What is Software
Engineering?
Martin Kellogg

Reading quiz: SE + research

Q1: TRUE or FALSE: the author argues that major results in fields
like software engineering gain credibility over time as successive
papers provide incremental improvement of the result and
progressively stronger credibility.

Q2: When and where is this class’ final exam? (Give the date, start
time, and room. Hint: it is in one of the two rooms that class is held in,
so you just need to unambiguously specify which.)

Reading quiz: SE + research

Q1: TRUE or FALSE: the author argues that major results in fields
like software engineering gain credibility over time as successive
papers provide incremental improvement of the result and
progressively stronger credibility.

Q2: When and where is this class’ final exam? (Give the date, start
time, and room. Hint: it is in one of the two rooms that class is held in,
so you just need to unambiguously specify which.)

Reading quiz: SE + research

Q1: TRUE or FALSE: the author argues that major results in fields
like software engineering gain credibility over time as successive
papers provide incremental improvement of the result and
progressively stronger credibility.

Q2: When and where is this class’ final exam? (Give the date, start
time, and room. Hint: it is in one of the two rooms that class is held in,
so you just need to unambiguously specify which.)

Monday, December 16th at 11:30am, in GITC 1100.

Announcements

e Examreview session will be on Friday evening

o 5-6:30pm on Zoom; | will post the link on Discord

o bring questions; ends early if there are no more questions
e Extra OH Friday morning 9-10:30 (but no regular OH on Thursday)
e Course evaluations close tonight

o pleasefill itout! | do read them...

o I'll give you ~15-20 minutes at the end of class today (hopefully)
e Final demo attendance is mandatory

o all demos are in my office (GITC 4314)

o time slots will be strictly enforced

What is Software Engineering?

Today’s agenda:

e Whatisresearch? How is it similar/different from SE generally?
e Your relationship to researchers, as a developer
e What sort of problems does SE research solve

What is research?

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative
o the cost of copying software is zero, so any new software has
by definition not been created before

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative
o the cost of copying software is zero, so any new software has
by definition not been created before
o this contrasts with many other fields, where practitioners
(“engineers” or otherwise) are doing anything
fundamentally novel

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative
o the cost of copying software is zero, so any new software has
by definition not been created before
o this contrasts with many other fields, where practitioners
(“engineers” or otherwise) are doing anything
fundamentally novel
m inthose field, anyone doing something new is doing
“research”

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o the key difference is that most computer science research is
meta in some way

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o the key difference is that most computer science research is
meta in some way
m e.g,it might explore how to build classes of programs,
like operating systems (OS) or compilers (PL)

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o thekey difference is that most computer science research is
meta in some way
m e.g,it might explore how to build classes of programs,
like operating systems (OS) or compilers (PL)
m or, it might explore foundational notions of what
computers can and cannot do (CS theory)

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o thekey difference is that most computer science research is
meta in some way
m e.g,it might explore how to build classes of programs,
like operating systems (OS) or compilers (PL)
m or, it might explore foundational notions of what
computers can and cannot do (CS theory)
m or explore what computers we can (arch)

What is research?

e Sothenwhat’s meta about software engineering research?

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns
o better ways to improve
m e.g., new kinds of testing, static analysis, etc.

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns
o better ways to improve software quality
m e.g., new kinds of testing, static analysis, etc.
o and anything else related to improving developer productivity

N ?)
What 1S researCh° We'll come back to this stuff later

e Sothenwhat's meta abou in the lecture in a bit more detail,
with some examples.

e Software engineering resd_)
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns
o better ways to improve
m e.g., new kinds of testing, static analysis, etc.
o and anything else related to improving developer productivity

Who does research?

Who does research?

e Most computer science research occurs in universities
o including NJIT!

Who does research?

e Most computer science research occurs in universities
o including NJIT!

e Mostresearchis actually done by students (especially PhD
students), working under a professor

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.

r 2

Who does research? Not just PhD students: as an
undergraduate you can get

e Most computer science researc| involved inresearch too (1did!)
o including NJIT! - /
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.

