
SRC Technical Note

1994 - 001

December 16, 1994

Introduction to TLA

Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved



A Simple Example

We begin by specifying a system that starts with x equal to 0 and keeps

incrementing x by 1 forever. In a conventional programming language, this

might be written

initially x = 0 ;

loop forever x := x+ 1 end loop

The TLA speci�cation is a formula � de�ned as follows, where the meaning

of each conjunct is indicated by the comments.

�
�

= (x = 0) Initially, x equals 0.

^ 2[x0 = x+ 1]x Always (2), the value of x in the next

state (x0) equals its value in the current

state (x) plus 1. Ignore the subscript x

for now.

^ WFx(x
0 = x+ 1) Ignore this for now.

As speci�cations get more complicated, we need better methods of writing

formulas. We use lists of formulas bulleted with ^ and _ to denote conjunc-

tions and disjunctions, and we use indentation to eliminate parentheses. The

de�nition of � can then be written as

�
�
= ^ x = 0

^ 2[x0 = x+ 1]x
^WFx(x

0 = x+ 1)

What a Formula Means

A TLA formula is true or false on a behavior, which is a sequence of states,

where a state is an assignment of values to variables. Formula � is true on a

behavior in which the ith state assigns the value i� 1 to x, for i = 1; 2; : : : .

Systems are real; behaviors are mathematical objects. To decide if a

system S satis�es formula �, we must �rst have a way of representing an

execution of S as a behavior (a sequence of states). Given such a represen-

tation, we say that system S satis�es formula � (or that S implements the

speci�cation �) i� (if and only if) � is true for every behavior corresponding

to a possible execution of S.

1



Another Example

Next, we specify a system that starts with x and y both equal to 0 and re-

peatedly increments x and y by 1. A step increments either x or y (but not

both). The variables are incremented in arbitrary order, but each is incre-

mented in�nitely often. This system might be represented in a conventional

programming language as

initially x = 0, y = 0 ;

cobegin

loop forever x := x+ 1 end loop k

loop forever y := y + 1 end loop

coend

The TLA speci�cation is the formula �, de�ned as follows. For convenience,

we �rst de�ne two formulas X and Y, and then de�ne � in terms of X and Y.

X
�
= ^ x

0 = x+ 1 An X step is one that increments x

^ y
0 = y and leaves y unchanged.

Y
�
= ^ y

0 = y + 1 A Y step is one that increments y

^ x
0 = x and leaves x unchanged.

�
�

= ^ (x = 0) ^ (y = 0) Initially, x and y equal 0.

^ 2[X _ Y]hx;yi Every step is either an X step or a Y step.

^WFhx;yi(X ) ^WFhx;yi(Y) As explained later, this asserts that in-

�nitely many X and Y steps occur.

Formulas X and Y are called actions. An action is true or false on a step,

which is a pair of states|an old state, described by unprimed variables, and

a new state, described by primed variables.

Implementation and Stuttering

We say that a speci�cation (TLA formula) F implements a speci�cation G

i� every system that satis�es F also satis�es G. This is true if every behavior

that satis�es F also satis�es G, which means that all behaviors satisfy the

formula F ) G. A formula is said to be valid i� it is satis�ed by all behaviors.

(\All behaviors" means all sequences of states, not just ones that represent

the execution of some particular system.) So, F implementsG if the formula

F ) G is valid. Implementation is implication.

2



A system that repeatedly increments x and y repeatedly increments x.

Therefore, speci�cation � should implement speci�cation �. This means

that every behavior satisfying � should also satisfy �. Behaviors that satisfy

� allow steps that increment y and leave x unchanged. Therefore, � must

allow steps that leave x unchanged. That's where the subscript x comes in.

For any action (Boolean formula containing constants, variables and primed

variables) A and every state function (expression containing only constants

and unprimed variables) f , we de�ne

[A]f
�
= A _ (f 0 = f)

where f 0 is the expression obtained by priming all the variables in f . Thus,

a step satis�es [A]f i� it satis�es A or it leaves f unchanged. The formula

2[A]f asserts that every step is an A step (one that satis�es A) or leaves f

unchanged. Hence, the conjunct 2[x0 = x + 1]x of � does allow steps that

leave x unchanged. Such steps are called stuttering steps.

