Free and Open-source

Software
Martin Kellogg

Free and Open-source Software

Today’s agenda:

e Finish static analysis slides

e Reading Quiz

e History + the “free software” philosophy

e Open-source: licenses and business models
e Mid-semester survey: how am | doing?

Free and Open-source Software

Today’s agenda:

Finish static analysis slides
Reading Quiz

History + the “free software
Open-source: licenses and b

evening
Mid-semester survey: how a\\

Announcements

e reminder: optional reading #1
due soon (Saturday night)

e we planreturn all graded
revised project plans by Friday

A —d

Free and Open-source Software

Today’s agenda:

e Finish static analysis slides

e Reading Quiz

e History + the “free software” philosophy

e Open-source: licenses and business models
e Mid-semester survey: how am | doing?

Limitations of static analysis

e static analysis abstracts away information to remain decidable

Limitations of static analysis

e static analysis abstracts away information to remain decidable
o potential problem: what if the information that was abstracted
away is important?

Limitations of static analysis

e static analysis abstracts away information to remain decidable
o potential problem: what if the information that was abstracted
away is important?
m can we come up with a program for which one of our
example static analyses “gets the wrong answer”?

Limitations of static analysis

e static analysis abstracts away information to remain decidable
o potential problem: what if the information that was abstracted
away is important?
m can we come up with a program for which one of our
example static analyses “gets the wrong answer”?
o canweeverhavea“ ” abstraction?

Limitations of static analysis

e static analysis abstracts away information to remain decidable
o potential problem: what if the information that was abstracted
away is important?
m can we come up with a program for which one of our
example static analyses “gets the wrong answer”?
o canweeverhavea“ ” abstraction?
m of course not (Rice’s theorem again)

Limitations of static analysis

e static analysis abstracts away information to remain decidable

o potential problem: what if the information that was abstracted
away is important?
m can we come up with a program for which one of our

example static analyses “gets the wrong answer”?

o canweeverhavea“ ” abstraction?
m of course not (Rice’s theorem again)
m but, in practice, we can get very close

Limitations of static analysis

e static analysisis best when the rules it enforces are:

Limitations of static analysis

e static analysisis best when the rules it enforces are:
o simple to express to the computer
o hard for a human to apply

Limitations of static analysis

e static analysisis best when the rules it enforces are:
o simple to express to the computer
o hard for a human to apply

e implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis

Limitations of static analysis

e static analysisis best when the rules it enforces are:
o simple to express to the computer
o hard for a human to apply

e implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
o this sort of situation comes up often:

Limitations of static analysis

e static analysisis best when the rules it enforces are:
o simple to express to the computer
o hard for a human to apply
e implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
o this sort of situation comes up often:
m x86/64 calling convention

Limitations of static analysis

e static analysisis best when the rules it enforces are:
o simple to express to the computer
o hard for a human to apply
e implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
o this sort of situation comes up often:
m x86/64 calling convention
m complex API protocols (“call A then B then C then ...”)

Limitations of static analysis

e static analysisis best when the rules it enforces are:
o simple to express to the computer
o hard for a human to apply
e implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
o this sort of situation comes up often:
m x86/64 calling convention
m complex API protocols (“call A then B then C then ...”)
m security rules, etc.

Static analysis in practice

You're likely to encounter:

Static analysis in practice

You're likely to encounter:
e static type systems (sound)

Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers (= not dataflow)

Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers (= not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses

Static analysis in practice

You're likely to encounter: [heuristic is a fancy]
e static type systems (sound) word for “best effort
e linters or other style checkers (= not dataflow)

e ‘“heuristic” bug-finding tools backed by dataflow analyses

Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers (= not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs

Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers (= not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs
o aim for low false positive rates

Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers (= not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs
o aim for low false positive rates
o widely used in industry:
m ErrorProne at Google, Infer at Meta, SpotBugs at many
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

Static analysis in practice

Less common, but useful to know about:

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java
o most common sound analysis (used by Google, Uber, others)

What is a pluggable type?