Who does research?

e Most computer science research occurs in universities
o including NJIT!

e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience

and training
o student does the grunt work of writing code, gather data, etc.

e Someresearchisdoneinindustry

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.

e Someresearchisdoneinindustry
o e.g., Microsoft has MSR, AWS has ARG, etc.

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.
e Someresearchisdoneinindustry
o e.g., Microsoft has MSR, AWS has ARG, etc.
o sometimes developers do research by accident, too!

Who does research?

e Most computer science research occurs in universities
o including NJIT! 7~ ™\
e Most researchis acl However, developers rarely publish
students), working their resegrch, which is important if
you want it to be a part of the total

° profeSS.OI.' SUPPIl" <um of human knowledge.
and training _ /

o student does the grunt work of writing code, gather data, etc.

e Someresearchisdoneinindustry
o e.g., Microsoft has MSR, AWS has ARG, etc.
o sometimes developers do research by accident, too!

Aside: should you do a PhD?

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)
m the PhD student’s advisor (a professor) is their boss

Aside: should you do a PhD?

e |[n my experience, most un N
like “ Another misconception: in the US,
o Thisis alongway from| You usually do not need a master’s
degree to start a PhD program!

like a job that gives yo

m for example, PhD st
although not very much (“stipends”)

m the PhD student’s advisor (a professor) is their boss

J

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)
m the PhD student’s advisor (a professor) is their boss
e For thisreason, in my opinion more undergraduates should at
least doing a PhD

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)
m the PhD student’s advisor (a professor) is their boss
e For thisreason, in my opinion more undergraduates should at
least doing a PhD
o it might be more affordable than you think!

Aside: should you do a PhD?

e Prosof doingaPhD:

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the
o some jobs are only accessible to people with PhDs:

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the
o some jobs are only accessible to people with PhDs:
m professor
e although you can teach without a PhD, you can’t get
tenure without one

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the
o some jobs are only accessible to people with PhDs:
m professor
e although you can teach without a PhD, you can’t get
tenure without one
m industrial researcher
e e.g. static analysis designer, ML architecture
developer, etc.

Aside: should you do a PhD?

e ConsofdoingaPhD:

Aside: should you do a PhD?

e ConsofdoingaPhD:
o it's abad financial decision (due to opportunity cost)
m PhD students get paid, but much less than e.g., software
engineer salaries

Aside: should you do a PhD?

e ConsofdoingaPhD:
o it's abad financial decision (due to opportunity cost)
m PhD students get paid, but much less than e.g., software
engineer salaries
o ittakes alongtime
m typically 4 to 6 years, sometimes longer

Aside: should you do a PhD?

e ConsofdoingaPhD:
o it's abad financial decision (due to opportunity cost)
m PhD students get paid, but much less than e.g., software
engineer salaries
o ittakes alongtime
m typically 4 to 6 years, sometimes longer
o it's
m Yyou're working on only one thing for 4-6 years!
m rates of mental health problems among PhD students are
much higher than the general population

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the

department)

NVhich professor to approach? Choose\
a research professor whose work
sounds interesting to you (or who you
know already from class).

N\ /

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be

interested in, come talk to me (or another professor in the

NVhich professor to approach? Choose\

department)

to find ou',c about a W who you
professor'swork, w already from class).

google “their name
NJIT” and read their
website

a research professor whose work

_

J

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the

department) NVhich professor to approach? Choose\
a research professor whose work
sounds interesting to you (or who you
know already from class).
e at NJIT, research professors all

have “professor” in the title
_® teaching professors are “lecturers” /

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

o high-quality PhD programs require letters of
recommendation from professors you’ve worked with, so
you should work with a professor :)

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

o high-quality PhD programs require letters of
recommendation from professors you’ve worked with, so
you should work with a professor :)

o it's best to approach professors about joining their research
group when you’re a sophomore or junior

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

o high-quality PhD programs require letters of
recommendation from professors you’ve worked with, so
you should work with a professor :)

o it's best to approach professors about joining their research
group when you’re a sophomore or junior

m at this stage, you know enough to be useful, but you'll be
around long enough that you can ramp up on a project

What is Software Engineering?

