
Technical debt, refactoring,
and maintenance (1/2)

Martin Kellogg

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Software Architecture (Part 2 of 3 2)

Today’s Tuesday’s agenda:

● Reading Quiz
● Strategies for good design
● Design patterns

○ Structural patterns
○ Creational patterns
○ Behavioural patterns

Creational patterns: factories

● Suppose we need to create and use polymorphic objects without
exposing their types to the client
○ Recall: design for maintainability and extensibility. We don't

want the client to depend on (and thus “lock in”) the actual
subtypes.

● The typical solution is to write a function that creates objects of
the type we want but returns that object so that it appears to be
(“cast to”) a member of the base class
○ this is a specific variant of the named constructor pattern

Creational patterns: factories

● The factory method pattern (or just factory pattern) is a creational
design pattern that uses factory methods to create objects
without having the return type reveal the exact subclass created.

Creational patterns: factories

● The factory method pattern (or just factory pattern) is a creational
design pattern that uses factory methods to create objects
without having the return type reveal the exact subclass created.

Payment * payment_factory(string name, string type) {
 if (type == “credit_card”)
 return new CreditCardPayment(name);
 else if (type == “bitcoin”)
 return new BitcoinPayment(name);
 … }

Payment * webapp_session_payment =
 payment_factory(customer_name, “credit_card”);

Creational patterns: factories

● The factory method pattern (or just factory pattern) is a creational
design pattern that uses factory methods to create objects
without having the return type reveal the exact subclass created.

Payment * payment_factory(string name, string type) {
 if (type == “credit_card”)
 return new CreditCardPayment(name);
 else if (type == “bitcoin”)
 return new BitcoinPayment(name);
 … }

Payment * webapp_session_payment =
 payment_factory(customer_name, “credit_card”);

Note how the implementation
details are hidden from the
client, and they can only treat
the result as a generic payment

Creational patterns: factories

● You may also encounter implementations in which special
methods create the right type:

Creational patterns: factories

● You may also encounter implementations in which special
methods create the right type:

class PaymentFactory {
public:
 static Payment* make_credit_payment(string name){
 return new CreditCardPayment(name);
 }
 static Payment* make_bc_payment(string name){
 return new BitcoinPayment(name);
 }};
Payment * webapp_session_payment =
PaymentFactory::make_credit_payment(customer_name);

Creational patterns: example

● Suppose we're implementing a computer game with a
polymorphic Enemy class hierarchy, and we want to spawn
different versions of enemies based on the difficulty level.

● e.g., normal difficulty = regular Goomba

● hard difficulty = spiked Goomba

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Why is this bad?
● code duplication
● consider how you’d add a

new difficulty level…

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Why is this bad?
● code duplication
● consider how you’d add a

new difficulty level…

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

// Only have to do this once!
AbstractEnemyFactory* factory = nullptr;
if (difficulty == “normal”)
 factory = new NormalEnemyFactory();
else if (difficulty == “hard”)
 factory = new HardEnemyFactory();
Enemy* goomba = factory->create_goomba();

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).
○ fails to control access or updates!

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).
○ fails to control access or updates!

● A “less bad” solution is to put all of the state in one class and have
a global instance of that class.

Scenario: global application state

● Global variables are usually a poor design choice. However:

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.
○ Or if you need to access state stored outside your program (e.g.,

database, web API)

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.
○ Or if you need to access state stored outside your program (e.g.,

database, web API)
○ Then global variables may be acceptable

Scenario: global application state

● The singleton pattern restricts the instantiation of a class to exactly
one logical instance. It ensures that a class has only one logical
instance at runtime and provides a global point of access to it.

Singleton design pattern

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

lazy initializaton
of single object

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

this constructor
can’t be called any
other way

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

all clients share
this global state

What is the output of this code?

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().increment_billing_count();
 bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);
 }
}

Singleton design pattern:
example

What is the output of this code?