In mathematics, the formula x
2 = x + 1 is not an assertion about a

universe just containing x; it is an assertion about a universe containing all

possible variables, including x, y, and z. The formula x
2 = x + 1 simply

doesn't say anything about y and z. Similarly, formula � is an assertion

about sequences of states, where a state is an assignment of values to all

variables, not just to x. Formula � speci�es a system whose execution is

described by the changes to x. But a behavior represents a history of some

entire universe containing that system. To be a sensible speci�cation, �

must allow stuttering steps in which other parts of the universe change while

x remains unchanged.

Similarly, � allows steps that leave the pair hx; yi unchanged, and there-

fore leave both x and y unchanged. If we are just observing x and y, then

there is no way to tell that such a step has occurred.

Stuttering steps make it unnecessary to consider �nite behaviors. An

execution in which a system halts is represented by an in�nite behavior in

which the variables describing that system stop changing after a �nite number

of steps. When a system halts, it doesn't mean that the entire universe comes

to an end. Thus, by a behavior, we mean an in�nite sequence of states.

Fairness

Formula 2[x0 = x+1]x allows arbitrarily many steps that leave x unchanged.

In fact, it is satis�ed by a behavior in which x never changes. We want to

3



require that x be incremented in�nitely many times, so our speci�cation must

rule out behaviors in which x is incremented only a �nite number of times.

This is accomplished by the WF formula, as we now explain.

An action A is said to be enabled in a state s i� there exists some state t

such that the pair of states hold-state s; new-state ti satis�es A. The formula

WFf (A) asserts of a behavior that, if the action A ^ (f 0 6= f) ever becomes

enabled and remains enabled forever, then in�nitely manyA^ (f 0 6= f) steps

occur. In other words, if it ever becomes possible and remains forever possible

to execute an A step that changes f , then in�nitely many such steps must

occur.

Any integer can be incremented by 1 to produce a di�erent integer. Hence,

the action (x0 = x+1)^(x0 6= x) is enabled in any state where x is an integer.

The formula (x = 0) ^2[x0 = x+ 1]x, which asserts that x is initially 0 and

in every step is either incremented by 1 or left unchanged, implies that x is

always an integer. Hence, this formula implies that (x0 = x + 1) ^ (x0 6= x)

is always enabled. Hence, the conjunct WFx(x
0 = x + 1) of � asserts that

in�nitely many (x0 = x + 1) ^ (x0 6= x) steps occur. Hence, � asserts that x

is incremented in�nitely often, as desired.

Similarly, (x = 0) ^ 2[X _ Y]hx;yi implies that x is always an integer,

so X ^ (hx; yi0 6= hx; yi) is always enabled. Hence, � implies that x is in-

cremented in�nitely often. Every behavior satisfying � does satisfy �, so

�) � is valid.

WF stands for Weak Fairness. TLA speci�cations also use Strong Fair-

ness formulas of the form SFf (A), where f is a state function and A an

action. This formula asserts that if A ^ (f 0 6= f) is enabled in�nitely often

(in in�nitely many states of the behavior), then in�nitely many A^ (f 0 6= f)

steps must occur. If an action ever becomes enabled forever, then it is enabled

in�nitely often. Hence, SFf (A) impliesWFf (A); strong fairness implies weak

fairness.

The subscripts in WF and SF formulas (and in the formula 2[N ]f) make

it syntactically impossible to write a formula that can distinguish whether or

not stuttering steps have occurred. In practice, whenever we write a formula

of the form WFf(A) or SFf(A), action A will imply f
0 6= f , so any A step

changes f .

4



Hiding

The formula 999999y : � is satis�ed by a behavior i� there is some sequence of

values that can be assigned to y which would produce a behavior satisfying

�. (This de�nition is only approximately correct; see [2] for the precise

de�nition.) The temporal existential quanti�er 999999y is the formal expression

of what it means to \hide" the variable y in a speci�cation. If we hide

y in a speci�cation asserting that x and y are repeatedly incremented, we

get a speci�cation asserting that x is repeatedly incremented. Thus, the

speci�cation obtained by hiding y in � should be equivalent to �. Indeed, the

formula 999999y : � is equivalent to �. In other words, the formula (999999y : �) � �

is valid.

