DevOps (2/2)

Martin Kellogg

DevOps (2/2)

Today’s agenda:

Reading Quiz

The service reliability hierarchy + SLAs/targets
Monitoring

Incident/emergency response

Post-mortems + learning from failure

Announcements: \
DevOps (2/2) /o if you haven’t yet had your sprint

3 retro meeting, do so in the next
Today’s agenda: ~24 hours .
e reading for Thursday posted (it’s
e Reading Quiz short, sorry | forgot until today)
e Theservice reliability hi{ @ next Tuesday: panel of engineers
e Monitoring o Canvas assignment to submit
: questions (at least 1 required
e Incident/emergency res| A :
for participation points)
o

_ + '
Post-mortems +learning o - Hext Thursday
o practice exam “soon”

DevOps (2/2)

Today’s agenda:

Reading Quiz

The service reliability hierarchy + SLAs/targets
Monitoring

Incident/emergency response

Post-mortems + learning from failure

Reading quiz: DevOps 2

Q1: TRUE or FALSE: if an on-call engineer fails to properly deal with
an incident, the post-mortem about the incident should name and

shame them for messing up

Q2: Which of the following does Dan Luu advocate for when making
a high-risk change?

A. having multiple people watch or confirm the operation

B. having ops people standing by in case of disaster

C. automating the change instead of letting a human do it

Reading quiz: DevOps 2

Q1: TRUE or FALSE: if an on-call engineer fails to properly deal with
an incident, the post-mortem about the incident should name and

shame them for messing up

Q2: Which of the following does Dan Luu advocate for when making
a high-risk change?

A. having multiple people watch or confirm the operation

B. having ops people standing by in case of disaster

C. automating the change instead of letting a human do it

Reading quiz: DevOps 2

Q1: TRUE or FALSE: if an on-call engineer fails to properly deal with
an incident, the post-mortem about the incident should name and

shame them for messing up

Q2: Which of the following does Dan Luu advocate for when making
a high-risk change?
A. having multiple people watch or confirm the operation
B. having ops people standing by in case of disaster
automating the change instead of letting a humando it

DevOps (2/2)

Today’s agenda:

Reading Quiz

The service reliability hierarchy + SLAs/targets
Monitoring

Incident/emergency response

Post-mortems + learning from failure

Achieving reliability

e DevOps teams usually have a goal: make their service reliable

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:
e (i.e., when a client calls it, it responds)

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:

o (i.e., when a client calls it, it responds)

o (i.e., client requests get the right results)

Achieving reliability

e DevOps teams usually have a goal: make their service reliable

e areliableserviceis:
o (i.e., when a client calls it, it responds)
o (i.e., client requests get the right results)
e thesetwo properties are related: an unavailable service cannot be

correct

Achieving reliability

e DevOps teams usually have a goal: make their service reliable
e areliableserviceis:

e (i.e., when a client calls it, it responds)
o (i.e., client requests get the right results)

e thesetwo properties are related: an unavailable service cannot be
correct

o so, availability is the first thing we need to worry about when
trying to make a service reliable

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:
m latency (time it takes to serve client requests)

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:
m latency (time it takes to serve client requests)
m throughput (how many requests can you serve per hour)

Reliability: setting expectations

e Todetermine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
o is often a good metric to start with
o other metrics will depend on the of “correct” in your
service’s context. Possible metrics:
m latency (time it takes to serve client requests)
m throughput (how many requests can you serve per hour)
m durability (how much of your data can you still retrieve
after a fixed time has passed)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics
a. it might not be possible to match each objective to an
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1.
2.

decide what your users care about (call these “objectives”)

map those objectives to one or more metrics

a. it might not be possible to match each objective to an
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

define the levels of those metrics that your service

order to meet user expectations

.in

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1.
2.

decide what your users care about (call these “objectives”)

map those objectives to one or more metrics

a. it might not be possible to match each objective to an
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

define the levels of those metrics that your service

order to meet user expectations

a. optionally, publish these as a (“

.in

")

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1.
2.

decide what your users care about (call these “objectives”)
map those objectives to one or more metrics

a. itmight not be possible tp_|:rJa.trJ3_ea_r_|3_Q.b.i_%tiALitQ_anﬁ

easy-to-collect metrics.
approximate the object

define the levels of those ma_

Sometimes SLAs are written into
contracts with your customers!

v

order to meet user expectations
a. optionally, publish these as a (“

")

in

Aside: subtleties in metrics

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”
o even this apparently straightforward measurement implicitly
aggregates data over the measurement window

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”
o even this apparently straightforward measurement implicitly
aggregates data over the measurement window
e We need to consider questions like “Is the measurement obtained
once a second, or by averaging requests over a minute?”