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().increment_billing_count();
 bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);
 }
}

Singleton design pattern:
example

Output:
Singleton DB created
0
1

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

Singleton design pattern: get_instance()

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

● Is this a good idea or not?

Singleton design pattern: get_instance()

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

● Is this a good idea or not?

Singleton design pattern: get_instance()

This is a bad idea. There is no
guarantee that get_instance() will
return the same pointer (same
object) every time it is called. (It
may return different concrete
copies of the same logical item.)

● Suppose we are implementing a computer version of the card game
Euchre. In addition to a few abstract datatypes, we have a Game
class that stores the state needed for a game of Euchre. When
started, our application prototype plays one game of Euchre and
then exits.

● Design question: should we make Game a singleton?

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

● We should only use the Singleton pattern when current or future
requirements dictate that only one instance should exist.

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

● We should only use the Singleton pattern when current or future
requirements dictate that only one instance should exist.
○ Singleton is not a license to make everything global.

Singleton design pattern: another example

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

■ e.g., same underlying algorithm, different interfaces or
same interface, different underlying algorithms

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

■ e.g., same underlying algorithm, different interfaces or
same interface, different underlying algorithms

○ Examples: strategy pattern, template method pattern,
iterator pattern, observer pattern, etc.

Behavioural Design Patterns

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.
○ e.g., Java’s List interface doesn’t care whether it’s backed by an

array or a linked list

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.
○ e.g., Java’s List interface doesn’t care whether it’s backed by an

array or a linked list
● Similar patterns exist for other kinds of data structures

○ e.g., visitor pattern for tree-like structures

Strategy Design Pattern

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context
○ Introduces extra interfaces and classes: code can be harder to

understand; adds overhead if the strategies are simple

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Template Method Design Pattern

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

○ Inverted (“Hollywood-style”) control for customization: “don’t call us,

we’ll call you” (cf. comparison function in sorting)

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

○ Inverted (“Hollywood-style”) control for customization: “don’t call us,

we’ll call you” (cf. comparison function in sorting)

○ Invariant parts of the algorithm are not changed by subclasses

Template vs. Strategy Design Pattern

Template vs. Strategy Design Pattern

● Both support variation in a larger context

Template vs. Strategy Design Pattern

● Both support variation in a larger context
● Template method uses inheritance + an overridable method

Template vs. Strategy Design Pattern

● Both support variation in a larger context
● Template method uses inheritance + an overridable method
● Strategy uses an interface and polymorphism (via composition)

○ Strategy objects are reusable across multiple classes
○ Multiple strategy objects are possible per class

Scenario: binge-watching

● Suppose we're implementing a video streaming website in which
users can “binge-watch” (or “lock on”) to one channel. The user will
then see that channel's videos in sequence. When the last such
video is watched, the user should stop binge-watching that channel.

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

class Channel {
 // Called when the last video is shown
 public void on_last_video_shown() {
 // Global accessor for the user
 get_user().release_binge_watch(this);
 }
}

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

● What are some problems with this approach?

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

class Channel {
 // Called when the last video is shown
 public void on_last_video_shown() {
 // Global accessor for the user
 get_user().release_binge_watch(this);
 }
}

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?
● Whenever requirements change and we want to do something else

when a video finishes (e.g., update advertising) we must update the
Channel class and couple it to the new feature

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?
● Whenever requirements change and we want to do something else

when a video finishes (e.g., update advertising) we must update the
Channel class and couple it to the new feature

What can we do instead?

Observer Pattern

● The observer pattern (also called “publish-subscribe”) allows
dependent objects to be notified automatically when the state of a
subject changes. It defines a one-to-many dependency between
objects so that when one object changes state, all of it dependents
are notified.

Observer Pattern

● The observer pattern (also called “publish-subscribe”) allows
dependent objects to be notified automatically when the state of a
subject changes. It defines a one-to-many dependency between
objects so that when one object changes state, all of it dependents
are notified.