@QPositive int x

30

What is a pluggable type?

@QPositive int x

W_’
Basetype

31

What is a pluggable type?

@QPositive int x

\

) 4

Type qualifier

J \ J
Basetype

32

What is a pluggable type?

@Negative int x

\

) 4

Type qualifier

J \ J
Basetype

33

What is a pluggable type?

@NonConstant int x

| € v J \ J
Type qualifier Basetype

34

What is a pluggable type?

@QPositive int x

\

) 4

Type qualifier

J \ J
Basetype

35

What is a pluggable type?

@QPositive int x

| ¢ v Y] L\ ’
Type qualifier Basetype

Qualified type

36

Pluggable type systems: key ideas

Pluggable type systems: key ideas

e developers already use static type systems, so they’re familiar with
the general idea of types => (compared to
other sound static analyses)

Pluggable type systems: key ideas

e developers already use static type systems, so they’re familiar with
the general idea of types => (compared to
other sound static analyses)

e type qualifiers property of interest

o effectively a “second” type system

Pluggable type systems: key ideas

e developers already use static type systems, so they’re familiar with
the general idea of types => (compared to
other sound static analyses)

e type qualifiers property of interest

o effectively a “second” type system

e qualified types are a Cartesian product of a type from the

pluggable type system and a type from the base type system

Pluggable type systems: key ideas

developers already use static type systems, so they’re familiar with
the general idea of types => (compared to
other sound static analyses)
type qualifiers property of interest

o effectively a “second” type system

qualified types are a Cartesian product of a type from the
pluggable type system and a type from the base type system
typechecking is naturally modular = fast

o but this comes at a cost: programmers need to write types

Pluggable type systems: key ideas

developers already use static type
the general idea of types =>
other sound static analyses)
type qualifiers property of

[it

designing better (more
expressive, more usable,
etc.) pluggable type
systems is an area of

o effectively a “second” type syst
qualified types are a Cartesian pro

active research (mine!)

pluggable type system and a type from the base type system
typechecking is naturally modular = fast
o but this comes at a cost: programmers need to write types

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java
o most common sound analysis (used by Google, Uber, others)
e formal verification (subject of 3/7 reading)

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java
o most common sound analysis (used by Google, Uber, others)
e formal verification (subject of 3/7 reading)
o you write a specification

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems

o these are extensions to a type system that lets it prove more

properties, e.g., adding nullness-checking to Java

o most common sound analysis (used by Google, Uber, others)
e formal verification (subject of 3/7 reading)

o you write a specification

o tool verifies that code matches that specification

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

o most common sound analysis (used by Google, Uber, others)
e formal verification (subject of 3/7 reading)

o you write a specification
o tool verifies that code matches that specification

o very high effort, but enables sound reasoning about complex
properties (= worth it for very high value systems)

Static analysis in practice: soundiness

o all“sound” static analyses have a trusted computing base (TCB)

Static analysis in practice: soundiness

o all“sound” static analyses have a trusted computing base (TCB)
o the TCBis the code whose correctness must be assumed for
the analysis to actually be sound

Static analysis in practice: soundiness

o all“sound” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses

Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)
o TCB for some formal verifiers is very small (< 1000 LoC)
m butthese tools (e.g., Coq) are much harder to use

Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)
o TCB for some formal verifiers is very small (< 1000 LoC)
m butthese tools (e.g., Coq) are much harder to use
e soundness theorems also usually make some about
the code being analyzed (e.g., no calls to native code, no reflection)

Static analysis: summary

static analysis is very good at enforcing simple rules
o much better than humans at this
all interesting semantic properties of programs are undecidable, so
all static analyses must
o goalin analysis designisto
but keep important details
o dataflow analysis is one technique for static analysis
o trade-offs between false positives, false negatives, analysis time
soundness & completeness are possible, but rare
o all soundness guarantees come with caveats about the TCB

Free and Open-source Software

Today’s agenda:

e Finish static analysis slides

e Reading Quiz

e History + the “free software” philosophy

e Open-source: licenses and business models
e Mid-semester survey: how am | doing?

