good news: it can run by itself, so you can leave it overnight
o bad news: you can’t start this homework the day before it’s due

e note: thereis no autograder for this assignment. You only need to
turn in a written report (but to write the report, you'll need data
from AFL that you can only get by running it on libpng)