Composition

Let X and Y be the actions de�ned above, and let

�x

�
= (x = 0) ^2[X ]x ^WFhx;yi(X )

�y

�
= (y = 0) ^ 2[Y]y ^WFhx;yi(Y)

A simple calculation shows that, if x and y are integers, then [X ]x ^ [Y]y
is equivalent to [X _ Y]hx;yi. It follows from this and the laws of temporal

logic that �x ^ �y is equivalent to �. We can interpret �x and �y as the

speci�cations of two processes, one repeatedly incrementing x and the other

repeatedly incrementing y, in a program whose variables are x and y. Com-

posing two such processes yields a program, with variables x and y, that

repeatedly increments both x and y|the program speci�ed by �.

In general, a speci�cation F of a system S describes the behaviors (repre-

senting histories) of a universe in which S operates correctly. A speci�cation

G of a system T describes behaviors of the same universe in which T operates

correctly. Composing S and T means ensuring that both S and T operate

correctly in that universe. The behaviors of a universe in which both sys-

tems operate correctly are described by the formula F ^ G. Composition is

conjunction.

Assumption/Guarantee Speci�cations

An assumption/guarantee speci�cation asserts that a system operates cor-

rectly if the environment does. Let M be a formula asserting that the sys-

5



tem does what we want it to, and let E be a formula asserting that the

environment does what it is supposed to. We would expect the assump-

tion/guarantee speci�cation to be E )M , the formula asserting that either

M is satis�ed (the system behaved as desired) or E is not satis�ed (the en-

vironment did not behave correctly). However, we instead write the stronger

speci�cation E
+
�. M , which asserts both that E implies M , and that no

step can make M false unless E has already been made false. The precise

meaning of the formula E +
�. M is given in [1].

All of TLA

TLA is built on a logic of actions, which is a language for writing predi-

cates, state functions, and actions, and a logic for reasoning about them. A

predicate is a Boolean expression containing constants and variables; a state

function is a nonBoolean expression containing constants and variables; and

an action is a Boolean expression containing constants, variables, and primed

variables. The complete speci�cation language TLA+, described elsewhere,

includes such a language.

Syntactically, a TLA formula has one of the following forms:

P 2[A]f 2F 999999x : F

:F F ^ G F _ G F ) G F � G

WFf (A) SFf (A) F
+
�. G 3F F ; G

where P is a predicate, f is a state function, A is an action, x is a variable,

and F and G are TLA formulas. The last row of formulas can be expressed

in terms of the others (and of course, all the Boolean operators can be de-

�ned from : and ^). The Boolean operators have their usual meanings; the

meanings of the other operators are described below.

P Satis�ed by a behavior i� P is true for (the values assigned to vari-

ables by) the initial state.

2[A]f Satis�ed by a behavior i� every step satis�es A or leaves f un-

changed.

2F (F is always true.) Satis�ed by a behavior i� F is true for all su�xes

of the behavior.

6



999999x : F Satis�ed by a behavior i� there are some values that can be assigned

to x to produce a behavior satisfying F . (See [2] for the precise

de�nition.)

WFf (A) (Weak fairness of A) Satis�ed by a behavior i� A ^ (f 0 6= f) is

in�nitely often not enabled, or in�nitely many A ^ (f 0 6= f) steps

occur.

SFf (A) (Strong fairness of A) Satis�ed by a behavior i� A^ (f 0 6= f) is only

�nitely often enabled, or in�nitely many A ^ (f 0 6= f) steps occur.

F
+
�. G Is true for a behavior i� G is true for at least as long as F is. (See

[1] for the precise de�nition.)

3F (F is eventually true) De�ned to be :2:F .

F ; G (Whenever F is true, G will eventually become true) De�ned to be

2(F ) 3G).

References

[1] Mart��n Abadi and Leslie Lamport. Conjoining speci�cations. ACM

Transactions on Programming Languages and Systems, 17(3):507{534,

May 1995.

[2] Leslie Lamport. The temporal logic of actions. ACM Transactions on

Programming Languages and Systems, 16(3):872{923, May 1994.

7


