
What is Software
Engineering?

Martin Kellogg

Reading quiz: SE + research

Q1: TRUE or FALSE: the author argues that major results in fields
like software engineering gain credibility over time as successive
papers provide incremental improvement of the result and
progressively stronger credibility.

Q2: When and where is this class’ final exam? (Give the date, start
time, and room. Hint: it is in one of the two rooms that class is held in,
so you just need to unambiguously specify which.)

Reading quiz: SE + research

Q1: TRUE or FALSE: the author argues that major results in fields
like software engineering gain credibility over time as successive
papers provide incremental improvement of the result and
progressively stronger credibility.

Q2: When and where is this class’ final exam? (Give the date, start
time, and room. Hint: it is in one of the two rooms that class is held in,
so you just need to unambiguously specify which.)

Reading quiz: SE + research

Q1: TRUE or FALSE: the author argues that major results in fields
like software engineering gain credibility over time as successive
papers provide incremental improvement of the result and
progressively stronger credibility.

Q2: When and where is this class’ final exam? (Give the date, start
time, and room. Hint: it is in one of the two rooms that class is held in,
so you just need to unambiguously specify which.)

Monday, December 16th at 11:30am, in GITC 1100.

Announcements

● Exam review session will be on Friday evening
○ 5-6:30pm on Zoom; I will post the link on Discord
○ bring questions; ends early if there are no more questions

● Extra OH Friday morning 9-10:30 (but no regular OH on Thursday)
● Course evaluations close tonight

○ please fill it out! I do read them…
○ I’ll give you ~15-20 minutes at the end of class today (hopefully)

● Final demo attendance is mandatory
○ all demos are in my office (GITC 4314)
○ time slots will be strictly enforced

What is Software Engineering?

Today’s agenda:

● What is research? How is it similar/different from SE generally?
● Your relationship to researchers, as a developer
● What sort of problems does SE research solve

What is research?

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative
○ the cost of copying software is zero, so any new software has

by definition not been created before

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative
○ the cost of copying software is zero, so any new software has

by definition not been created before
○ this contrasts with many other fields, where practitioners

(“engineers” or otherwise) are not doing anything
fundamentally novel

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative
○ the cost of copying software is zero, so any new software has

by definition not been created before
○ this contrasts with many other fields, where practitioners

(“engineers” or otherwise) are not doing anything
fundamentally novel
■ in those field, anyone doing something new is doing

“research”

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way
■ e.g., it might explore how to build classes of programs,

like operating systems (OS) or compilers (PL)

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way
■ e.g., it might explore how to build classes of programs,

like operating systems (OS) or compilers (PL)
■ or, it might explore foundational notions of what

computers can and cannot do (CS theory)

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way
■ e.g., it might explore how to build classes of programs,

like operating systems (OS) or compilers (PL)
■ or, it might explore foundational notions of what

computers can and cannot do (CS theory)
■ or explore what computers we can physically build (arch)

What is research?

● So then what’s meta about software engineering research?

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns
○ better ways to improve software quality

■ e.g., new kinds of testing, static analysis, etc.

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns
○ better ways to improve software quality

■ e.g., new kinds of testing, static analysis, etc.
○ and anything else related to improving developer productivity

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns
○ better ways to improve software quality

■ e.g., new kinds of testing, static analysis, etc.
○ and anything else related to improving developer productivity

We’ll come back to this stuff later
in the lecture in a bit more detail,
with some examples.

Who does research?

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

Not just PhD students: as an
undergraduate you can get
involved in research too (I did!)

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry
○ e.g., Microsoft has MSR, AWS has ARG, etc.

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry
○ e.g., Microsoft has MSR, AWS has ARG, etc.
○ sometimes developers do research by accident, too!

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry
○ e.g., Microsoft has MSR, AWS has ARG, etc.
○ sometimes developers do research by accident, too!

However, developers rarely publish
their research, which is important if
you want it to be a part of the total
sum of human knowledge.

Aside: should you do a PhD?

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

Another misconception: in the US,
you usually do not need a master’s
degree to start a PhD program!

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

● For this reason, in my opinion more undergraduates should at
least consider doing a PhD

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

● For this reason, in my opinion more undergraduates should at
least consider doing a PhD
○ it might be more affordable than you think!

Aside: should you do a PhD?