Today’s agenda:

e Whatisresearch? How is it similar/different from SE generally?
e Your relationship to researchers, as a developer
e What sort of problems does SE research solve

Research to a developer

e Assuming you'’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?

Research to a developer

e Assuming you'’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
o CSis avery fast-changing, young field
m implying best practices change a lot: what we've covered
in 490 might not be true anymore in 5/10/20 years

Research to a developer

e Assuming you'’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
o CSis avery fast-changing, young field
m implying best practices change a lot: what we've covered
in 490 might not be true anymore in 5/10/20 years
o Many developers are also working in fast-changing domains
within CS
m e.g,if you're working on ML, you'll want to keep up with
the latest ML research

Research to a developer

e You may also have embedded in your
company

Research to a developer

e You may also have embedded in your
company
o if you're at a “big tech” company, you definitely do; other
places, it's a maybe

Research to a developer

e You may also have embedded in your

company
o if you're at a “big tech” company, you definitely do; other
places, it’'s a maybe
e Especially if you're working on something cutting edge and
you're considering trying to keep up with the latest research
yourself, finding an industrial researcher in your company is a

good idea
o they can keep up with the research so you don't have to!

Keeping up with research

Keeping up with research

e Industry-focused academic publications
o e.g.,CACM (“Communications of the ACM”) is great for this

Keeping up with research

e Industry-focused academic publications
o e.g.,CACM (“Communications of the ACM”) is great for this
e Findsome technology bloggers that you like
o common tech blog entry: areview of a recent paper by the
blogger (they read it so you don’t have to!)

Keeping up with research

e Industry-focused academic publications
o e.g.,CACM (“Communications of the ACM”) is great for this
e Findsome technology bloggers that you like
o common tech blog entry: areview of a recent paper by the
blogger (they read it so you don’t have to!)
e Attend industry conferences (at your employer’s expense...)

Keeping up with research

Industry-focused academic publications

o e.g.,CACM (“Communications of the ACM”) is great for this
Find some technology bloggers that you like

o common tech blog entry: areview of a recent paper by the

blogger (they read it so you don’t have to!)

Attend industry conferences (at your employer’s expense...)
Keep up with research areas you'’re particularly interested in
directly, by reading (or, more likely,) papers

o more advice on this next

Reading papers

e |strongly recommend that you skim papers as a developer
o (if you're going to read them at all)

Reading papers

e |strongly recommend that you skim papers as a developer
o (if you're going to read them at all)

e “skimming” =“reading only the most important results, and
skipping the details of how those results were reached”

Reading papers

e |strongly recommend that you skim papers as a developer
o (if you're going to read them at all)
e “skimming” =“reading only the ,and
skipping the details of how those results were reached”
o inacademic papers, this usually means reading just the abstract
and introduction (and maybe the conclusion)

Reading papers

e |strongly recommend that you skim papers as a developer
o (if you're going to read them at all)

e “skimming” =“reading only the ,and
skipping the details of how those results were reached”
o inacademic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)

e Be careful, though: not all academic papers are equally

high-quality!

Reading papers

e |strongly recommend that you skim papers as a developer
o (if you're going to read them at all)
e “skimming” =“reading only the ,and
skipping the details of how those results were reached”
o inacademic papers, this usually means reading just the abstract
and introduction (and maybe the conclusion)
e Be careful, though: not all academic papers are equally
high-quality!
o asadey,you're not trained to judge this, so relying on peer
review + recommendations from e.g., tech bloggers is smart

Reading papers

e |strongly recommend that you skim papers as a developer
o (if you're going to read them at all)