Reading quiz: free and open-source software

Q1: The author claims that the term “open source software” means:

A.
B.
C.
D.

software you can get for zero price

software which gives the user certain freedoms
software whose source code you can look at
none of the above

Q2: The author claims that the term “free software” means:

e sameoptions (A,B,C,D)as Q1

Reading quiz: free and open-source software

Q1: The author claims that the term “open source software” means:

A. software you can get for zero price

B. software which gives the user certain freedoms

C. software whose source code you can look at
none of the above

Q2: The author claims that the term “free software” means:

e sameoptions (A,B,C,D)as Q1

Reading qu iﬁe official definition of open source softwarh

Q1: The author cla|

A. softwareyouc
B. software whicl

C. software whos
none of the ab

Ag)ftwa re” that way. /

(... too long to include here) was derived
indirectly from our criteria for free software. It
is not the same; ... However, the

for ... “open source software” is “You
can look at the source code.” Indeed, most
people seem to misunderstand “open source

Q2: The author claims that the term “free software” means:

e sameoptions (A,B,C,D)as Q1

Reading quiz: free and open-source software

Q1: The author claims that the term “open source software” means:

A. software you can get for zero price

B. software which gives the user certain freedoms

C. software whose source code you can look at
none of the above

Q2: The author claims that the term “free software” means:

e sameoptions (A, B,C,D)as Q1

Free and Open-source Software

Today’s agenda:

Finish static analysis slides

Reading Quiz

History + the “free software” philosophy
Open-source: licenses and business models
Mid-semester survey: how am | doing?

The rest of this slide deck is heavily based on the work of Jonathan Bell, Adeel Bhutta, and Mitch Wand, ©2022,
released under CC-BY-SA. My modifications ©2023, by Martin Kellogg, also released under CC-BY-SA.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Why does this matter?

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

o “Free” vs“open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

o “Free” vs“open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

e Thisdebate has consequences for both how you build and how you
use software that, as a software engineer, you should understand

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

o “Free” vs“open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

e Thisdebate has consequences for both how you build and how you
use software that, as a software engineer, you should understand

o plus,it’s the sort of thing that other, more senior engineers will

expect you to have an about

What is “open-source”?

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]
e “opensource” !=“open source software” (we'll talk about why later)

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]

e “opensource” !=“open source software” (we'll talk about why later)
e ['llabbreviate “open source software” as OSS

The Case against Open Source

A REMINDER
from

YOUR FRIENDS AT MICROSOFT
[Variation of popular meme, original source unknown]

The Case against Open Source

e “Open-Source Doomsday”: Once all
software is free, we'll stop making more
software and have a market collapse

e Innovation will be stifled by the risk that
software will be copied

e Making source code public means easier
to attack

e “Anarchistic” licensing prevents

companies from profiting from open =

YOUR FRIENDS AT MICROSOFT

source software

The Case for Open Source

.= Microsoft | Open Source Getinwoled Projacts Ecos

Open Source enables Microsoft products and services to

bring choice, technology and community to our customers.

[Screenshot, 2022, opensource.microsoft.com]

The Case for Open Source

e Many eyes make all bugs shallow B vicosot opn s

e End-users canimprove and customize
software to their needs

e New features can be proposed and
developed organically

e Greater productivity when more code is s el
reused (easier with open source) IPASRERaY 2060 S e e o
o i.e., DRY on anindustry-wide scale

History: open-source

History: open-source

e intheearly days of computing, innovation

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway

e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway
e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs
e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code

History: open-source

e intheearly days of computing, innovation

o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway

e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs

e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code
o Unix quickly gained a lot of popularity for two reasons:

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway
e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs
e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code
o Unix quickly gained a lot of popularity for two reasons:
m portable between hardware (just need a C compiler)

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway
e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs
e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code
o Unix quickly gained a lot of popularity for two reasons:
m portable between hardware (just need a C compiler)
m Bell Labs practically gave it away to universities

History: Unix

e 197/8:UC Berkeley begins distributing
their own derived version of Unix (BSD)

