
Technical debt, refactoring,
and maintenance (2/2)

Martin Kellogg

Tech debt, refactoring, and maintenance (2/2)

Today’s agenda:

● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Tech debt, refactoring, and maintenance (2/2)

Today’s agenda:

● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Reading quiz: tech debt 2

Q1: The author describes Netscape making “the single worst
strategic mistake that any software company can make”. In one
phrase (<= 5 words), what mistake did Netscape make?

Q2: The author claims that most programmers, when asked about
the system they’re working on, “think the old code is a mess”. He
posits this is due to a “fundamental law of programming”. Which one?
A. reading code is harder than writing code
B. the halting problem
C. given enough eyeballs, all bugs are shallow

Reading quiz: tech debt 2

Q1: The author describes Netscape making “the single worst
strategic mistake that any software company can make”. In one
phrase (<= 5 words), what mistake did Netscape make?

Q2: The author claims that most programmers, when asked about
the system they’re working on, “think the old code is a mess”. He
posits this is due to a “fundamental law of programming”. Which one?
A. reading code is harder than writing code
B. the halting problem
C. given enough eyeballs, all bugs are shallow

“rewrite the code from scratch”

Reading quiz: tech debt 2

Q1: The author describes Netscape making “the single worst
strategic mistake that any software company can make”. In one
phrase (<= 5 words), what mistake did Netscape make?

Q2: The author claims that most programmers, when asked about
the system they’re working on, “think the old code is a mess”. He
posits this is due to a “fundamental law of programming”. Which one?
A. reading code is harder than writing code
B. the halting problem
C. given enough eyeballs, all bugs are shallow

“rewrite the code from scratch”

Tech debt, refactoring, and maintenance (2/2)

Today’s agenda:

● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Review: technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit

Review: technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● Benefits:

○ lower cost (either in dev time or because the code isn’t done
yet), code reuse, principle of least surprise, avoiding premature
optimization, organizational factors, etc.

Review: technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● Benefits:

○ lower cost (either in dev time or because the code isn’t done
yet), code reuse, principle of least surprise, avoiding premature
optimization, organizational factors, etc.

● Conceptually, when you take on technical debt you are borrowing
from future maintainers of the system

Review: technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● Benefits:

○ lower cost (either in dev time or because the code isn’t done
yet), code reuse, principle of least surprise, avoiding premature
optimization, organizational factors, etc.

● Conceptually, when you take on technical debt you are borrowing
from future maintainers of the system

● a system with technical debt is harder to change and reuse

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems
● inefficient and/or non-scalable

algorithms

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works
● may need to take over

maintenance of old system
● lose potential customers

Technical debt: when is it worth it?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now
○ whether this is worthwhile varies case by case

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now
○ whether this is worthwhile varies case by case

Whether to take on technical debt is
often one of the most consequential
choices you get to make as an
engineer. Take it seriously!

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt
○ i.e., ask yourself “what is the worst thing that could happen in

the future if I take this shortcut today”?

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt
○ i.e., ask yourself “what is the worst thing that could happen in

the future if I take this shortcut today”?
○ risk should preclude you from taking on certain kind of debts

■ e.g., never use laughably-bad security or break laws, even if
you don’t plan to deploy this prototype

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt
○ i.e., ask yourself “what is the worst thing that could happen in

the future if I take this shortcut today”?
○ risk should preclude you from taking on certain kind of debts

■ e.g., never use laughably-bad security or break laws, even if
you don’t plan to deploy this prototype

● Best practice (especially for relatively risky debts): write
everything down!
○ that way, you know what you need to fix before releasing

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits
● This is an example of technical debt:

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits
● This is an example of technical debt:

○ immediate benefit: saves hard disk space (expensive in 1980)

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits
● This is an example of technical debt:

○ immediate benefit: saves hard disk space (expensive in 1980)
○ long-term cost: if the program is still being used in 2000, need

to fix it!
■ “I just never imagined anyone would be using these systems

10 years later, let alone 20.”
[Philippe Kruchten, Robert Nord, Ipek Ozkaya: “Managing Technical Debt: Reducing Friction in Software Development”]

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt
○ e.g., if your bus factor (= “number of people who need to get hit

by a bus before no one understands the system”) is low and
parts of the system are undocumented…

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt
○ e.g., if your bus factor (= “number of people who need to get hit

by a bus before no one understands the system”) is low and
parts of the system are undocumented…
■ the amount of technical debt you have is higher than if your

bus factor was very high

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt
○ e.g., if your bus factor (= “number of people who need to get hit

by a bus before no one understands the system”) is low and
parts of the system are undocumented…
■ the amount of technical debt you have is higher than if your

bus factor was very high
● Other examples include having high staff turnover (which

systematically lowers bus factor) or few senior engineers

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: bitrot

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?
○ Systems evolve to meet new needs and add new features