° sl.<|m.m|ng) rea,dmgﬁxception: papers published by \
sklp.pmg the d.etalls of| industrial research labs (e.g., Google
o in academic paper Research, MSR) are almost always ict
and introduction ({ written in a style closer to what
e Be careful, though: no| developers are trained to read. These
are often the ones you want to focus

t\gn as a developer, anyway! /

(=4

high-quality!
o asadey,you're no
review + recommendations from e.g., tech bloggers is smart

Reading papers: finding papers

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)

Reading papers: finding papers

e [ncomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months

Reading papers: finding papers

e [ncomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months
e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are
high-quality

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months

e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are

high-quality
e To find the best conferences, you could:

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months
e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are
high-quality
e To find the best conferences, you could:
o ask apeerinindustrial research (if you have one)

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months
e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are
high-quality
e To find the best conferences, you could:
o ask apeerinindustrial research (if you have one)
o use awebsite like csrankings.org

https://csrankings.org/

What is Software Engineering?

Today’s agenda:

e Whatisresearch? How is it similar/different from SE generally?
e Your relationship to researchers, as a developer
e What sort of problems does SE research solve

Software Engineering Research

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”

e Other areas are united by application
o e.g., most OS papers are about operating systems

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”
e Other areas are united by application
o e.g., most OS papers are about operating systems
e Software engineering research is united by an application:

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”
e Other areas are united by application
o e.g., most OS papers are about operating systems
e Software engineering research is united by an application:

o as adeveloper, this is an application you probably care about

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”
e Other areas are united by application
o e.g., most OS papers are about operating systems
e Software engineering research is united by an application:

o as adeveloper, this is an application you probably care about
o so SE research is particularly important to developers!

What's Hot in Software Engineering Research

e My goalinthis section is to give you a taste of some of research
going on in the software engineering community right now
o theseslides aren’t exhaustive

What's Hot in Software Engineering Research

e My goalinthis section is to give you a taste of some of research
going on in the software engineering community right now
o theseslides aren’t exhaustive

e |[f youwant to know more about any of this, come by my office
hours or make an appointment with me - | love to talk about this
stuff!

What's Hot: Using LLMs in SE

Applications of LLM and Other Al Technologies

ko

ko

(o

ko

o

[o

P14

&

&

Liuging Chen @, Yunnong Chen @, Shuhong Xiao @, Yaxuan Song @, Lingyun Sun @, Yankun Zhen @, Tingting Zhou @, Yanfang Chang @®:
EGFE: End-to-end Grouping of Fragmented Elements in Ul Designs with Multimodal Learning. 11:1-11:12

Cuiying Gao @, Gaozhun Huang @, Heng Li ®, Bang Wu ®, Yueming Wu @, Wei Yuan @:
A Comprehensive Study of Learning-based Android Malware Detectors under Challenging Environments. 12:1-12:13

Antonio Mastropaolo @, Fiorella Zampetti @, Gabriele Bavota @, Massimiliano Di Penta &:
Toward Automatically Completing GitHub Workflows. 13:1-13:12

Junjielong Xu @, Ziang Cui @, Yuan Zhao @, Xu Zhang @, Shilin He @, Pinjia He @, Liqun Li @, Yu Kang ®, Qingwei Lin @, Yingnong Dang @, Saravan Rajmohan @, Dongmei
Zhang @:

UniLog: Automatic Logging via LLM and In-Context Learning. 14:1-14:12

Yutong Wang @, Cindy Rubio-Gonzalez ®:

Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning. 15:1-15:13

Benjamin Steenhoek @, Hongyang Gao @, Wei Le ®:
Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability Detection. 16:1-16:13

Aidan Z. H. Yang @, Claire Le Goues ®, Ruben Martins @, Vincent J. Hellendoorn @:
Large Language Models for Test-Free Fault Localization. 17:1-17:12

