
Languages
Martin Kellogg

Languages

Today’s agenda:

● Reading Quiz
● how do programming languages differ?

Languages

Today’s agenda:

● Reading Quiz
● how do programming languages differ?

Reading quiz: languages

Q1: what problem with Go inspired the author’s team to rewrite
their service in Rust?
A. Go lacks generics
B. Go is owned by Google, but Rust is open-source
C. they wanted to use the new “tokio” async library, which is only

available in Rust
D. Go’s garbage collector was causing performance problems

Q2: TRUE or FALSE: Discord used an unstable version of a Rust
async library, even though they knew that it carried risks

Reading quiz: languages

Q1: what problem with Go inspired the author’s team to rewrite
their service in Rust?
A. Go lacks generics
B. Go is owned by Google, but Rust is open-source
C. they wanted to use the new “tokio” async library, which is only

available in Rust
D. Go’s garbage collector was causing performance problems

Q2: TRUE or FALSE: Discord used an unstable version of a Rust
async library, even though they knew that it carried risks

Reading quiz: languages

Q1: what problem with Go inspired the author’s team to rewrite
their service in Rust?
A. Go lacks generics
B. Go is owned by Google, but Rust is open-source
C. they wanted to use the new “tokio” async library, which is only

available in Rust
D. Go’s garbage collector was causing performance problems

Q2: TRUE or FALSE: Discord used an unstable version of a Rust
async library, even though they knew that it carried risks

Languages

Today’s agenda:

● Reading Quiz
● how do programming languages differ?

Why discuss programming languages at all?

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

● it’s fairly rare that you get to choose a language, but when you do,
it’s a big responsibility!

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

● it’s fairly rare that you get to choose a language, but when you do,
it’s a big responsibility!
○ lecture goal: give you tools to evaluate the trade-offs

between different languages

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

● it’s fairly rare that you get to choose a language, but when you do,
it’s a big responsibility!
○ lecture goal: give you tools to evaluate the trade-offs

between different languages

Advice before we go further:
when you inherit a code base,
don’t try to rewrite it right
away in a “better” language:
it’s usually not worth it

How can programming languages differ?

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs

● usually based on some kind of mathematical foundation

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs

● usually based on some kind of mathematical foundation
● common, important paradigms we’ll discuss today:

○ imperative
○ functional
○ object-oriented

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: ???

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = ?
○ array that is destructively updated = ?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = instructions to the processor
○ array that is destructively updated = ?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = instructions to the processor
○ array that is destructively updated = registers/memory/disk

Imperative programming: examples

Languages with imperative programming (non-exhaustive list):

Imperative programming: examples

Languages with imperative programming (non-exhaustive list):

● FORTRAN
● C
● C++
● Python
● Java
● JavaScript/TypeScript
● many, many others!

Imperative programming: examples

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

Imperative programming: examples

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

semicolons separate
commands, program is a list of
commands

Imperative programming: examples

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

destructive updates of
memory cells

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function
○ lambda calculus is as powerful as Turing machines

■ “as powerful” = anything you can compute with a Turing
machine can also be computed with the lambda calculus

● functional programming models math well
○ it is easier to formally reason about functional programs

Functional programming: characteristics

● Computation = evaluating (math) functions

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands
● Important Features of functional languages:

○ Higher-order, first-class functions
○ Closures and recursion
○ Lists and list processing

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands
● Important Features of functional languages:

○ Higher-order, first-class functions
○ Closures and recursion
○ Lists and list processing

Let’s look at how
imperative and functional
languages manage state in
a bit more detail

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

● Functional programs yield new similar states over time.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

● Functional programs yield new similar states over time.
○ let x = y in … , however, only changes x’s value within

the scope of the …

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

NOT the same as a semi-colon:
commands vs expressions

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

even the operators are
type-safe (in OCaml)

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

commands still exist, but
limited to inherently
“imperative” operations (I/O,
saving to disk, etc.)

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

no “return” statement,
because everything is an
expression

Examples of functional languages

Examples of functional languages

● Lisp
● OCaml/SML
● Haskell

Examples of functional languages

● Lisp
● OCaml/SML
● Haskell
● Python
● JavaScript/TypeScript
● Java (???)
● Closure
● Ruby
● etc.

