
DevOps (2/2)
Martin Kellogg

DevOps (2/2)

Today’s agenda:

● Reading Quiz
● The service reliability hierarchy + SLAs/targets
● Monitoring
● Incident/emergency response
● Post-mortems + learning from failure

DevOps (2/2)

Today’s agenda:

● Reading Quiz
● The service reliability hierarchy + SLAs/targets
● Monitoring
● Incident/emergency response
● Post-mortems + learning from failure

Announcements:
● if you haven’t yet had your sprint

3 retro meeting, do so in the next
~24 hours

● reading for Thursday posted (it’s
short, sorry I forgot until today)

● next Tuesday: panel of engineers
○ Canvas assignment to submit

questions (at least 1 required
for participation points)

● exam next Thursday
○ practice exam “soon”

DevOps (2/2)

Today’s agenda:

● Reading Quiz
● The service reliability hierarchy + SLAs/targets
● Monitoring
● Incident/emergency response
● Post-mortems + learning from failure

Reading quiz: DevOps 2

Q1: TRUE or FALSE: if an on-call engineer fails to properly deal with
an incident, the post-mortem about the incident should name and
shame them for messing up

Q2: Which of the following does Dan Luu advocate for when making
a high-risk change?
A. having multiple people watch or confirm the operation
B. having ops people standing by in case of disaster
C. automating the change instead of letting a human do it

Reading quiz: DevOps 2

Q1: TRUE or FALSE: if an on-call engineer fails to properly deal with
an incident, the post-mortem about the incident should name and
shame them for messing up

Q2: Which of the following does Dan Luu advocate for when making
a high-risk change?
A. having multiple people watch or confirm the operation
B. having ops people standing by in case of disaster
C. automating the change instead of letting a human do it

Reading quiz: DevOps 2

Q1: TRUE or FALSE: if an on-call engineer fails to properly deal with
an incident, the post-mortem about the incident should name and
shame them for messing up

Q2: Which of the following does Dan Luu advocate for when making
a high-risk change?
A. having multiple people watch or confirm the operation
B. having ops people standing by in case of disaster
C. automating the change instead of letting a human do it

DevOps (2/2)

Today’s agenda:

● Reading Quiz
● The service reliability hierarchy + SLAs/targets
● Monitoring
● Incident/emergency response
● Post-mortems + learning from failure

Achieving reliability

● DevOps teams usually have a goal: make their service reliable

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be
correct

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be
correct
○ so, availability is the first thing we need to worry about when

trying to make a service reliable

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)
■ throughput (how many requests can you serve per hour)

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)
■ throughput (how many requests can you serve per hour)
■ durability (how much of your data can you still retrieve

after a fixed time has passed)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to an
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to an
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to an
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations
a. optionally, publish these as a service level agreement (“SLA”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to an
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations
a. optionally, publish these as a service level agreement (“SLA”)

Sometimes SLAs are written into
contracts with your customers!

Aside: subtleties in metrics

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”
○ The latter may hide much higher instantaneous request rates

in bursts that last for only a few seconds

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”
○ The latter may hide much higher instantaneous request rates

in bursts that last for only a few seconds

E.g., consider two systems:
● system A serves 200

requests in every
even-numbered second, and
0 requests in every
odd-numbered second

● system B serves 100
requests every second

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

purple is
50th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

green is
85th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

red is
95th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

blue is
99th %
latency

Advice: choosing metrics

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)
● avoid absolutes

○ e.g., don’t promise “infinite scaling” or “100% availability”

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)
● avoid absolutes

○ e.g., don’t promise “infinite scaling” or “100% availability”
● include as few metrics as possible while still covering what matters

○ avoid metrics that aren’t useful in arguing for priorities

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

● How do we think about how to do this?