What's Hot: Using LLMs in SE

Applications of LLM and Other Al Technologies

8, ¢

ko

ko

(o

ko

o

[o

RG L|uq|ngChen YunnongChen , Shuhong Xiao @, YaxuanSong ngyunSun YankunZhen ®, Tingting Zhou ®, Yanfang Chang ®

o 11:1.11:12

DNN and Language Models for Code

BELRS

mELRS

|
il
=
P
&

Binhang Qi ®, Hailong Sun @, Hongyu Zhang ®, Ruobing Zhao @, Xiang Gao ®:
Modularizing while Training: A New Paradigm for Modularizing DNN Models. 31:1-31:12

Lipeng Ma ®, Weidong Yang @, Bo Xu @, Sihang Jiang @, Ben Fei @, Jiaging Liang @, Mingjie Zhou ®, Yanghua Xiao @:
KnowLog: Knowledge Enhanced Pre-trained Language Model for Log Understanding. 32:1-32:13

Changan Niu ®, Chuanyi Li @, Vincent Ng @, David Lo @, Bin Luo @:
FAIR: Flow Type-Aware Pre-Tramlng of Compller Intermediate Representations. 33:1-33:12

Qi Guo @, Junming Cao @, Xiaofei Xie @, Shangqing Liu @, Xiaohong Li @, Bihuan Chen @, Xin Peng ®:
Exploring the Potential of ChatGPT in Automated Code Ref'nement. An Empirical Study. 34:1-34:13

Boxi Yu @, Jiayi Yao @, Qiuai Fu @, Zhiging Zhong @, Haotian Xie @, Yaoliang Wu @, Yuchi Ma @, Pinjia He @
Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection. 35:1-35:13

Yangruibo Ding ®, Benjamin Steenhoek @, Kexin Pei ®, Gail E. Kaiser ®, Wei Le ®, Baishakhi Ray @:
TRACED: Execution-aware Pre-training for Source Code. 36:1-36:12

Hao Yu @, Bo Shen @, Dezhi Ran @, Jiaxin Zhang @, Qi Zhang @, Yuchi Ma ®, Guangtai Liang @, Ying Li @, Qianxiang Wang @, Tao Xie &
CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models. 37:1-37:12

Shibbir Ahmed @, Hongyang Gao @, Hridesh Rajan @:
Inferring Data Preconditions from Deep Learning Models for Trustworthy Prediction in Deployment. 38:1-38:13

pn Rajmohan @

, Dongmei

What's Hot: Using LLMs in SE

Applications of LLM and Other Al Technologies

B

G, (

G,

ko

(o

ko

o

[o

R L|uq|ng Chen @, Yunnong Chen ©®, Shuhong Xiao @ Yaxuan Song ngyun Sun 9, Yankun Zhen ®, Tingting Zhou @, Yanfang Chang ®

o 11:1.11:12

DNN and Language Models for Code

B E & ® € Binhang Qi ®, Hailong Sun ®, Hongyu Zhang @, Ruobing Zhao @, Xiang Gao ®:
Modularizing while Training: A New Paradigm for Modularizing DNN Models. 31:1-31:12

m g Testing with and for Al
] EI Reload this page
= & W % Sidong Feng ®, Chunyang Chen @
Prompting Is All You Need: Automated Android Bug Replay with Large Language Models. 67:1-67:13

= e

B E & R« Neelofar ®, Aldeida Aleti ®
mE Towards Reliable Al: Adequacy Metrics for Ensuring the Quality of System-level Testing of Autonomous Vehicles. 68:1-68:12

B E SR« Yakun Zhang ®, Wenjie Zhang @, Dezhi Ran @, Qihao Zhu ®, Chengfeng Dou @, Dan Hao @, Tao Xie ®, Lu Zhang ®:
mE Learning-based Widget Matchmg for Migrating GUI Test Cases. 69:1-69:13