Aside: subtleties in metrics

e For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.
e e.g. consider “the number of requests per second served”
o even this apparently straightforward measurement implicitly
aggregates data over the measurement window
e We need to consider questions like “Is the measurement obtained
once a second, or by averaging requests over a minute?”
o The latter may much higher instantaneous request rates
in bursts that last for only a few seconds

Aside: subtleties in metrics

e For simplicity and usability, wég., consider two systems: \
measurements. This needstf ® system A serves 200

e e.g., consider “the numbero requests in every
. even-numbered second, and
o even this apparently str{

O requests in every
aggregates data over th odd-numbered second

e Weneedto consider questi{ o gsystem B serves 100 d
once a second, or by averagi requests every second
o The latter may much Mgrmermstarmaneous Tequestrates

in bursts that last for only a few seconds

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages
o this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

milliseconds
- N

purpleis
+— 50th %
latency

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

‘ redis
-+ 95th %
latency

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Aside: subtleties in metrics

e |tisbetter toview metrics as (as in statistics) rather
than as averages

o this avoids hiding details like the example on the last slide

| - blue is
99th %
latency

milliseconds
- N

1
08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Advice: choosing metrics

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need
e keepitsimple
o SLAs, especially, should avoid mentioning complex
aggregations of metrics (which are hard to reason about)

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need
e keepitsimple
o SLAs, especially, should avoid mentioning complex
aggregations of metrics (which are hard to reason about)
e avoid absolutes
o e.g., don't promise “infinite scaling” or “100% availability”

Advice: choosing metrics

e don't pick target metrics based on current system performance
o thisjust enshrines the status quo
o instead, focus on what your users need
e keepitsimple
o SLAs, especially, should avoid mentioning complex
aggregations of metrics (which are hard to reason about)
e avoid absolutes
o e.g., don't promise “infinite scaling” or “100% availability”
e includeas as possible while still covering what matters
o avoid metrics that aren’t useful in arguing for priorities

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!
o Then, make sure that those metrics actually look good.

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!
o Then, make sure that those metrics actually look good.
e How do we think about how to do this?

Reliability: meeting expectations

e Once we have defined an SLA (internally or externally), how do we
meet it?
o Easy way to demonstrate that we're meeting an SLA: collect
the metrics in the SLA!
o Then, make sure that those metrics actually look good.
e How do we think about how to do this?
o insight: thereisa of system components that need to
be working well in order to meet an SLA

Service Reliability Hierarchy

Product
e analogy to Maslow’s

“Hierarchy of Needs” for / LB BE \
humans / Capacity Planning \

/ Testing + Release procedures \
/ Postmortem / Root Cause Analysis \

/ Incident Response \
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Maslow’s Hierarchy of Needs

Self-actualization
desire to become the most that one can be

Esteem

respect, self-esteem, status, recognition, strength, freedom

Safety needs

personal security, employment, resources, health, property

Physiological needs

air, water, food, shelter, sleep, clothing, reproduction

Maslow's hierarchy of needs

[Image credit: https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571 |

https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / Dexelopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |€V€|, / Postmortem / Root Cause Analysis \
achieving the higher level / gt Respone \
becomes a lot harder
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / Dexelopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |€V€|, / Postmortem / Root Cause Analysis \
achieving the higher level / gt Respone \
becomes a lot harder
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / Dexelopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |eve| / Postmortem / Root Cause Analysis \
achieving the higher level [ildentkesonee \
becomes a lot harder g
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

, Product
e analogy to Maslow’s
“Hierarchy of Needs” for / evclopment \
humans / Capacity Planning \
e justlikein Maslow’s
. . . . / Testing + Release procedures \
hierarchy, if there is a serious
d eﬁ ciency in a |OW€F |€V€|, / Postmortem / Root Cause Analysis \
achieving the higher level / gt Respone \
becomes a lot harder
/ [Monitoring] \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

DevOps (2/2)

Today’s agenda:

Reading Quiz

The service reliability hierarchy + SLAs/targets
Monitoring

Incident/emergency response

Post-mortems + learning from failure

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

e essentially, monitoring is responsible for collecting your metrics

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

e essentially, monitoring is responsible for collecting your metrics
e without monitoring, you have no way to tell whether the service is

even working

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server

lifetimes

e essentially, monitoring is responsible for collecting your metrics
e without monitoring, you have no way to tell whether the service is

even working
e you want to be aware of problems before your users notice them

Monitoring

[Monitoring is why IS so)
Definition: monitoring is colle| |mpqrtapt in practice: if your ,
monitoring depends on your logging

displaying real-time quantital . o\ ork itis a very important
counts and types, error cou nt\component of your service!)
lifetimes

e essentially, monitoring is responsible for collecting your metrics
e without monitoring, you have no way to tell whether the service is

even working
e you want to be aware of problems before your users notice them

Monitoring: alerting

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email

alias, or a pager

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email

alias, or a pager

e tickets = alertto a bug or ticket queue, which a human will
hopefully get to eventually