Examples of functional languages

● Lisp
● OCaml/SML
● Haskell
● Python
● JavaScript/TypeScript
● Java (???)
● Closure
● Ruby
● etc.

Functional advantages

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the

result

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the

result
● “No” side-effects

○ Fewer errors

Functional disadvantages

Functional disadvantages

● Efficiency
○ Copying takes time

Functional disadvantages

● Efficiency
○ Copying takes time

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

● Unfamiliar (to you, and maybe those
you’re hiring!)
○ New programming style

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

● Unfamiliar (to you, and maybe those
you’re hiring!)
○ New programming style

● Not appropriate for every program
○ Some programs are inherently stateful

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism:

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism: type systems? dictionaries?
○ still something of an open research problem

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism: type systems? dictionaries?
○ still something of an open research problem

● extraordinarily common

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism: type systems? dictionaries?
○ still something of an open research problem

● extraordinarily common
● models the real world well

○ objects are good abstractions for real-world entities and
concepts

Object-oriented programming gotchas

● classes vs prototypes

Object-oriented programming gotchas

● classes vs prototypes
○ a class is a template for building objects (but is not itself an

object!)
○ a prototype is an object that is used as a template for building

other objects

Object-oriented programming gotchas

● classes vs prototypes
○ a class is a template for building objects (but is not itself an

object!)
○ a prototype is an object that is used as a template for building

other objects
● similar, but lead to subtle differences

○ prototypes can be modified at run time!

Object-oriented programming gotchas

● classes vs prototypes
○ a class is a template for building objects (but is not itself an

object!)
○ a prototype is an object that is used as a template for building

other objects
● similar, but lead to subtle differences

○ prototypes can be modified at run time!Which of the two does
Java use? What about
JavaScript?

Object-oriented programming languages

Object-oriented programming languages

● Smalltalk
● Java
● C++
● C#
● Python
● JavaScript/TypeScript
● Swift
● R
● etc.

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

What is a type system, anyway?

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

● type theory is the discipline of math (yes!) that studies the formal
properties of type systems

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

● type theory is the discipline of math (yes!) that studies the formal
properties of type systems

● most programming languages include some kind of type system
○ exceptions: assembly, Lisp, a few others

Kinds of type systems

● Static vs dynamic checking

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime
■ shares advantages/disadvantages with other dynamic

analyses

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime
■ shares advantages/disadvantages with other dynamic

analyses
● Insight: typechecking is just another program analysis

Static vs dynamic types

● Both are common in practice

Static vs dynamic types

● Both are common in practice
○ examples of each?

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ ???
○ Benefits of dynamic typing:

■ ???

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ early detection of errors, types are documentation
○ Benefits of dynamic typing:

■ faster prototyping, no false positives

Other ways type systems differ

Other ways type systems differ

● Implicit vs explicit

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties
○ e.g., Kotlin guarantees no null-pointer dereferences, but Java

doesn’t (both compile to Java bytecode)

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties
○ e.g., Kotlin guarantees no null-pointer dereferences, but Java

doesn’t (both compile to Java bytecode)
○ stronger types can be added to a language (ask me more)

■ “pluggable types”

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

Remember: Don’t Repeat Yourself
If someone else has already built
what you need, don’t build it again

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

● Tied to language popularity: languages that are more popular
have better libraries, so people are more likely to use them
○ positive feedback loop!

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

● Tied to language popularity: languages that are more popular
have better libraries, so people are more likely to use them
○ positive feedback loop!

● Common situation: you need library A and library B, but A is
written in language L and B is written in language M
○ What to do?

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

Multi-language projects are common!
Developer quote: ““My last 4 jobs have been apps
that called: Java from C#, and C# from F#; Java from
Ruby; Python from Tcl, C++ from Python, and C from
Tcl; Java from Python, and Java from Scheme (And
that's not even counting SQL, JS, OQL, etc.)””