History: Unix

o 1978:UC Berkeley begins distributing
their own derived version of Unix (BSD)

o 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source
releases

History: Unix

o 1978:UC Berkeley begins distributing
their own derived version of Unix (BSD)

o 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source
releases

e Also 1983: “Starting this Thanksgiving |
am going to write a complete
Unix-compatible software system called
GNU (Gnu’s Not Unix), and give it away
free to everyone who can use it”

GNU logo (a gnu wildebeest)

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license
e The Free Software Foundation promoted four “ "

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license
e The Free Software Foundation promoted four “ "
0. The freedom to run the program as you wish, for any purpose

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

e The Free Software Foundation promoted four “ "
0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license
e The Free Software Foundation promoted four “ "
0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so
it does your computing as you wish
2. Thefreedom to redistributed copies (of the original) so you can
help others

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

e The Free Software Foundation promoted four “
0.
1.

”,

The freedom to run the program as you wish, for any purpose
The freedom to study how the program works, and change it so
it does your computing as you wish

The freedom to redistributed copies (of the original) so you can
help others

The freedom to distribute copies of your modified version to
others

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

e The Free Software Foundation promoted four “
0.
1.

”,

The freedom to run the program as you wish, for any purpose
The freedom to study how the program works, and change it so
it does your computing as you wish

The freedom to redistributed copies (of the original) so you can
help others

The freedom to distribute copies of your modified version to
others

[“Free as in speech, not as in beer”]

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?
o Areyou allowed to use the software in a restrictive hardware
environment? (“tivoization”)

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?
o Areyou allowed to use the software in a restrictive hardware

environment? (“tivoization”)
4)
Difference between GPL v2 and

GPL v3:is tivoization banned?
_ Y,

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?
o Areyou allowed to use the software in a restrictive hardware
environment? (“tivoization”)
e Popular alternative: “Do whatever you want with this software, but
don’t blame me if it doesn’t work” (“freeware”)

History: GNU/Linux (1991-Today)

e Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“
") that are needed by an OS (compiler, utilities, etc)

()

H iStOFY‘ GNU/Linux Remember: 1983 = Unix licensing
' changed because of AT&T breakup

e Stallman (FSF founder) sethsereromerrororroperorerrs—oyorerrrr—"

1983, ended up building a tremendous set of utilities (“
") that are needed by an OS (compiler, utilities, etc)

History: GNU/Linux (1991-Today)

e Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (*
") that are needed by an OS (compiler, utilities, etc)
e Linuxisanoperating system built around and with the GNU
utilities, licensed under GPL

History: GNU/Linux (1991-Today)

e Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (*
") that are needed by an OS (compiler, utilities, etc)
e Linuxisanoperating system built around and with the GNU

utilities, licensed under GPL
e Riseof theinternet,demand for drives demand

for cheap/free OS

History: GNU/Linux (1991-Today)

Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (*

") that are needed by an OS (compiler, utilities, etc)
Linux is an operating system built around and with the GNU
utilities, licensed under GPL
Rise of the internet, demand for drives demand
for cheap/free OS
Companies began adopting and supporting Linux for enterprise
customers: e.g., IBM committed over $1B; Red Hat and others

The Cathedral and the Bazaar (1997)

e Eric SRaymond’sinfluential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

The Cathedral and the Bazaar (1997)

e Eric SRaymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

° " model, where releases are available for anyone to
see, but the development process is restricted to insiders

The Cathedral and the Bazaar (1997)

e Eric SRaymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”
o “ " model, where releases are available for anyone to
see, but the development process is restricted to insiders
e However, most of the open source software ecosystem today
follows the “bazaar” model:
o Users treated as co-developers
o Release software early for feedback
o Modularize + reuse components
O

Democratic organization

The Cathedral and the Bazaar (1997)

e Eric SRaymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

" model, where releases are available for anyone to
see, but the development process is restricted to insiders

e However, most of the open source software ecosystem today
follows the “bazaar” model:

«

O

O
O
O

Users treated as co-developers
Release software early for feedback
Modularize + reuse components
Democratic organization

(
How did the bazaar

model become
dominant is OSS?