Observer Pattern: bing-watch scenario

Observer Pattern: bing-watch scenario

class Channel {
 public static void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public static void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

Observer Pattern: bing-watch scenario

class Channel {
 public static void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public static void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

interface ChannelObserver {
 void update_video_shown(Channel channel);
}

Observer Pattern: bing-watch scenario

class Channel {
 public static void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public static void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

interface ChannelObserver {
 void update_video_shown(Channel channel);
}

class User: ChannelObserver {
 public void update_video_shown(Channel c) {
 if (c == binged_channel)
 binged_channel = null;
 }
 public void binge_watch(Channel c) {
 binged_channel = c;
 }
 private Channel binged_channel;
}

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular
○ Observers that do not care about a particular type of update

can ignore it (via an empty implementation of the update
function)

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular
○ Observers that do not care about a particular type of update

can ignore it (via an empty implementation of the update
function)

● Generally it is better to pass the newly-updated data as a parameter
to the update function (push) as opposed to making observers fetch
it each time (pull)

Design patterns: takeaways

● Thinking about design before you start coding is usually worthwhile
for large projects
○ Design around the most expensive parts of the software

engineering process (usually maintainence!)
● Design patterns are re-usable solutions to common problems
● Be familiar with them enough to recognize when they’re being used

○ and to know when to use them yourself
○ you can look up details of a pattern if you remember its name!

● Be mindful of and avoid common anti-patterns

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Reading quiz: tech debt

Q1: TRUE or FALSE: “technical debt” is money you owe to someone
because of a technical decision that you made while implementing a
system

Q2: TRUE or FALSE: all technical debt is the result of programmer
laziness

Reading quiz: tech debt

Q1: TRUE or FALSE: “technical debt” is money you owe to someone
because of a technical decision that you made while implementing a
system

Q2: TRUE or FALSE: all technical debt is the result of programmer
laziness

Reading quiz: tech debt

Q1: TRUE or FALSE: “technical debt” is money you owe to someone
because of a technical decision that you made while implementing a
system

Q2: TRUE or FALSE: all technical debt is the result of programmer
laziness

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Technical debt

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● analogy to financial debts:

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● analogy to financial debts:

○ you gain some immediate benefit
■ in a financial debt, you gain a large sum of money
■ in a technical debt, you gain implementation speed, etc.

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● analogy to financial debts:

○ you gain some immediate benefit
■ in a financial debt, you gain a large sum of money
■ in a technical debt, you gain implementation speed, etc.

○ you pay for it over time
■ in a financial debt, you pay interest
■ in a technical debt, your maintenance costs increase

Technical debt: benefits

● Why might you intentionally make a sub-optimal design decision?

Technical debt: benefits

● Why might you intentionally make a sub-optimal design decision?
○ Cost

■ either in dev time or because the code isn’t done yet
○ Need to meet a deadline
○ Avoid premature optimization
○ Code reuse
○ Principle of least surprise
○ Organizational requirements/politics
○ etc.

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system
● Recall our goals in good design:

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system
● Recall our goals in good design:

○ design for change and reuse
○ make the system easy to extend, modify, etc.

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system
● Recall our goals in good design:

○ design for change and reuse
○ make the system easy to extend, modify, etc.

● Implication: a system with technical debt is harder to change and
reuse

Technical debt: benefits and costs

Examples of debt: Examples of costs:

Technical debt: benefits and costs

Examples of debt:
● code smells

Examples of costs:

Technical debt: benefits and costs

Examples of debt:
● code smells

Examples of costs:
● “smelly” code is less flexible

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests

Examples of costs:
● “smelly” code is less flexible

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works
● may need to take over

maintenance of old system

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems
● inefficient and/or non-scalable

algorithms

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works
● may need to take over

maintenance of old system

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems
● inefficient and/or non-scalable

algorithms

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works
● may need to take over

maintenance of old system
● lose potential customers

Technical debt: when is it worth it?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now
○ whether this is worthwhile varies case by case

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now
○ whether this is worthwhile varies case by case

Whether to take on technical debt is
often one of the most consequential
choices you get to make as an
engineer. Take it seriously!