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application

For example, concurrency might be better
handled in F#/OCaml (immutable functional) or
Ruby (designed to hide such details), while
low-level OS or hardware access is much easier
in C or C++, while rapid prototyping is much
easier in Python or Lua, etc.

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language
○ Scripts are written in a dynamically typed, interpreted language

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language
○ Scripts are written in a dynamically typed, interpreted language

Examples: Emacs (C / Lisp), Adobe Lightroom (C++
/ Lua), NRAO Telescope (C / Python), Google
Android (C / Java), most games (C++ / Lua), etc.

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language
○ Scripts are written in a dynamically typed, interpreted language

Examples: Emacs (C / Lisp), Adobe Lightroom (C++
/ Lua), NRAO Telescope (C / Python), Google
Android (C / Java), most games (C++ / Lua), etc.

C/C++ is a
lingua franca

Multi-language projects

● Another common approach: common language infrastructure
○ enables easy integration and interoperability

Multi-language projects

● Another common approach: common language infrastructure
○ enables easy integration and interoperability

● Examples:
○ .NET framework (Microsoft)

■ C++, C#, J#, F#, Visual Basic, etc.
○ Java bytecode + Java virtual machine

■ Java, Scala, Kotlin, Closure, etc.
○ LLVM bytecode
○ etc.

Multi-language projects: complications

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next week) becomes more complicated

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next week) becomes more complicated
● Developer expertise is required in multiple languages

○ Must understand types (etc.) in all languages

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next week) becomes more complicated
● Developer expertise is required in multiple languages

○ Must understand types (etc.) in all languages
● Most tools are language specific: testing frameworks (+ generation,

coverage, etc.), static analysis, build systems, debuggers, etc.

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Language performance

● Three main axes to trade-off between languages:

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write
○ Python: easy to write, okay safety, slow

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write
○ Python: easy to write, okay safety, slow
○ C: good performance, easy-ish to write, very unsafe

What impacts performance

What impacts performance

● #1: safety features enforced at run time

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations
○ interpreted languages almost always slower: no optimizing

compiler

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations
○ interpreted languages almost always slower: no optimizing

compiler
○ JITs (just-in-time compilers) can produce surprisingly fast code

■ e.g., Java Virtual Machine

Trade-off: safety features

● #1 performance problem: safety features enforced at run time

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

■ the garbage collector in Java/Go/etc. is automatic
■ but writing Rust code requires follows its (complex) type

discipline

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

■ the garbage collector in Java/Go/etc. is automatic
■ but writing Rust code requires follows its (complex) type

discipline
○ bottom line: statically safe languages can be faster, but are

generally harder to program in

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Team/process factors

● Learning a new programming language takes time

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!
● If you need performance, you usually need at least one expert

○ cf. AWS employs some JVM experts to tune the garbage
collector for AWS services that use Java

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!
● If you need performance, you usually need at least one expert

○ cf. AWS employs some JVM experts to tune the garbage
collector for AWS services that use Java

Implication: if you’re going to need an expert,
make sure you have one! This often seriously limits
your choice of languages in practice :(

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster
○ but this impact is relatively small over a typical engineer’s

tenure at a company

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster
○ but this impact is relatively small over a typical engineer’s

tenure at a company
● Implication: if all else is equal, choose the more popular language

When to rewrite

● the reading talked about moving a service from Go to Rust
○ why?

When to rewrite

● the reading talked about moving a service from Go to Rust
○ why? Performance problems.

● This is usually a risky thing to do:
○ you’re not building new features
○ integration problems
○ will the benefits be worth it?

When to rewrite

● the reading talked about moving a service from Go to Rust
○ why? Performance problems.

● This is usually a risky thing to do:
○ you’re not building new features
○ integration problems
○ will the benefits be worth it?

Implication: rewriting is a good idea if you’re
confident that the benefits of the new language are
worthwhile, but be cautious: it can expensive!

Takeaways

● there is a wider world of languages than just imperative and
object-oriented (but those are the most popular)
○ learning to write functional code can make you a better

programmer
● different programming languages have different trade-offs

○ performance vs safety vs ease of use vs …
● when starting a new project, think carefully about the requirements

before choosing a language
● rewrite a project in a new language only after careful consideration