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

e tickets = alertto a bug or ticket queue, which a human will

hopefully get to eventually
e email alert = alert sent to an email alias for a human to respond to

during their next work day

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

e tickets = alertto a bug or ticket queue, which a human will
hopefully get to eventually

e email alert = alert sent to an email alias for a human to respond to
during their next work day

e page = alert send directly to a human (via a pager)

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”
e \Whenyou are the on-call for a service, any pages about that
service go to you

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you
o even inthe middle of the night!

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you
o even in the middle of the night!

e Getting paged should be an event

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you

o even in the middle of the night!
e Getting paged should be an event
o ideally, pages correspond 1:1 with emergencies

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”

e \Whenyou are the on-call for a service, any pages about that
service go to you

o even in the middle of the night!
e Getting paged should be an event
o ideally, pages correspond 1:1 with emergencies

m (lessideal but still good: you get paged if and only if there is
an emergency)

Monitoring: being on-call

e A major part of modern DevOps is being “on-call”
e \Whenyou are the on-call for a service, any pages about that
service go to you
o even inthe middle of the night!
e Getting paged should be an event
o ideally, pages correspond 1:1 with emergencies
m (lessideal but still good: you get paged if and only if there is
an emergency)
e Example from earlier: “cleaning up a service’s alerting config” =
fixing to pages vs email alerts vs tickets

Monitoring: being on-call

e Beingon-call is a major source of toil in most services

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call
o e.g.,daily, weekly, whatever
o everyone working on the service should be in this rotation!

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call
o e.g.,daily, weekly, whatever
o everyone working on the service should be in this rotation!
e The personon-call typically assumes all operational burden for the
service for the duration of their on-call shift

Monitoring: being on-call

e Beingon-call is a major source of toil in most services
o apage about a non-emergency is one of the worst forms of toil,
because it forces you to react
e For thisreason, most teams who is on-call
o e.g.,daily, weekly, whatever
o everyone working on the service should be in this rotation!
e The personon-call typically assumes all operational burden for the
service for the duration of their on-call shift
o butcan () page other team members in an
emergency

DevOps (2/2)

Today’s agenda:

Reading Quiz

The service reliability hierarchy + SLAs/targets
Monitoring

Incident/emergency response

Post-mortems + learning from failure

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”
o astheon-call, you arein charge in an emergency by default

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”
o astheon-call, you arein charge in an emergency by default
e \What constitutes an emergency?

Emergency Response

e Soyou'’re the on-call, and you get a page. What happens next?
o “emergency response”
o astheon-call, you arein charge in an emergency by default
e \What constitutes an emergency?
o depends on your service, but typically these qualify:
m big % of user requests aren’t getting responses
m big % of user requests have really high latency
m lots of your servers are unavailable/down (even if users
aren’'t yet impacted)

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
o playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”
e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
o playbooks are built up over a service’s lifetime (i.e., they record
how previous incidents might have been avoided or mitigated)
o often, playbooks have specific guidance for particular alerts

Emergency Response: have a plan

e An emergency occurs when the team hasn'’t put a plan
in place beforehand about what to do in that situation
o unmanaged emergencies are typically hard to recover from
o “plans are useless, but planning is indispensable”

e Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
o playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)

o often, playbooks have specific guidance for particular alerts
o playbooks also have a psychological function: prevent panic

Emergency Response: best practices

Emergency Response: best practices

e Know your priorities:

Emergency Response: best practices

e Know your priorities:
o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)

Emergency Response: best practices

e Know your priorities:
o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)
o restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

Emergency Response: best practices

e Know your priorities:
o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)
o restore service: get the service back to a healthy state, even if
you aren’t sure about the cause (e.g., by rolling back recent
changes)

o : save logs, etc., for post-mortem analysis

Emergency Response: best practices

e Know your priorities:

o damage control: take proactive steps to prevent the incident
from becoming worse (e.g., remove unnecessary traffic)

o restore service: get the service back to a healthy state, even if
you aren’t sure about the cause (e.g., by rolling back recent
changes)

o : save logs, etc., for post-mortem analysis

e Practice makes perfect

o don’t wait for an actual emergency to find out if your playbook

works: simulate one instead!