● Pros of doing a PhD:

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge
○ some jobs are only accessible to people with PhDs:

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge
○ some jobs are only accessible to people with PhDs:

■ professor
● although you can teach without a PhD, you can’t get

tenure without one

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge
○ some jobs are only accessible to people with PhDs:

■ professor
● although you can teach without a PhD, you can’t get

tenure without one
■ industrial researcher

● e.g., static analysis designer, ML architecture
developer, etc.

Aside: should you do a PhD?

● Cons of doing a PhD:

Aside: should you do a PhD?

● Cons of doing a PhD:
○ it’s a bad financial decision (due to opportunity cost)

■ PhD students get paid, but much less than e.g., software
engineer salaries

Aside: should you do a PhD?

● Cons of doing a PhD:
○ it’s a bad financial decision (due to opportunity cost)

■ PhD students get paid, but much less than e.g., software
engineer salaries

○ it takes a long time
■ typically 4 to 6 years, sometimes longer

Aside: should you do a PhD?

● Cons of doing a PhD:
○ it’s a bad financial decision (due to opportunity cost)

■ PhD students get paid, but much less than e.g., software
engineer salaries

○ it takes a long time
■ typically 4 to 6 years, sometimes longer

○ it’s mentally taxing
■ you’re working on only one thing for 4-6 years!
■ rates of mental health problems among PhD students are

much higher than the general population

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Which professor to approach? Choose
a research professor whose work
sounds interesting to you (or who you
know already from class).
● at NJIT, research professors all

have “professor” in the title
● teaching professors are “lecturers”

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Which professor to approach? Choose
a research professor whose work
sounds interesting to you (or who you
know already from class).
● at NJIT, research professors all

have “professor” in the title
● teaching professors are “lecturers”

to find out about a
professor’s work,
google “their name
NJIT” and read their
website

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Which professor to approach? Choose
a research professor whose work
sounds interesting to you (or who you
know already from class).
● at NJIT, research professors all

have “professor” in the title
● teaching professors are “lecturers”

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)
○ high-quality PhD programs require letters of

recommendation from professors you’ve worked with, so
you should work with a professor :)

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)
○ high-quality PhD programs require letters of

recommendation from professors you’ve worked with, so
you should work with a professor :)

○ it’s best to approach professors about joining their research
group when you’re a sophomore or junior

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)
○ high-quality PhD programs require letters of

recommendation from professors you’ve worked with, so
you should work with a professor :)

○ it’s best to approach professors about joining their research
group when you’re a sophomore or junior
■ at this stage, you know enough to be useful, but you’ll be

around long enough that you can ramp up on a project

What is Software Engineering?

Today’s agenda:

● What is research? How is it similar/different from SE generally?
● Your relationship to researchers, as a developer
● What sort of problems does SE research solve

Research to a developer

● Assuming you’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?

Research to a developer

● Assuming you’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
○ CS is a very fast-changing, young field

■ implying best practices change a lot: what we’ve covered
in 490 might not be true anymore in 5/10/20 years

Research to a developer

● Assuming you’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
○ CS is a very fast-changing, young field

■ implying best practices change a lot: what we’ve covered
in 490 might not be true anymore in 5/10/20 years

○ Many developers are also working in fast-changing domains
within CS
■ e.g., if you’re working on ML, you’ll want to keep up with

the latest ML research

Research to a developer

● You may also have industrial researchers embedded in your
company

Research to a developer

● You may also have industrial researchers embedded in your
company
○ if you’re at a “big tech” company, you definitely do; other

places, it’s a maybe

Research to a developer

● You may also have industrial researchers embedded in your
company
○ if you’re at a “big tech” company, you definitely do; other

places, it’s a maybe
● Especially if you’re working on something cutting edge and

you’re considering trying to keep up with the latest research
yourself, finding an industrial researcher in your company is a
good idea
○ they can keep up with the research so you don’t have to!

Keeping up with research

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

● Find some technology bloggers that you like
○ common tech blog entry: a review of a recent paper by the

blogger (they read it so you don’t have to!)

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

● Find some technology bloggers that you like
○ common tech blog entry: a review of a recent paper by the

blogger (they read it so you don’t have to!)
● Attend industry conferences (at your employer’s expense…)

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

● Find some technology bloggers that you like
○ common tech blog entry: a review of a recent paper by the

blogger (they read it so you don’t have to!)
● Attend industry conferences (at your employer’s expense…)
● Keep up with research areas you’re particularly interested in

directly, by reading (or, more likely, skimming) papers
○ more advice on this next

Reading papers

● I strongly recommend that you skim papers as a developer
○ (if you’re going to read them at all)

Reading papers

● I strongly recommend that you skim papers as a developer
○ (if you’re going to read them at all)

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”

Reading papers

● I strongly recommend that you skim papers as a developer
○ (if you’re going to read them at all)

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)

Reading papers

● I strongly recommend that you skim papers as a developer
○ (if you’re going to read them at all)

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)
● Be careful, though: not all academic papers are equally

high-quality!

