SRC Technical Note
1994 - 001
December 16, 1994

Introduction to TLA

Leslie Lamport

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com /SRC/

Copyright ©Digital Equipment Corporation 1997. All rights reserved

A Simple Example

We begin by specifying a system that starts with = equal to 0 and keeps
incrementing x by 1 forever. In a conventional programming language, this
might be written

initially « =0 ;
loop forever = :=ax+1 end loop

The TLA specification is a formula Il defined as follows, where the meaning
of each conjunct is indicated by the comments.

o= (x =0) Initially, z equals 0.

A O =x+ 1], Always (0O), the value of z in the next
state (2') equals its value in the current
state (z) plus 1. Ignore the subscript
for now.

AN WF (2" =a+ 1) Ignore this for now.

As specifications get more complicated, we need better methods of writing
formulas. We use lists of formulas bulleted with A and V to denote conjunc-
tions and disjunctions, and we use indentation to eliminate parentheses. The
definition of II can then be written as

I 2 Az=0
A DO =a+ 1],
ANWF (' =241)

What a Formula Means

A TLA formula is true or false on a behavior, which is a sequence of states,
where a state is an assignment of values to variables. Formula II is true on a
behavior in which the ‘" state assigns the value ¢ — 1 to z, for ¢ = 1,2,....

Systems are real; behaviors are mathematical objects. To decide if a
system S satisfies formula II, we must first have a way of representing an
execution of S as a behavior (a sequence of states). Given such a represen-
tation, we say that system S satisfies formula II (or that S implements the
specification IT) iff (if and only if) II is true for every behavior corresponding
to a possible execution of 5.

Another Example

Next, we specify a system that starts with and y both equal to 0 and re-
peatedly increments x and y by 1. A step increments either & or y (but not
both). The variables are incremented in arbitrary order, but each is incre-
mented infinitely often. This system might be represented in a conventional
programming language as

initially =0,y =0
cobegin
loop forever z:=x+41 end loop ||
loop forever y:=y+1 end loop
coend

The TLA specification is the formula ®, defined as follows. For convenience,
we first define two formulas X and), and then define ® in terms of X and).

X 2 A=z 4+ 1 An A step is one that increments «

ANy =y and leaves y unchanged.
Y = A Yy =y+1 A Y stepis one that increments y
ANl = and leaves unchanged.
d = A (x=0)A(y=0) Initially, and y equal 0.
ADO[XV y]@m Every step is either an A’ step or a Y step.

A WF(L@/)(X) A WF(M/)O}) As explained later, this asserts that in-
finitely many A" and Y steps occur.

Formulas X' and Y are called actions. An action is true or false on a step,
which is a pair of states—an old state, described by unprimed variables, and
a new state, described by primed variables.

Implementation and Stuttering

We say that a specification (TLA formula) F' implements a specification ¢
iff every system that satisfies I also satisfies . This is true if every behavior
that satisfies [’ also satisfies (&, which means that all behaviors satisfy the
formula F' = (. A formulais said to be valid iff it is satisfied by all behaviors.
(“All behaviors” means all sequences of states, not just ones that represent
the execution of some particular system.) So, F' implements (if the formula
F = (G is valid. Implementation is implication.

A system that repeatedly increments x and y repeatedly increments z.
Therefore, specification ® should implement specification II. This means
that every behavior satisfying ® should also satisfy II. Behaviors that satisfy
® allow steps that increment y and leave unchanged. Therefore, Il must
allow steps that leave x unchanged. That’s where the subscript = comes in.
For any action (Boolean formula containing constants, variables and primed
variables) A and every state function (expression containing only constants
and unprimed variables) f, we define

Ay = AV(f' =)

where f’ is the expression obtained by priming all the variables in f. Thus,
a step satisfies [A]; iff it satisfies A or it leaves f unchanged. The formula
O[A]; asserts that every step is an A step (one that satisfies A) or leaves f
unchanged. Hence, the conjunct O[a’ = x 4 1], of 1I does allow steps that
leave = unchanged. Such steps are called stuttering steps.