B E & ® <« Yinlin Deng ®, Chungiu Steven Xia @, Chenyuan Yang @, Shizhuo Dylan Zhang, Shujing Yang @®, Lingming Zhang @:
= Large Language Models are Edge-Case Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries. 70:1-70:13

| B E & ® < Yuanhong Lan @, Yifei Lu ®, Zhong Li ®, Minxue Pan ®, Wenhua Yang @, Tian Zhang ®, Xuandong Li @:

m Deeply Reinforcing Android GUI Testlng with Deep Reinforcement Learning. 71:1-71:13

mei

What's Hot: Using LLMs in SE

Applications of LLM and Other Al Technologies

All ICSE 2024

G,

G,

ko

(o

ko

o

[o

® « Liuging Chen ®, Yunnong Chen ®, Shuhong Xiao @, Yaxuan Song @, Lingyun Sun ®, Yankun Zhen @, Tingting Zhou ®, Yanfang Chang @®:

DNN and Language Models for Code

ing 11:1.11:12

B E & ® € Binhang Qi ®, Hailong Sun ®, Hongyu Zhang @, Ruobing Zhao @, Xiang Gao ®:
Modularizing while Training: A New Paradigm for Modularizing DNN Models. 31:1-31:12

[E | - 5
Testing with and for Al
] EI _ Reload this page |
S & W % Sidong Feng ®, Chunyang Chen @:
Prompting Is All You Need: Automated Android Bug Replay with Large Language Models. 67:1-67:13

. = . o

B E 8 ® « Neelofar ®, Aldeida Aleti ®:
mE Towards Reliable Al: Adequacy Metrics for Ensuring the Quality of System-level Testing of Autonomous Vehicles. 68:1-68:12

B E & ® « Yakun Zhang ®, Wenjie Zhang ®, Dezhi Ran @, Qihao Zhu ®, Chengfeng Dou ®, Dan Hao ®, Tao Xie ®, Lu Zhang ®:
mE Learning-based Widget Matching for Migrating GUI Test Cases. 69:1-69:13

B E & ® « Yinlin Deng ®, Chungiu Steven Xia @, Chenyuan Yang @, Shizhuo Dylan Zhang, Shujing Yang @, Lingming Zhang @:
= Large Language Models are Edge-Case Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries. 70:1-70:13

| W E 8 ® « Yuanhong Lan @, Yifei Lu ®, Zhong Li ®, Minxue Pan ®, Wenhua Yang ®, Tian Zhang ®, Xuandong Li @:

m Deeply Reinforcing Android GUI Testing with Deep Reinforcement Learning. 71:1-71:13

mei

Advice: Large Language Models (LLMs) in SE

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.
e My view: LLMs are like an untrustworthy but very smart compiler

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.
e My view: LLMs are like an untrustworthy but very smart compiler
o unlike traditional compiler, do not promise to preserve
semantics (and might)

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.
e My view: LLMs are like an untrustworthy but very smart compiler
o unlike traditional compiler, do not promise to preserve
semantics (and might)
o butinput can be natural language or a specification, rather than
another program

Advice: Large Language Models (LLMs) in SE

e Currenttrendssuggest that LLMs are gomg to be a major part of

software engineering (an/ I f e \ward
o many engineers wa Possible future workflow: rently

permitted todue to | SN génerat.e cod‘e
a great for genera deductive verification tools

e My view: LLMs are like check fo.r correctness
o unlike traditional co sDerevineimelceele)

semantics (and might)
o butinput can be natural language or a specification, rather than

another program

mpiler

What's Hot: Automated Program Repair

AI&SE Program Repair

A & (=)

=

=

[

=

=

[

L

=

&K

K

&

A

&

Julian Aron Prenner @, Romain Robbes @:
Out of Context: How important is Local Context in Neural Program Repair? 83:1-83:13

Hadeel Eladawy @, Claire Le Goues @, Yuriy Brun &:
Automated Program Repair, What Is It Good For? Not Absolutely Nothing! 84:1-84:13

Wenzhang Yang @, Linhai Song @, Yinxing Xue ®:
Rust-lancet: Automated Ownership-Rule-Violation Fixing with Behavior Preservation. 85:1-85:13