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

● How do we think about how to do this?
○ insight: there is a hierarchy of system components that need to

be working well in order to meet an SLA

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Maslow’s Hierarchy of Needs

[Image credit: https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571]

https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

our focus in
the rest of
this class

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

our focus
today

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

DevOps (2/2)

Today’s agenda:

● Reading Quiz
● The service reliability hierarchy + SLAs/targets
● Monitoring
● Incident/emergency response
● Post-mortems + learning from failure

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working
● you want to be aware of problems before your users notice them

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working
● you want to be aware of problems before your users notice them

Monitoring is why logging is so
important in practice: if your
monitoring depends on your logging
framework, it is a very important
component of your service!

Monitoring: alerting

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

● email alert = alert sent to an email alias for a human to respond to
during their next work day

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

● email alert = alert sent to an email alias for a human to respond to
during their next work day

● page = alert send directly to a human (via a pager)

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

■ (less ideal but still good: you get paged if and only if there is
an emergency)

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

■ (less ideal but still good: you get paged if and only if there is
an emergency)

● Example from earlier: “cleaning up a service’s alerting config” =
fixing what corresponds to pages vs email alerts vs tickets

Monitoring: being on-call

● Being on-call is a major source of toil in most services

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

● The person on-call typically assumes all operational burden for the
service for the duration of their on-call shift

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

● The person on-call typically assumes all operational burden for the
service for the duration of their on-call shift
○ but can (and should) page other team members in an

emergency

DevOps (2/2)

Today’s agenda:

● Reading Quiz
● The service reliability hierarchy + SLAs/targets
● Monitoring
● Incident/emergency response
● Post-mortems + learning from failure

Emergency Response

● So you’re the on-call, and you get a page. What happens next?

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

● What constitutes an emergency?

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

● What constitutes an emergency?
○ depends on your service, but typically these qualify:

■ big % of user requests aren’t getting responses
■ big % of user requests have really high latency
■ lots of your servers are unavailable/down (even if users

aren’t yet impacted)

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)
○ often, playbooks have specific guidance for particular alerts

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)
○ often, playbooks have specific guidance for particular alerts
○ playbooks also have a psychological function: prevent panic

Emergency Response: best practices

Emergency Response: best practices

● Know your priorities:

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

○ preserve evidence: save logs, etc., for post-mortem analysis

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

○ preserve evidence: save logs, etc., for post-mortem analysis
● Practice makes perfect

○ don’t wait for an actual emergency to find out if your playbook
works: simulate one instead!

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

■ make sure to commit things that might cause incidents if
they change to version control, e.g., your config files

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

■ make sure to commit things that might cause incidents if
they change to version control, e.g., your config files

Easy rollbacks are the motivation for
“infrastructure-as-code”: if your
infrastructure configuration is in
version control, it’s easy to go back to
the last working one!

DevOps (2/2)

Today’s agenda:

● Reading Quiz
● The service reliability hierarchy + SLAs/targets
● Monitoring
● Incident/emergency response
● Post-mortems + learning from failure

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

○ “blameless” = find the faults in the process, not the people

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

○ “blameless” = find the faults in the process, not the people
○ “actionable” = give specific guidance for how to avoid the

problem in the future (these become tickets)

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Historically, software engineering
adopted a lot of “blameless culture”
from aviation and medicine, where
mistakes can be fatal! We might not
have the same stakes, but all complex
systems are similar in a lot of ways.

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong
○ also enables engineers on different teams to learn from each

others’ mistakes

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]and 5 more…

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

this goes on for several pages!
● shows importance of keeping records

https://sre.google/sre-book/example-postmortem/

DevOps: takeaways

● Many modern engineering organizations prefer to combine, rather
than separate, development and operations
○ this works best when most systems are services

● Major benefit of DevOps approach is elimination of toil
○ developers are best at building automation

● Planning for incidents/emergencies is critical
○ Monitoring allows on-call to quickly identify problems
○ Have a plan (ideally, in a playbook) for incidents
○ Use post-mortems to learn from prior emergencies

■ not to blame people for causing them!