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt
○ i.e., ask yourself “what is the worst thing that could happen in

the future if I take this shortcut today”?

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt
○ i.e., ask yourself “what is the worst thing that could happen in

the future if I take this shortcut today”?
○ risk should preclude you from taking on certain kind of debts

■ e.g., never use laughably-bad security or break laws, even if
you don’t plan to deploy this prototype

Technical debt: when is it worth it?

● You should also consider risk when taking on technical debt
○ i.e., ask yourself “what is the worst thing that could happen in

the future if I take this shortcut today”?
○ risk should preclude you from taking on certain kind of debts

■ e.g., never use laughably-bad security or break laws, even if
you don’t plan to deploy this prototype

● Best practice (especially for relatively risky debts): write
everything down!
○ that way, you know what you need to fix before releasing

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits
● This is an example of technical debt:

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits
● This is an example of technical debt:

○ immediate benefit: saves hard disk space (expensive in 1980)

Technical debt: Y2k example

● History quiz: what was the “Y2k bug”?
○ Answer: many early programs stored the year using two digits

■ assumption: current year = “19” + those two digits
● This is an example of technical debt:

○ immediate benefit: saves hard disk space (expensive in 1980)
○ long-term cost: if the program is still being used in 2000, need

to fix it!
■ “I just never imagined anyone would be using these systems

10 years later, let alone 20.”
[Philippe Kruchten, Robert Nord, Ipek Ozkaya: “Managing Technical Debt: Reducing Friction in Software Development”]

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt
○ e.g., if your bus factor (= “number of people who need to get hit

by a bus before no one understands the system”) is low and
parts of the system are undocumented…

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt
○ e.g., if your bus factor (= “number of people who need to get hit

by a bus before no one understands the system”) is low and
parts of the system are undocumented…
■ the amount of technical debt you have is higher than if your

bus factor was very high

Technical debt: not always strictly technical

● You can also view other serious risks to the system’s continued
maintenance as forms of technical debt
○ e.g., if your bus factor (= “number of people who need to get hit

by a bus before no one understands the system”) is low and
parts of the system are undocumented…
■ the amount of technical debt you have is higher than if your

bus factor was very high
● Other examples include having high staff turnover (which

systematically lowers bus factor) or few senior engineers

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: not always your fault

● Common situation: you are now responsible for maintaining and
improving a codebase that already exists
○ we usually call such a codebase legacy code

● What if this code already has technical debt? (Hint: it always does.)
○ You must service the debt: you must deal with the code as it is
○ You do not gain the benefit: the benefit was immediate, but

you’re reaching the code too late to see it

Unfortunate but common anti-pattern:
● dev 1 builds a new system, taking on

a lot of technical debt
● system is successful initially, dev 1 is

promoted or moves on
● dev 2 is now responsible for paying

the debt on the system :(

Technical debt: bitrot

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?
○ Systems evolve to meet new needs and add new features

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?
○ Systems evolve to meet new needs and add new features
○ Changes happen in dependencies, languages, environment

Technical debt: bitrot

● Over time, software tends to have increasing maintenance costs,
even if no technical debt is taken on intentionally
○ even if the code was initially reviewed and well-designed at the

time of commit, and even if changes are reviewed, etc.
○ this process is called “bitrot”

● Why does bitrot happen?
○ Systems evolve to meet new needs and add new features
○ Changes happen in dependencies, languages, environment
○ If the code's structure does not also evolve, it will "rot"

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!
○ on the other hand, investing in writing in a safe and performant

language (e.g., Rust, Kotlin) has a higher upfront cost

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!
○ on the other hand, investing in writing in a safe and performant

language (e.g., Rust, Kotlin) has a higher upfront cost
■ but you might save a big headache later