_

~

J

History: Netscape’s “Collaborating with the Net”

° was the dominant web browser in the early 90’s
o Business model: free for home and education use,
companies paid to use it

History: Netscape’s “Collaborating with the Net”

° was the dominant web browser in the early 90’s
o Business model: free for home and education use,
companies paid to use it
e Microsoft entered browser market with Internet Explorer,
bundled with Windows in 1995, soon overtakes Netscape in
usage (it's free, with Windows!)
o alsosued by US DoJ for antitrust bundling (!)

History: Netscape’s “Collaborating with the Net”

° was the dominant web browser in the early 90’s
o Business model: free for home and education use,
companies paid to use it
e Microsoft entered browser market with Internet Explorer,
bundled with Windows in 1995, soon overtakes Netscape in
usage (it's free, with Windows!)
o alsosued by US DoJ for antitrust bundling (!)

e January 1998: Netscape becomes first (?) company to make
(Mozilla)

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL
e “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development

)«

process, Eric Raymond’s “Bazaar”

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL
e “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
o Publisher Tim O’Reilly organizes a “Freeware Summit” later
in 1998, soon rebranded as “Open Source Summit”

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL
e “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
o Publisher Tim O’Reilly organizes a “Freeware Summit” later
in 1998, soon rebranded as “Open Source Summit”
o “Open Source is a development methodology; free software
is a social movement” - Richard Stallman, FSF founder

Free and Open-source Software

Today’s agenda:

e Finish static analysis slides

e Reading Quiz

e History + the “free software” philosophy

e Open-source: licenses and business models
e Mid-semester survey: how am | doing?

What makes an open source project successful?

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

e Communities form around collective ownership (even if it’s only
perceived)

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

e Communities form around collective ownership (even if it’s only
perceived)

e Contributors bring : also documentation, testing,
support, and outreach

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

e Communities form around collective ownership (even if it’s only
perceived)

e Contributors bring : also documentation, testing,
support, and outreach

e Community/ownership models:
o Corporate owner,community outreach (MySQL, MongoDB)
o Foundation owner, corporate sponsors (GNU, Linux)

|s Open Source a Good Business Model?

Is Open Source a Good Business Model?

-2- mﬂm

February 3, 1976

: ; 2 €he New 1Jork Times
i ik S T MS' Ballmer: Linux is communism

e e D A U Aiter a shrt sience, Motormouth s back,folks.. Microsoft Buys GitHub for $7.5

i3 the lack of good software coursos, books and software itself,
Without geod software ard an owner who understands progqrameing, a A GiaremLea Von 31002000 10.10 UTC

:::y’ :::::;r is wasted. Will guality software be written for the Billion, Moving to Grow in Coding’s

MS ANALYSTS Steve Ballmer was the only person Lo raise the issue of Linux when he

Almost a year ago, Paul Allen and myself, cxpecting the hobby J
marhet £ axpand, Nirad Moate Devidoff snd develoged Altair BAGIO: Wippad up Miciosafis snaual iencil wndtysts movtig In Sacwe, SNouoh he P ew Lra
Though the initial work took only two months, the three of us have Sun and Oracle ahead in terms of being sronger competitors. They of course are
spent most of the last year documenting, improving and adding fea- ‘civilised’ compatitors - but tha Linux crowd, in the world of Prez Steve, are communists.

tuzes to BASIC. MNow we have 4K, BK, EXTENDED, ROM and DISK BASIC.
The value of Lhe computer tims we have used exceeds $§40,000.