Fairuz Nawer Meem @, Justin Smith @, Brittany Johnson &:
Exploring Experiences with Automated Program Repair in Practice. 86:1-86:11

Yiu Wai Chow @, Luca Di Grazia @, Michael Pradel @:

PyTy: Repairing Static Type Errors in Python. 87:1-87:13

Xin Zhou @, Kisub Kim &, Bowen Xu @, DongGyun Han @, David Lo ®:

Out of Sight, Out of Mind: Better Automatic Vulnerability Repair by Broadening Input Ranges and Sources. 88:1-88:13

Changhua Luo ®, Wei Meng ®, Shuai Wang ®:
Strengthening Supply Chain Security with Fine-grained Safe Patch Identification. 89:1-89:12

Shaoheng Cao ®, Minxue Pan @, Yu Pei ®, Wenhua Yang @, Tian Zhang ®, Linzhang Wang ®, Xuandong Li ®:
Comprehensive Semantic Repair of Obsolete GUI Test Scripts for Mobile Applications. 90:1-90:13

Zunchen Huang ®, Chao Wang ©:
Constraint Based Program Repair for Persistent Memory Bugs. 91:1-91:12

What's Hot: Automated Program Repair

e Basic automated program repair (APR) idea:
o given a test suite with one failing test and the program source
o make some change so that the test passes

What's Hot: Automated Program Repair

e Basic automated program repair (APR) idea:
o given a test suite with one failing test and the program source
o make some change so that the test passes

e Modern APR revival is based on promise of LLMs

What's Hot: Automated Program Repair

e Basic automated program repair (APR) idea:
o given a test suite with one failing test and the program source
o make some change so that the test passes

e Modern APR revival is based on promise of LLMs

e Butwe've been here before...
o backin 2012, we had APR systems claiming ~50% repair rate

What's Hot: Automated Program Repair

e Basic automated program repair (APR) idea:
o given a test suite with one failing test and the program source
o make some change so that the test passes
e Modern APR revival is based on promise of LLMs
e Butwe've been here before...
o backin 2012, we had APR systems claiming ~50% repair rate
o this was mostly hype + bad measurements
m ask me for more details...
o maybe this time will be different?

What's Hot: Fuzzing

Fuzzing and Symbolic Execution

I
=
m B
m B
H E
| =
0 E
=)
HE
=)
=

8

3 @

K

=

=

=

=]

e

=]

e

R

Yue Sun @, Guowei Yang @, Shichao Lv @, Zhi Li @, Limin Sun ®:
Concrete Constraint Guided Symbolic Execution. 122:1-122:12

Luiz Carvalho @, Renzo Degiovanni @, Maxime Cordy ®, Nazareno Aguirre @, Yves Le Traon ®, Mike Papadakis @:
SpecBCFuzz: Fuzzing LTL Solvers wuth Boundary Conditions. 123:1-123:13

Zhiwu Xu @, Bohao Wu @, Cheng Wen @, Bin Zhang @, Shengchao Qin ®, Mengda He ®:
RPG: Rust Library Fuzzing with Pool-based Fuzz Target Generation and Generic Support. 124:1-124:13

Xindi Zhang @, Bohan Li ®, Shaowei Cai ®:
Deep Combmatlon of CDCL(T) and Local Search for Satisfiability Modulo Non-Linear Integer Arithmetic Theory. 125:1-125:13

Chungjiu Steven Xia @, Matteo Paltenghi @, Jia Le Tian @, Michael Pradel @, Lingming Zhang ®
Fuzz4All: Universal Fuzzmg with Large Language Models. 126:1-126:13

Shuohan Wu @, Zihao Li @, Luyi Yan ®, Weimin Chen @, Muhui Jiang @, Chenxu Wang @, Xiapu Luo ®, Hao Zhou @
Are We There Yet? Unraveling the State-of-the-Art Smart Contract Fuzzers. 127:1-127:13

Shuo Yang @, Jiachi Chen @, Mingyuan Huang, Zibin Zheng, Yuan Huang:
Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts. 128:1-128:12