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o so, to fix the incident, we should undo the change

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o 5o, to fix the incident, we should undo the change

e The needtoroll back has important implications:

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o 5o, to fix the incident, we should undo the change
e The needtoroll back has important implications:
o avoid changes that (“two-way doors”)

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o 5o, to fix the incident, we should undo the change
e The needtoroll back has important implications:
o avoid changes that (“two-way doors”)
o your version control system is your friend here!

Emergency Response: rolling back

e One of the most important techniques in emergency response is
rolling back to the last known working state
o keyidea: most emergencies are caused by some change
o so, to fix the incident, we should undo the change
e The needtoroll back has important implications:
o avoid changes that (“two-way doors”)
o your version control system is your friend here!
m make sure to commit things that might cause incidents if
they change to version control, e.g., your

Emergency Response: rolling back

e One of the most importar]
rolling back to the last kn
o key idea: most emerge
o so,to fix the incident,

KEasy rollbacks are the motivation for)
“infrastructure-as-code”: if your
infrastructure configurationisin
version control, it's easy to go back to

\ the last working one! Y,

e The need toroll back has important implications:

o avoid changes that

(“two-way doors”)

o your version control system is your friend here!
m make sure to commit things that might cause incidents if
they change to version control, e.g., your

DevOps (2/2)

Today’s agenda:

e Reading Quiz

e Theservice reliability hierarchy + SLAs/targets
e Monitoring

e |Incident/emergency response

e Post-mortems + learning from failure

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is awritten record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)

is awritten record of an incident, its impact, the actions taken to

mitigate or resolve it, the root cause(s), and the follow-up actions to

prevent the incident from recurring

e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)

is awritten record of an incident, its impact, the actions taken to

mitigate or resolve it, the root cause(s), and the follow-up actions to

prevent the incident from recurring

e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)

e good postmortems are blameless and

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is awritten record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)
e good postmortems are blameless and
o “blameless” = find the faults in the process, not the people

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is awritten record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)
e good postmortems are blameless and
o “blameless” = find the faults in the process, not the people

o " = gjve specific guidance for how to avoid the
problem in the future (these become tickets)

Post-mortems: blameless

e Why not assign blame after an incident?
o After all, someone should be responsible, right?

Post-mortems: blameless

e Why not assign blame after an incident?
o After all, someone should be responsible, right?
e Somereasons:
o Gives people confidence to escalate issues without fear
o Avoids creating a culture in which incidents and issues are
(which is worse long-term!)
o : engineers who have experienced an
incident won’t make the same mistakes again
o You can't "fix" people, but you can fix systems and processes

Post-mortems: blameless

e \Why not assign bla

o After all. some Historically, software engineering \

adopted a lot of “blameless culture”
® Some reasons: from aviation and medicine, where

o Gives people ¢{ mistakes can be fatal! We might not
o Avoids creatin{y have the same stakes, but all complex |[e

systems are similar in a lot of ways.
o Wmn
incident won’t make the same mistakes again
o You can't "fix" people, but you can fix systems and processes

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be
more senior engineers

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in
response to an incident

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in
response to an incident

o leads to more actionable takeaways and better understanding
of what went wrong

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in

response to an incident
o leads to more actionable takeaways and better understanding

of what went wrong
o alsoenables engineers on different teams to learn from each

others’ mistakes

Post-mortems: example

Shakespeare Sonnet++ Postmortem (incident #465)

Date: 2015-10-21
Authors: jennifer, martym, agoogler
Status: Complete, action items in progress

Summary: Shakespeare Search down for 66 minutes during period of very high interest in Shakespeare due to discovery of
a new sonnet.

Impact:'®® Estimated 1.21B queries lost, no revenue impact.

Root Causes:'* Cascading failure due to combination of exceptionally high load and a resource leak when searches failed
due to terms not being in the Shakespeare corpus. The newly discovered sonnet used a word that had never before
appeared in one of Shakespeare’s works, which happened to be the term users searched for. Under normal circumstances,
the rate of task failures due to resource leaks is low enough to be unnoticed.

Trigger: Latent bug triggered by sudden increase in traffic. [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Shakespeare Sonnet++ Postmortem (incident #465)

Date: 2015-10-21

Authors: jennifer, martym, agoogler

Status: Compll Resolution: Directed traffic to sacrificial cluster and added 10x capacity to mitigate cascading failure. Updated index

deployed, resolving interaction with latent bug. Maintaining extra capacity until surge in public interest in new sonnet
Summary: Sh{

a new sonnet.

passes. Resource leak identified and fix deployed.