The feedback we have gotten from the hundreds of people who Horvetisatice A []
say they are using DASIC has all been positive. Two surpcising
things are apparent, howsver. 1) Mot of these “uvecs® nover bought
BASIC (less than LOX of all Altair cwncrs have bought BASIC), il
2) The amount of royalties we received from s to hobbyists

Bihes the tisa Spenk 8F ALWLr RAETE wirth 1ees then §2 sn hoees Redmond top man Satya Nadella: ‘Microsoft

e major o L] e aware, . i o
e S e . e LOVES Linux
ware is scmething to share. Who cares Af the people who worked on X
e Open-source 'love' fairly runneth over at cloud event

Ps this falz? One thing you don't do by stealing software s
gt back at MITS for scee problem you way have had. MITS doesn't
make monay selling software. The royalty pald o us, the manual,
the tape and the overhesd make it a break-even operation. One thing
you do do is prevent goocd software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
J-man yoars into programeing, tinding sll bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has

invested a lot of money in hobby software. We have written 6800

BASIC, and arw wziting 5080 APL and 6800 APL, but therw is very Lit-

tle incentive to make this software available to hobbyista. MNoat

directly, the thing you do is theft.

What about the guys who re-sell Altair EASIC, aren't they mak- ¥

ing money on hobby software? Yes, but those who have been repocted A
-
2

t0 us may lose in the end. They are the ohes who give hobbyists a
bad name, and should be kicked out of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, or
bas & suggestion or comwent. Just write me at 1180 Alvarado SE, 8114,
Albugquerque, New Mexico, 87108, Nothing would please me more than
being able to hire ten programwers and deluge the hobby market with
good softwvare,

Bl Dt

A GitHub billboard being installed in San Francisco in 2014. Microsoft said on Monday
811 oates i " : g ’ ac s the any for $7.5 avid Paul } =
‘; ‘"n”“' sloro-sofe | 20 Oct 2014 at 23:45, Nall McAll ster & o o @ that it would acquire the company for $7.5 billion. David Paul Morris/Bloomberg

By Steve Lohr

Is Open Source a Good Business Model?

= A

February 3, 1976

An open Letter to mobbyists

T0 me, the most critical thing the hobby macket right mow
i3 the lack of good software courses, books and software itself,
Without good software ard an owner who understands progqramsing, a
hobby computer is wasted. Will guality softwere be written for the
hoblby market?

Almost a year ago, Paul Allen and myself, cxpecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, K, EXTENDED, ROM and DISK BASIC.
The value of Lhe compuler tims we have used exceeds $40,000.

The feedback we ha gotten from the hundreds of pecple who
say they are using DASIC has all been positive. Two surpcising
things are apparent, however. 1) Most of th “users” nover bought
BASIC (less than LO% of all Altair za have bought BASIC), il
2) The amount of royalties we have received from sales to hobbyists
makes the time spant of Altair BASTC worth less than $2 an howr.

Why is this? As the majority of hobbyists must be aware, wmost
of you steal your softwa Hardware must be paid for. but soft-
ware is scmething to sha Wro cares Af the people who worked on
1t get paid?

Ts this falz? One thing you don't o by stealing software ks
get back at MITS for some problem you way have had. MITS doesn't
make money selling eoftware. The. royalty pasd to ua, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is pravent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
J-man years into programeing, tinding sll bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobty software. We have written 6800
BASIC, and are wziting 5080 APL and 6800 APL, Lut therw is very Lit-
tle incontive to make this software available to hobbyista. Most
directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobly software? Yes, but those who have been repotted
t0 us may lose in the end. They are the ohes who give hobbyists a
bad name, and should be kicked cut of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, of
bas & suggestion or comwent. Just write me at 1180 Alvarado SE, 8114,
Albugquerque, New Mexico, 87108, Nothing would please me more than
being able to hire ten programwers and deluge the hobby market with

good softvare. s
Bl Dita

8] Oates
General Partner, Micro-soft

The A Register
€he New 1Jork Times

Microsoft Buys GitHub for $7.5
Billion, Moving to Grow in Coding’s
New Era

MS' Ballmer: Linux is communism
After a short silence, Motormouth is back, folks...

A GiaremLea Von 31002000 10.10 UTC

MS ANALYSTS Steve Ballmer was the only person Lo raise the issue of Linux when he
wrapped up Microsoft's annual financial analysts meeling in Seattie, aithough he put
Sun and Oracle ahead in terms of being stronger competitors. They of course are
‘civilised’ compatitors - but the Linux crowd, in the world of Prez Steve, are communists.