In mathematics, the formula 2* = z 4+ 1 is not an assertion about a
universe just containing x; it is an assertion about a universe containing all
possible variables, including z, y, and z. The formula z? = 2 + 1 simply
doesn’t say anything about y and z. Similarly, formula II is an assertion
about sequences of states, where a state is an assignment of values to all
variables, not just to x. Formula II specifies a system whose execution is
described by the changes to x. But a behavior represents a history of some
entire universe containing that system. To be a sensible specification, II
must allow stuttering steps in which other parts of the universe change while
x remains unchanged.

Similarly, ® allows steps that leave the pair (x,y) unchanged, and there-
fore leave both = and y unchanged. If we are just observing x and y, then
there is no way to tell that such a step has occurred.

Stuttering steps make it unnecessary to consider finite behaviors. An
execution in which a system halts is represented by an infinite behavior in
which the variables describing that system stop changing after a finite number
of steps. When a system halts, it doesn’t mean that the entire universe comes
to an end. Thus, by a behavior, we mean an infinite sequence of states.

Fairness

Formula O[z" = x4 1], allows arbitrarily many steps that leave unchanged.
In fact, it is satisfied by a behavior in which = never changes. We want to

require that x be incremented infinitely many times, so our specification must
rule out behaviors in which x is incremented only a finite number of times.
This is accomplished by the WF formula, as we now explain.

An action A is said to be enabled in a state s iff there exists some state ¢
such that the pair of states (old-state s, new-state ¢) satisfies A. The formula
WF(A) asserts of a behavior that, if the action A A (f' # f) ever becomes
enabled and remains enabled forever, then infinitely many AA (f # f) steps
occur. In other words, if it ever becomes possible and remains forever possible
to execute an A step that changes f, then infinitely many such steps must
occur.

Any integer can be incremented by 1 to produce a different integer. Hence,
the action (2’ = @+ 1)A (2’ #) is enabled in any state where x is an integer.
The formula (x = 0) A O[z" = « + 1],, which asserts that x is initially 0 and
in every step is either incremented by 1 or left unchanged, implies that « is
always an integer. Hence, this formula implies that (2’ = 2 4+ 1) A (2' #)
is always enabled. Hence, the conjunct WF, (2" = x + 1) of II asserts that
infinitely many (' = x 4+ 1) A (¢/ # x) steps occur. Hence, Il asserts that x
is incremented infinitely often, as desired.

Similarly, (z = 0) A O[X V Y],y implies that z is always an integer,
so XA ((x,y) # (x,y)) is always enabled. Hence, ® implies that x is in-
cremented infinitely often. Every behavior satisfying ® does satisfy II, so
¢ = II is valid.

WF stands for Weak Fairness. TLA specifications also use Strong Fair-
ness formulas of the form SF;(A), where f is a state function and A an
action. This formula asserts that if AA (f' # f) is enabled infinitely often
(in infinitely many states of the behavior), then infinitely many AA (f" # f)
steps must occur. If an action ever becomes enabled forever, then it is enabled
infinitely often. Hence, SF(.A) implies WF;(A); strong fairness implies weak
fairness.

The subscripts in WF and SF formulas (and in the formula O[A];) make
it syntactically impossible to write a formula that can distinguish whether or
not stuttering steps have occurred. In practice, whenever we write a formula
of the form WF;(A) or SF(A), action A will imply f* # f, so any A step
changes f.

Hiding

The formula dy : ® is satisfied by a behavior iff there is some sequence of
values that can be assigned to y which would produce a behavior satisfying
®. (This definition is only approximately correct; see [2] for the precise
definition.) The temporal existential quantifier 3y is the formal expression
of what it means to “hide” the variable y in a specification. If we hide
y in a specification asserting that = and y are repeatedly incremented, we
get a specification asserting that x is repeatedly incremented. Thus, the
specification obtained by hiding y in ® should be equivalent to II. Indeed, the
formula Ay : ¢ is equivalent to II. In other words, the formula (y : &) = 1l
is valid.