Technical debt example: languages

● Language choice is a common example of a place where it might
make sense to take on technical debt:
○ relatively-unsafe and/or non-performant languages (e.g.,

Python, Ruby, JavaScript) are easier to write code in
■ but, if you end up needing to write performance-critical or

safety-critical code in them, you’re going to have a bad time!
○ on the other hand, investing in writing in a safe and performant

language (e.g., Rust, Kotlin) has a higher upfront cost
■ but you might save a big headache later

Other similar choices include:
● middleware frameworks
● deployment pipeline
● major dependencies

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew
● In 2014, Facebook releases Hack, a new variant of PHP

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew
● In 2014, Facebook releases Hack, a new variant of PHP

○ Hack added new safety features (including gradual typing and
type inference)

Technical debt example: Facebook + PHP

● Facebook’s original site was written in PHP in 2004
○ PHP is dynamically-typed and relatively unsafe

■ this caused problems for Facebook as its codebase grew
● In 2014, Facebook releases Hack, a new variant of PHP

○ Hack added new safety features (including gradual typing and
type inference)

○ “Hack enables us to dynamically convert our code one file at a
time” - Facebook Technical Lead, HipHop VM (HHVM)

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design
○ one option: rewriting the whole system (but think about next

class’ reading!)

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design
○ one option: rewriting the whole system (but think about next

class’ reading!)
○ more common: refactoring the code

Paying down technical debt

● It is possible to reduce the amount of technical debt in a codebase
by improving its design
○ one option: rewriting the whole system (but think about next

class’ reading!)
○ more common: refactoring the code

● refactoring is the process of applying behaviour-preserving
transformations (called refactorings) to a program, with the goal of
improving its non-functional properties (e.g., design, performance)

Paying down technical debt

Paying down technical debt

refactoring

Paying down technical debt: best practices

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt
○ i.e., refactoring at the start of a project to make the rest of the

new code easier to write

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt
○ i.e., refactoring at the start of a project to make the rest of the

new code easier to write
● Have a plan: don’t put off dealing with technical debt indefinitely

Paying down technical debt: best practices

● Advice: set aside specific time to pay off technical debt
○ Google has (had?) “20% time” for tasks like this

● New projects can take on some technical debt
○ i.e., refactoring at the start of a project to make the rest of the

new code easier to write
● Have a plan: don’t put off dealing with technical debt indefinitely

○ When a crisis hits, it’s too late
○ Hasty fixes to unmaintainable code likely to multiply problems!
○ Eventually, mounting technical debt can bury a team

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Reading Quiz
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits
● A long-term investment in the overall quality of your system.

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits
● A long-term investment in the overall quality of your system.

What refactoring is not:

Refactoring

Definition: refactoring is improving a piece of software's internal
structure without altering its external behavior.
● Incurs a short-term time/work cost to reap long-term benefits
● A long-term investment in the overall quality of your system.

What refactoring is not:
● rewriting code
● adding features
● debugging code

Aside: rewriting code

● “refactoring code” != “rewriting code”

Refactoring: motivation

Question: why fix a part of your system that isn't broken?

Refactoring: motivation

Question: why fix a part of your system that isn't broken?
● Each part of your system's code has three purposes:

○ to execute its functionality,
○ to allow change,
○ to communicate well to developers who read it.

Refactoring: motivation

Question: why fix a part of your system that isn't broken?
● Each part of your system's code has three purposes:

○ to execute its functionality,
○ to allow change,
○ to communicate well to developers who read it.

● If the code does not do one or more of these, it is broken.

Refactoring: motivation

Question: why fix a part of your system that isn't broken?
● Each part of your system's code has three purposes:

○ to execute its functionality,
○ to allow change,
○ to communicate well to developers who read it.