€5 Give this article 2~ N

Redmond top man Satya Nadella: ‘Microsoft
LOVES Linux’

Open-source 'love' fairly runneth over at cloud event

What business
models can you
combine with open
source successfully?

e\

20 Oct 2014 at 23:45, Neil McAllster

By Steve Lohr

Model: “Open Core”, closed plugins

e “Open Core” model: core component of a product is an open
source utility; available for a fee

Model: “Open Core”, closed plugins

e “Open Core” model: core component of a product is an open
source utility; available for a fee

e Example: Apache Kafka, a distributed message broker (glue in an

event-based system)
o Product is open source, maintained by Apache foundation,

supported by company “Confluent”
o Confluent provides plugins to connect Kafka to many

different systems out-of-the-box

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those

utilities, contribute improvements back to the ecosystem
o i.e., sell expertise

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
o i.e., sell expertise
o many companies provide specialized “distributions” of these
open source infrastructure and specialized tools to improve
them; support the upstream project

Open source and the law

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)
e Open source software is generally copyrighted, with copyright
retained by contributors or assigned to a foundation/corporation

that maintains the product

Open source and the law

e Copyright provides creators with protection for creative,

intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)

e Open source software is generally copyrighted, with copyright
retained by contributors or assigned to a foundation/corporation
that maintains the product

e Copyright holder can grant a license for use, placing restrictions on
how it can be used (perhaps for a fee)

o Common open source licenses: MIT, BSD, Apache, GPL

Open source licenses

Two broad classes of open source licenses:

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

e copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the

Open source licenses

Two broad classes of open source licenses:

permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the

o goal: protect the commons, require users to contribute back

(.)

. Philosophy: do we force
Open source licenses participation, or try to
grow/incentivize itin

Two broad classes of open source licenses: 7
other ways:

e permissive licenses (e.g., MIT, Apache, B
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)
o goal: encourage adoption and use of the software

e copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the
o goal: protect the commons, require users to contribute back

Model: Dual Licensing

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing

those improvements.
e Offer custom, more permissive licenses to third parties who are

willing to pay for that (e.g. enterprise)

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

e Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

e Only possible when thereis a ,who can
unilaterally change license

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

e Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

e Only possible when thereis a ,who can
unilaterally change license

e Risk:losing control of the copyleft portion via

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

e Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

e Only possible when thereis a ,who can
unilaterally change license

e Risk:losing control of the copyleft portion via

e Examples: MySQL, Qt

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

e Example:

o Sun bought StarOffice in 1999, GPL open-sourced as
OpenOffice in 2000 with aim of fighting MS Office

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

e Example:

o Sun bought StarOffice in 1999, GPL open-sourced as
OpenOffice in 2000 with aim of fighting MS Office

o 2010: Oracle buys Sun, fires many internal developers,
frustrating external community

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

e Example:

o Sun bought StarOffice in 1999, GPL open-sourced as
OpenOffice in 2000 with aim of fighting MS Office

o 2010: Oracle buys Sun, fires many internal developers,
frustrating external community

o 2011: Community forms a foundation, creates fork LibreOffice,
OpenOffice dies off (Oracle transfers to Apache)

Model: Hosted OSS As A Service

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ ” installation of the software, as a service

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)
e Example: MongoDB Atlas (document-oriented database)

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)
e Example: MongoDB Atlas (document-oriented database)
o MongoDB created a new license to
operating MongoDB as a service

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)
e Example: MongoDB Atlas (document-oriented database)
o MongoDB created a new license to
operating MongoDB as a service
o Amazon created their own fork of the GPLed version of
MongoDB, ignored code only released under new license

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

e Much open source software was/is written in Java, creating “The
Java Trap” for open source

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

e Much open source software was/is written in Java, creating “The
Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

e Much open source software was/is written in Java, creating “The
Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

e 2007:Sunreleases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

~

Why did Sun release
Another example: Java & ope| openJpk?