Composition
Let X and Y be the actions defined above, and let
I, = (z=0)
I, = (y=0)

A simple calculation shows that, if @ and y are integers, then [X], A [V],
is equivalent to [X'V V], It follows from this and the laws of temporal
logic that II, A I, is equivalent to ®. We can interpret 11, and II, as the

[

[.X]x A WF(%Z/)(‘X)
[V]y A WE @) (V)

0)ADO
0)AD

specifications of two processes, one repeatedly incrementing and the other
repeatedly incrementing y, in a program whose variables are z and y. Com-
posing two such processes yields a program, with variables x and y, that
repeatedly increments both = and y—the program specified by ®.

In general, a specification F' of a system S describes the behaviors (repre-
senting histories) of a universe in which S operates correctly. A specification
(G of a system T' describes behaviors of the same universe in which T' operates
correctly. Composing S and T means ensuring that both S and T operate
correctly in that universe. The behaviors of a universe in which both sys-
tems operate correctly are described by the formula F' A G. Composition is
conjunction.

Assumption/Guarantee Specifications

An assumption/guarantee specification asserts that a system operates cor-
rectly if the environment does. Let M be a formula asserting that the sys-

tem does what we want it to, and let E be a formula asserting that the
environment does what it is supposed to. We would expect the assump-
tion/guarantee specification to be £ = M, the formula asserting that either
M is satisfied (the system behaved as desired) or F is not satisfied (the en-
vironment did not behave correctly). However, we instead write the stronger
specification £/ > M, which asserts both that £ implies M, and that no
step can make M false unless F has already been made false. The precise
meaning of the formula £ *> M is given in [1].

All of TLA

TLA is built on a logic of actions, which is a language for writing predi-
cates, state functions, and actions, and a logic for reasoning about them. A
predicate is a Boolean expression containing constants and variables; a state
function is a nonBoolean expression containing constants and variables; and
an action is a Boolean expression containing constants, variables, and primed
variables. The complete specification language TLAY, described elsewhere,
includes such a language.
Syntactically, a TLA formula has one of the following forms:

P O[A]; OF a2 F
- FAG Fvd F= F=d
WE,(A) SF¢(A) F%G OF F~ G

where P is a predicate, f is a state function, A is an action, x is a variable,
and F' and G are TLA formulas. The last row of formulas can be expressed
in terms of the others (and of course, all the Boolean operators can be de-
fined from — and A). The Boolean operators have their usual meanings; the
meanings of the other operators are described below.

P Satisfied by a behavior iff P is true for (the values assigned to vari-
ables by) the initial state.

O[A]; Satisfied by a behavior iff every step satisfies A or leaves f un-
changed.

ar (F is always true.) Satisfied by a behavior iff F'is true for all suffixes
of the behavior.

dx: F Satisfied by a behavior iff there are some values that can be assigned
to « to produce a behavior satisfying F. (See [2] for the precise
definition.)

WF(A) (Weak fairness of A) Satisfied by a behavior ifft A A (f' # f) is
infinitely often not enabled, or infinitely many A A (f' # f) steps
occur.

SF¢(A) (Strong fairness of A) Satisfied by a behavior iff AA(f" # f) is only
finitely often enabled, or infinitely many A A (f' # f) steps occur.

F *> G Is true for a behavior iff G is true for at least as long as F' is. (See
[1] for the precise definition.)

OF (F is eventually true) Defined to be =O-F.

F ~ G (Whenever F'is true, (¢ will eventually become true) Defined to be
O(F = OG).

References

[1] Martin Abadi and Leslie Lamport. Conjoining specifications. ACM

Transactions on Programming Languages and Systems, 17(3):507-534,
May 1995.

[2] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 1994.