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?
○ Systems evolve to meet new needs and add new features
○ Changes happen in dependencies, languages, environment

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?
○ Systems evolve to meet new needs and add new features
○ Changes happen in dependencies, languages, environment
○ If the code's structure does not also evolve, it will "rot"

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!
○ on the other hand, investing in writing in a safe and performant

language (e.g., Rust, Kotlin) has a higher upfront cost

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!
○ on the other hand, investing in writing in a safe and performant

language (e.g., Rust, Kotlin) has a higher upfront cost
■ but you might save a big headache later

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!
○ on the other hand, investing in writing in a safe and performant

language (e.g., Rust, Kotlin) has a higher upfront cost
■ but you might save a big headache later

Other similar choices include:
● middleware frameworks
● deployment pipeline
● major dependencies

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew
● In 2014, Facebook releases Hack, a new variant of PHP

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew
● In 2014, Facebook releases Hack, a new variant of PHP

○ Hack added new safety features (including gradual typing and
type inference)

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew
● In 2014, Facebook releases Hack, a new variant of PHP

○ Hack added new safety features (including gradual typing and
type inference)

○ “Hack enables us to dynamically convert our code one file at a
time” - Facebook Technical Lead, HipHop VM (HHVM)

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design
○ one option: rewriting the whole system (but think about next

class’ reading!)

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design
○ one option: rewriting the whole system (but think about next

class’ reading!)
○ more common: refactoring the code

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design
○ one option: rewriting the whole system (but think about next

class’ reading!)
○ more common: refactoring the code

● refactoring is the process of applying behaviour-preserving
transformations (called refactorings) to a program, with the goal of
improving its non-functional properties (e.g., design, performance)

Paying down technical debt

Paying down technical debt

refactoring

Paying down technical debt: best practices

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt
○ i.e., refactoring at the start of a project to make the rest of the

new code easier to write

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt
○ i.e., refactoring at the start of a project to make the rest of the

new code easier to write
● Have a plan: don’t put off dealing with technical debt indefinitely

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt
○ i.e., refactoring at the start of a project to make the rest of the

new code easier to write
● Have a plan: don’t put off dealing with technical debt indefinitely

○ When a crisis hits, it’s too late
○ Hasty fixes to unmaintainable code likely to multiply problems!
○ Eventually, mounting technical debt can bury a team

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits
● A long-term investment in the overall quality of your system.

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits
● A long-term investment in the overall quality of your system.

What refactoring is not:

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits
● A long-term investment in the overall quality of your system.

What refactoring is not:
● rewriting code
● adding features
● debugging code

Aside: rewriting code

● “refactoring code” != “rewriting code”

Aside: rewriting code

● “refactoring code” != “rewriting code”
● key difference: when you refactor code, you are modifying the

old version (and keeping all of its accumulated bug fixes, etc.)

Aside: rewriting code

● “refactoring code” != “rewriting code”
● key difference: when you refactor code, you are modifying the

old version (and keeping all of its accumulated bug fixes, etc.)
○ if you rewrite from scratch, you might end up with a worse

system than you started with!

Aside: rewriting code

● “refactoring code” != “rewriting code”
● key difference: when you refactor code, you are modifying the

old version (and keeping all of its accumulated bug fixes, etc.)
○ if you rewrite from scratch, you might end up with a worse

system than you started with!
● rewriting is sometimes worthwhile or necessary

Aside: rewriting code

● “refactoring code” != “rewriting code”
● key difference: when you refactor code, you are modifying the

old version (and keeping all of its accumulated bug fixes, etc.)
○ if you rewrite from scratch, you might end up with a worse

system than you started with!
● rewriting is sometimes worthwhile or necessary

○ fundamentally incompatible with new requirements
○ “build one to throw away” (i.e., prototyping)
○ old Google promotion system

Aside: rewriting code

● “refactoring code” != “rewriting code”
● key difference: when you refactor code, you are modifying the

old version (and keeping all of its accumulated bug fixes, etc.)
○ if you rewrite from scratch, you might end up with a worse

system than you started with!
● rewriting is sometimes worthwhile or necessary

○ fundamentally incompatible with new requirements
○ “build one to throw away” (i.e., prototyping)
○ old Google promotion system

Advice:
● even if rewriting is necessary, don’t

totally abandon the old system
● keep old tests/CI jobs, and don’t

release the new system until they pass

Refactoring: motivation

Question: why fix a part of your system that isn't broken?