e While the Java specification is public, t
source Java runtime implementation _

™\

J

e Much open source software was/is written in Java, creating “The

Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting

them from using the term “Java”

e 2007:Sunreleases OpenJDK under GPL; third party projects

abandoned mostly uncompleted

~

Why did Sun release
Another example: Java & ope| openJpk?
They feared

e While the Java specification is public, t
of Java.

source Java runtime implementation _

™\

J

e Much open source software was/is written in Java, creating “The

Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting

them from using the term “Java”

e 2007:Sunreleases OpenJDK under GPL; third party projects

abandoned mostly uncompleted

Another example: Android

Another example: Android

e Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

Another example: Android

e Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

e Android is entirely open source, built on Linux; applications are
written in Java, executed using a custom-built runtime

Another example: Android

Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself
Android is entirely open source, built on Linux; applications are
written in Java, executed using a custom-built runtime

To provide implementations of (e.g. java.util.X),
Android used the open source Apache Harmony implementations

Another example: Android

e Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

e Androidis entirely open source, built on Linux; applications are
written in Java, executed using a custom-built runtime

e To provide implementations of (e.g. java.util.X),
Android used the open source Apache Harmony implementations

e Oraclev Google: Oracle asserted that Java APls were their
property (copyright) and Google misused that; judge ruled that
APIs specifications cannot be copyrighted

Risks of using Open Source in Industry

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:
o Adopting libraries with copyleft clause generally means what
you distribute linked against that library must also have same
copyleft clause (and be open source)

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:

o Adopting libraries with copyleft clause generally means what
you distribute linked against that library must also have same
copyleft clause (and be open source)

o Including permissive-licensed software in copyleft-licensed
software is generally compatible

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:

o Adopting libraries with copyleft clause generally means what
you distribute linked against that library must also have same
copyleft clause (and be open source)

o Including permissive-licensed software in copyleft-licensed
software is generally compatible

e Areyou certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Risks of using Open Source

e Arelicenses compatible? A significa
copyleft:

o Adopting libraries with copyleft A

Industry must balance
these risks against the

of OSS:
reusing existing code

~

At

you distribute linked against that library must also have same
copyleft clause (and be open source)
o Including permissive-licensed software in copyleft-licensed

software is generally compatible

e Areyou certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

e Tools like GitHub Copilot as you program,
based on the Codex model

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)
e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code
from public GitHub repositories

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)
e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code
from public GitHub repositories
e Ongoing over:

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code

from public GitHub repositories

e Ongoing over:

o Does training Codex on public code violate copyleft licenses?

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)
e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code
from public GitHub repositories
e Ongoing over:
o Does training Codex on public code violate copyleft licenses?
o Who is the owner of Copilot’s output, especially when it is
similar to public code that has an owner?

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in

public repositories on GitHub (e.gzaé"“““'“'f y
Many companies forbid)

e Tools like GitHub Copilot their devel ’ ,
based on the Codex model elr cve o.pe.rs romusing
Copilot or similar tools

o Copilot has been observed tc ,
. . because of the risks from
from public GitHub repositor H ooal battles!
e Ongoing over: \hese legal batties: J
o Does training Codex on public code violate copyleft licenses?
o Who is the owner of Copilot’s output, especially when it is
similar to public code that has an owner?

Takeaways: free and open-source software

e Free software and open-source software represent different
philosophies about how code should be shared:
o Free software: if | share with you, you need to share with me
o Open source software: | share with you, you do what you want
e Because software is copyrightable, licenses enforce philosophy
O licenses enforce free software principles
e Many viable open source business models, but all have risks
e Licensing concerns are the main reason to avoid open-source code
in industry (industry loves permissive licenses)

Free and Open-source Software

Today’s agenda:

e Finish static analysis slides

e Reading Quiz

e History + the “free software” philosophy

e Open-source: licenses and business models
e Mid-semester survey: how am | doing?

Mid-semester survey: anonymous

https://tinyurl.com/3r9{87 3j

https://tinyurl.com/3r9j873j