Reading papers

● I strongly recommend that you skim papers as a developer
○ (if you’re going to read them at all)

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)
● Be careful, though: not all academic papers are equally

high-quality!
○ as a dev, you’re not trained to judge this, so relying on peer

review + recommendations from e.g., tech bloggers is smart

Reading papers

● I strongly recommend that you skim papers as a developer
○ (if you’re going to read them at all)

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)
● Be careful, though: not all academic papers are equally

high-quality!
○ as a dev, you’re not trained to judge this, so relying on peer

review + recommendations from e.g., tech bloggers is smart

Exception: papers published by
industrial research labs (e.g., Google
Research, MSR) are almost always
written in a style closer to what
developers are trained to read. These
are often the ones you want to focus
on as a developer, anyway!

Reading papers: finding papers

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality
● To find the best conferences, you could:

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality
● To find the best conferences, you could:

○ ask a peer in industrial research (if you have one)

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality
● To find the best conferences, you could:

○ ask a peer in industrial research (if you have one)
○ use a website like csrankings.org

https://csrankings.org/

What is Software Engineering?

Today’s agenda:

● What is research? How is it similar/different from SE generally?
● Your relationship to researchers, as a developer
● What sort of problems does SE research solve

Software Engineering Research

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

● Software engineering research is united by an application:
developer productivity

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

● Software engineering research is united by an application:
developer productivity
○ as a developer, this is an application you probably care about

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

● Software engineering research is united by an application:
developer productivity
○ as a developer, this is an application you probably care about
○ so SE research is particularly important to developers!

What’s Hot in Software Engineering Research

● My goal in this section is to give you a taste of some of research
going on in the software engineering community right now
○ these slides aren’t exhaustive

What’s Hot in Software Engineering Research

● My goal in this section is to give you a taste of some of research
going on in the software engineering community right now
○ these slides aren’t exhaustive

● If you want to know more about any of this, come by my office
hours or make an appointment with me - I love to talk about this
stuff!

What’s Hot: Using LLMs in SE

What’s Hot: Using LLMs in SE

What’s Hot: Using LLMs in SE

What’s Hot: Using LLMs in SE
All ICSE 2024

Advice: Large Language Models (LLMs) in SE

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler
○ unlike traditional compiler, do not promise to preserve

semantics (and might hallucinate)

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler
○ unlike traditional compiler, do not promise to preserve

semantics (and might hallucinate)
○ but input can be natural language or a specification, rather than

another program

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler
○ unlike traditional compiler, do not promise to preserve

semantics (and might hallucinate)
○ but input can be natural language or a specification, rather than

another program

Possible future workflow:
1. LLMs generate code
2. deductive verification tools

check for correctness
3. SDE reviews final code

What’s Hot: Automated Program Repair

What’s Hot: Automated Program Repair

● Basic automated program repair (APR) idea:
○ given a test suite with one failing test and the program source
○ make some change so that the test passes

What’s Hot: Automated Program Repair

● Basic automated program repair (APR) idea:
○ given a test suite with one failing test and the program source
○ make some change so that the test passes

● Modern APR revival is based on promise of LLMs

What’s Hot: Automated Program Repair

● Basic automated program repair (APR) idea:
○ given a test suite with one failing test and the program source
○ make some change so that the test passes

● Modern APR revival is based on promise of LLMs
● But we’ve been here before…

○ back in 2012, we had APR systems claiming ~50% repair rate

What’s Hot: Automated Program Repair

● Basic automated program repair (APR) idea:
○ given a test suite with one failing test and the program source
○ make some change so that the test passes

● Modern APR revival is based on promise of LLMs
● But we’ve been here before…

○ back in 2012, we had APR systems claiming ~50% repair rate
○ this was mostly hype + bad measurements

■ ask me for more details…
○ maybe this time will be different?

What’s Hot: Fuzzing

What’s Hot: Fuzzing

Wrapup

● If you remember one thing from this class:
○ software engineering is all about trade-offs!

● I hope you enjoyed CS 490 this semester
● Remaining class time: course evaluations

○ I do read them!
○ find it at canvas.njit.edu or blue.njit.edu/blue

http://canvas.njit.edu
http://blue.njit.edu/blue