Refactoring: motivation

Question: why fix a part of your system that isn't broken?
● Each part of your system's code has three purposes:

○ to execute its functionality,
○ to allow change,
○ to communicate well to developers who read it.

Refactoring: motivation

Question: why fix a part of your system that isn't broken?
● Each part of your system's code has three purposes:

○ to execute its functionality,
○ to allow change,
○ to communicate well to developers who read it.

● If the code does not do one or more of these, it is broken.

Refactoring: motivation

Question: why fix a part of your system that isn't broken?
● Each part of your system's code has three purposes:

○ to execute its functionality,
○ to allow change,
○ to communicate well to developers who read it.

● If the code does not do one or more of these, it is broken.
● Refactoring should improve the software's design:

○ more extensible, flexible, understandable, performant, …
○ every design improvement has costs (and risks)

Refactoring: when to refactor

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable
● intuition: each code smell is an irritation on its own, but in large

groups they impede maintenance

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable
● intuition: each code smell is an irritation on its own, but in large

groups they impede maintenance
● many code smells -> good idea to refactor

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable
● intuition: each code smell is an irritation on its own, but in large

groups they impede maintenance
● many code smells -> good idea to refactor
● a good refactoring often fixes more than one code smell

○ sometimes many more than one

Refactoring: when to refactor

Examples of common code smells:

Refactoring: when to refactor

Examples of common code smells:
● Duplicated code
● Poor abstraction (change one place → must change others)
● Large loop, method, class, parameter list; deeply nested loop
● Module has too little cohesion
● Modules have too much coupling
● Module has poor encapsulation
● Dead code
● Design is unnecessarily general
● Design is too specific

Refactoring: “low-level” refactoring

● “low-level” refactorings are small changes to the code that
mitigate or remove one or more code smells. Examples:

Refactoring: “low-level” refactoring

● “low-level” refactorings are small changes to the code that
mitigate or remove one or more code smells. Examples:
○ Renaming (methods, variables)
○ Naming (extracting) “magic” constants
○ Extracting common functionality (including duplicate code)

into a module/method/etc.
○ Changing method signatures
○ Splitting one method into two or more to improve cohesion

and readability (by reducing its size)
also see https://refactoring.com/catalog/

https://refactoring.com/catalog/

Refactoring: “low-level” refactoring

● modern IDEs have good support for low-level refactoring

Refactoring: “low-level” refactoring

● modern IDEs have good support for low-level refactoring
○ IDE = “integrated development environment”

■ e.g., Eclipse, VSCode, IntelliJ, etc.

Refactoring: “low-level” refactoring

● modern IDEs have good support for low-level refactoring
○ IDE = “integrated development environment”

■ e.g., Eclipse, VSCode, IntelliJ, etc.
● they automate:

○ renaming of variables, methods, classes
○ extraction of methods and constants
○ extraction of repetitive code snippets
○ changing method signatures
○ warnings about inconsistent code
○ …

Refactoring: “high-level” refactoring

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:
○ Refactoring to design patterns
○ Changing language idioms (safety, brevity)
○ Performance optimization
○ Clarifying a statement that has evolved over time or is

unclear

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:
○ Refactoring to design patterns
○ Changing language idioms (safety, brevity)
○ Performance optimization
○ Clarifying a statement that has evolved over time or is

unclear
● Compared to low-level refactoring, high-level is:

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:
○ Refactoring to design patterns
○ Changing language idioms (safety, brevity)
○ Performance optimization
○ Clarifying a statement that has evolved over time or is

unclear
● Compared to low-level refactoring, high-level is:

○ Not as well-supported by tools
○ But much more important!

Refactoring: how to refactor

● When you identify an area of your system that:

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

These are a good set of criteria for
deciding to refactor code
● especially “needs new features”,

because if you don’t refactor
you’ll be paying interest on the
tech debt!

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)
○ Refactor the code. (Some unit tests may break. Fix the bugs.)

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)
○ Refactor the code. (Some unit tests may break. Fix the bugs.)
○ Add any new features.

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)
○ Refactor the code. (Some unit tests may break. Fix the bugs.)
○ Add any new features.
○ As always, keep changes small, do code reviews, etc.

Tech debt & refactoring: takeaways

● most real systems have some amount of technical debt
● taking on technical debt can be an effective way to meet goals,

but it also comes with significant costs. Consider the choice to
take on tech debt carefully.

● refactoring is the best method to “pay down” tech debt
● when refactoring, be sure to maintain the current behaviors of

the system: refactorings should be functionally-identical
● avoid rewriting a whole system unless you absolutely have to

○ prefer to gradually refactor a “bad” system over time
● set aside time in your schedule to pay down tech debt