Detection: Borgmon detected high level of HTTP 500s and paged on-call.
IMpact:’5? EStibrrerea—r o qerorroo ooy rrorerorrae ot

Root Causes:'* Cascading failure due to combination of exceptionally high load and a resource leak when searches failed
due to terms not being in the Shakespeare corpus. The newly discovered sonnet used a word that had never before
appeared in one of Shakespeare’s works, which happened to be the term users searched for. Under normal circumstances,
the rate of task failures due to resource leaks is low enough to be unnoticed.

Trigger: Latent bug triggered by sudden increase in traffic. [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Action Item

Update playbook with instructions for
responding to cascading failure

Use flux capacitor to balance load
between clusters

Schedule cascading failure test during
next DIRT

Investigate running index MR/fusion
continuously

Type

mitigate

prevent

process

prevent

PMNoise Bl alsisnmiptoamare Taaa by By rapaecaaraail o e s e .

Owner

jennifer

martym

docbrown

jennifer

Bug

n/a DONE

Bug 5554823 TODO

n/a TODO

Bug 5554824 TODO

[source: https://sre.google/sre-book/example-postmortem/ |
Disre CCC A0 IYOAAIE

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Action Item

Update playbook with instructions for
responding to cascading failure

Use flux capacitor to balance load
between clusters

Schedule cascading failure test during
next DIRT

Investigate running index MR/fusion
continuously

and 5 more...

Type

mitigate

prevent

process

prevent

PMNoise Bl alsisnmiptoamare Taaa by By rapaecaaraail o e s e .

Owner

jennifer

martym

docbrown

jennifer

Bug

n/a DONE

Bug 5554823 TODO

n/a TODO

Bug 5554824 TODO

[source: https://sre.google/sre-book/example-postmortem/ |
Disre CCC A0 IYOAAIE

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Lessons Learned

What went well

» Monitoring quickly alerted us to high rate (reaching ~100%) of HTTP 500s
 Rapidly distributed updated Shakespeare corpus to all clusters

What went wrong

» We're out of practice in responding to cascading failure

» We exceeded our availability error budget (by several orders of magnitude) due to the exceptional surge of traffic
that essentially all resulted in failures

Where we got lucky's®

 Mailing list of Shakespeare aficionados had a copy of new sonnet available

 Server logs had stack traces pointing to file descriptor exhaustion as cause for crash

» Query-of-death was resolved by pushing new index containing popular search term [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Timeline”

2015-10-21 (all times UTC)

* 14:51 News reports that a new Shakespearean sonnet has been discovered in a Delorean’s glove compartment

» 14:53 Traffic to Shakespeare search increases by 88x after post to /r/shakespeare points to Shakespeare search
engine as place to find new sonnet (except we don’t have the sonnet yet)

» 14:54 OUTAGE BEGINS — Search backends start melting down under load
 14:55 docbrown receives pager storm, ManyHttp5080s from all clusters

» 14:57 All traffic to Shakespeare search is failing: see https:/monitor

» 14:58 docbrown starts investigating, finds backend crash rate very high

» 15:01 INCIDENT BEGINS docbrown declares incident #465 due to cascading failure, coordination on
#shakespeare, names jennifer incident commander

» 15:02 someone coincidentally sends email to shakespeare-discuss@ re sonnet discovery, which happens to be at
top of martym’s inbox
[source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Timeline”

2015-10-21 (all times UTC)

* 14:51 News reports that a new Shakespearean sonnet has been discovered in a Delorean’s glove compartment

14:53 Traffic to Shakespeare search increases by 88x after post to /r/shakespeare points to Shakespeare search
engine as place to find new sonnet (except we don’t have the sonnet yet)

» 14:54 OUTAGE BEGINS — Search backends start melting down under load

 14:55 docbrown receives pager storm, ManyHttp500s from all clusters

14:57 All traffic to Shakespeare search is failing: see https:/monitor

14:58 docbrown starts investigating, finds backend crash rate very high

el e e dachisuin daclaracinsidani LS dusiacaceadina follansoaidiosiionog

this goes on for several pages!
e shows importance of keeping records

ppens to be at

[source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

DevOps: takeaways

e Many modern engineering organizations prefer to combine, rather
than separate, development and operations
o this works best when most systems are services
e Major benefit of DevOps approach is elimination of toil
o developers are best at building automation
e Planning for incidents/emergencies is critical
o Monitoring allows on-call to quickly identify problems
o Have aplan (ideally, in a playbook) for incidents
o Use post-mortems to learn from prior emergencies
m not to blame people for causing them!