● If the code does not do one or more of these, it is broken.
● Refactoring should improve the software's design:

○ more extensible, flexible, understandable, performant, …
○ every design improvement has costs (and risks)

Refactoring: when to refactor

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable
● intuition: each code smell is an irritation on its own, but in large

groups they impede maintenance

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable
● intuition: each code smell is an irritation on its own, but in large

groups they impede maintenance
● many code smells -> good idea to refactor

Refactoring: when to refactor

Definition: a “code smell” is a minor design issue with a piece of code
that is not a defect per se, but is still undesirable
● intuition: each code smell is an irritation on its own, but in large

groups they impede maintenance
● many code smells -> good idea to refactor
● a good refactoring often fixes more than one code smell

○ sometimes many more than one

Refactoring: when to refactor

Examples of common code smells:

Refactoring: when to refactor

Examples of common code smells:
● Duplicated code
● Poor abstraction (change one place → must change others)
● Large loop, method, class, parameter list; deeply nested loop
● Module has too little cohesion
● Modules have too much coupling
● Module has poor encapsulation
● Dead code
● Design is unnecessarily general
● Design is too specific

Refactoring: “low-level” refactoring

● “low-level” refactorings are small changes to the code that
mitigate or remove one or more code smells. Examples:

Refactoring: “low-level” refactoring

● “low-level” refactorings are small changes to the code that
mitigate or remove one or more code smells. Examples:
○ Renaming (methods, variables)
○ Naming (extracting) “magic” constants
○ Extracting common functionality (including duplicate code)

into a module/method/etc.
○ Changing method signatures
○ Splitting one method into two or more to improve cohesion

and readability (by reducing its size)
also see https://refactoring.com/catalog/

https://refactoring.com/catalog/

Refactoring: “low-level” refactoring

● modern IDEs have good support for low-level refactoring

Refactoring: “low-level” refactoring

● modern IDEs have good support for low-level refactoring
○ IDE = “integrated development environment”

■ e.g., Eclipse, VSCode, IntelliJ, etc.

Refactoring: “low-level” refactoring

● modern IDEs have good support for low-level refactoring
○ IDE = “integrated development environment”

■ e.g., Eclipse, VSCode, IntelliJ, etc.
● they automate:

○ renaming of variables, methods, classes
○ extraction of methods and constants
○ extraction of repetitive code snippets
○ changing method signatures
○ warnings about inconsistent code
○ …

Refactoring: “high-level” refactoring

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:
○ Refactoring to design patterns
○ Changing language idioms (safety, brevity)
○ Performance optimization
○ Clarifying a statement that has evolved over time or is

unclear

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:
○ Refactoring to design patterns
○ Changing language idioms (safety, brevity)
○ Performance optimization
○ Clarifying a statement that has evolved over time or is

unclear
● Compared to low-level refactoring, high-level is:

Refactoring: “high-level” refactoring

● “High-level” refactoring might include:
○ Refactoring to design patterns
○ Changing language idioms (safety, brevity)
○ Performance optimization
○ Clarifying a statement that has evolved over time or is

unclear
● Compared to low-level refactoring, high-level is:

○ Not as well-supported by tools
○ But much more important!

Refactoring: how to refactor

● When you identify an area of your system that:

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

These are a good set of criteria for
deciding to refactor code
● especially “needs new features”,

because if you don’t refactor
you’ll be paying interest on the
tech debt!

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)
○ Refactor the code. (Some unit tests may break. Fix the bugs.)

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)
○ Refactor the code. (Some unit tests may break. Fix the bugs.)
○ Add any new features.

Refactoring: how to refactor

● When you identify an area of your system that:
○ is poorly designed, and
○ is poorly tested (even if it seems to work so far), and
○ now needs new features…

● What should you do?
○ Write unit tests that verify the code's external correctness.

(They should pass on the current, badly-designed code.)
○ Refactor the code. (Some unit tests may break. Fix the bugs.)
○ Add any new features.
○ As always, keep changes small, do code reviews, etc.