Katherine Hough @, Jonathan Bell @:
Crossover in Parametric Fuzzing. 129:1-129:12

Shengcheng Yu ®, Chunrong Fang ®, Mingzhe Du @, Yuchen Ling @, Zhenyu Chen @, Zhendong Su @:
Practical Non-Intrusive GUI Exploration Testmg W|th Visual-based Robotic Arms. 130:1-130:13

Xuwei Liu ®, Wei You ®, Yapeng Ye @, Zhuo Zhang @, Jianjun Huang @, Xiangyu Zhang ®:
FuzzinMem: Fuzzing Programs via In-memory Structures. 131:1-131:13

Danushka Liyanage ®, Seongmin Lee ®, Chakkrit Tantithamthavorn ®, Marcel B6hme @®:
Extrapolating Coverage Rate in Greybox Fuzzing. 132:1-132:12

What's Hot: Fuzzing

Fuzzing and Symbolic Execution

8 &

8 ®

K

o

=

=

=]

=

=]

e

Yue Sun @, Guowei Yang @, Shichao Lv @, Zhi Li @, Limin Sun ®:
Concrete Constraint Guided Symbolic Execution. 122:1-122:12

Luiz Carvalho @,

Zhi

RPG
Xind
Dee

Chu
Fuzz

Shu
Are

Shu
Unc

Kathf
Crog

Sher
Prad

Xuw
FuzZ

Dan
Extr

®, Renzo Degiovanni ®, Maxime Cordy ®, Nazareno Aguirre @, Yves Le Traon ®, Mike Papadakis @:
SPefWMW 123.1:12313

Fuzzing and Vulnerability Detection

B

&(

R

L kB

s

o
iy

&

Junda He @, Zhou Yang @, Jieke Shi @, Chengran Yang @, Kisub Kim @, Bowen Xu @, Xin Zhou @, David Lo @:
Curiosity-Driven Testing for Sequential Decision-Making Process. 165:1-165:14

Yugiang Sun @, Daoyuan Wu @, Yue Xue @, Han Liu @, Haijun Wang @, Zhengzi Xu @, Xiaofei Xie @, Yang Liu ®:
GPTScan: Detecting Logic Vulnerabllltles in Smart Contracts by Combining GPT with Program Analysns. 166:1 -166:13

Qi Zhan @, Xing Hu @, Zhiyang Li @, Xin Xia @, David Lo @, Shanping Li ®:
PS3: Precise Patch Presence Test based on Semantic Symbolic Signature. 167:1-167:12

Zhijie Zhong @, Zibin Zheng @, Hong-Ning Dai ®, Qing Xue @, Junjia Chen @, Yuhong Nan ®:
PrettySmart: Detecting Permission Re-delegation Vulnerability for Token Behaviors in Smart Contracts. 168:1-168:12

Huanting Wang @, Zhanyong Tang @, Shin Hwei Tan @, Jie Wang ®, Yuzhe Liu @, Hejun Fang ®, Chunwei Xia ®, Zheng Wang ®:
Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability Prediction. 169:1-169:13

Feng Luo @, Ruijie Luo @, Ting Chen @, Ao Qiao ®, Zheyuan He @, Shuwei Song @, Yu Jiang @, Sixing Li ®
SCVHunter: Smart Contract Vulnerability Detection Based on Heterogeneous Graph Attention Network. 170:1-170:13

Xun Deng @, Sidi Mohamed Beillahi @, Cyrus Minwalla @, Han Du @, Andreas G. Veneris @, Fan Long @:
Safeguardmg DeFi Smart Contracts against Oracle Deviations. 171:1-171:12

Wrapup

e |[fyouremember one thing from this class:

o software engineering is all about trade-offs!
e | hope you enjoyed CS 490 this semester
e Remaining class time: course evaluations

o |doreadthem!

o findit at canvas.njit.edu or blue.njit.edu/blue

http://canvas.njit.edu
http://blue.njit.edu/blue

