
Testing (Part 3/3)
Martin Kellogg

Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

Reading quiz

Q1: TRUE or FALSE: The SQLite tests dynamically mock malloc(), to
test the possibility of out-of-memory errors on embedded systems.

Q2: The authors claim that there is tension between fuzz testing and
100% MC/DC testing. In particular, they argue that “______ seems to
work well for building code that is robust during normal use, whereas
______ is good for building code that is robust against malicious
attack.”
A. fuzz testing, MC/DC testing
B. MC/DC testing, fuzz testing

Reading quiz

Q1: TRUE or FALSE: The SQLite tests dynamically mock malloc(), to
test the possibility of out-of-memory errors on embedded systems.

Q2: The authors claim that there is tension between fuzz testing and
100% MC/DC testing. In particular, they argue that “______ seems to
work well for building code that is robust during normal use, whereas
______ is good for building code that is robust against malicious
attack.”
A. fuzz testing, MC/DC testing
B. MC/DC testing, fuzz testing

Reading quiz

Q1: TRUE or FALSE: The SQLite tests dynamically mock malloc(), to
test the possibility of out-of-memory errors on embedded systems.

Q2: The authors claim that there is tension between fuzz testing and
100% MC/DC testing. In particular, they argue that “______ seems to
work well for building code that is robust during normal use, whereas
______ is good for building code that is robust against malicious
attack.”
A. fuzz testing, MC/DC testing
B. MC/DC testing, fuzz testing

Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

Ways to think about test suite quality

Today we’re going to consider three ways to think about test suite
quality:

● test suite quality through the lens of logic
● test suite quality through the lens of statistics
● test suite quality through the lens of adversity

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds
○ The pig that finds more of the hidden truffles in your

backyard is assumed to find more real truffles in the wild

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds
○ The pig that finds more of the hidden truffles in your

backyard is assumed to find more real truffles in the wild
● Suppose you wanted to evaluate the quality of two bug-finding

test suites …

The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds

The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds
● Informally: “You claim your test suite is really great at finding

security bugs? Well, I'll just intentionally add a bug to my source
code and see if your test suite finds it!”

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world
○ The truffle placements I made up were not indicative of

real-world truffles

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world
○ The truffle placements I made up were not indicative of

real-world truffles
● Similarly, if I add a bunch of defects to my software that are not

the sort of defects real humans would make, then mutation
testing is uninformative

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world
○ The truffle placements I made up were not indicative of

real-world truffles
● Similarly, if I add a bunch of defects to my software that are not

the sort of defects real humans would make, then mutation
testing is uninformative
○ Implication: mutation testing requires us to know what real

bugs look like

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.
● For mutation testing, defect seeding is typically done

automatically (given a model of what human bugs look like)

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.
● For mutation testing, defect seeding is typically done

automatically (given a model of what human bugs look like)

This is exactly how
our “fault injection”
system for testing
your IP1&2 tests
works.

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are modeled on
historical human defects.

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are modeled on
historical human defects.
● Example mutations:

○ if (a < b) → if (a <= b)
○ if (a == b) → if (a != b)
○ a = b + c → a = b - c
○ f(); g(); → g(); f();
○ x = y → x = z

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.
Definition: The order of a mutant is the number of mutation
operators applied.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.
Definition: The order of a mutant is the number of mutation
operators applied.

// original // 2nd-order mutant
if (a < b): if (a <= b):

x = a + b → x = a – b
print(x) print(x)

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.
○ Therefore, if the test suite is good at catching the artificial

mutants, it will also be good at catching the unknown but
real faults in the program.

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.
○ Therefore, if the test suite is good at catching the artificial

mutants, it will also be good at catching the unknown but
real faults in the program.

Is the competent programmer hypothesis true?
● Yes and no.
● It is true that humans often make simple

typos (e.g., + vs -).
● But it is also true that some bugs are much

more complex than that!

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.
○ Therefore, if the test suite is good at catching the artificial

mutants, it will also be good at catching the unknown but
real faults in the program.

Is the competent programmer hypothesis true?
● Yes and no.
● It is true that humans often make simple

typos (e.g., + vs -).
● But it is also true that some bugs are much

more complex than that!

Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

● Is this true?

Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

● Is this true?
○ Tests that detect simple mutants were also able to detect

over 99% of second- and third-order mutants historically

[A. J. Offutt. Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20,

Jan. 1992.]

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

● Mutation testing (or mutation analysis) of a test suite proceeds by
making a number of mutants and measuring the fraction of them
killed by that test suite. This fraction is called the mutation
adequacy score (or mutation score).

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

● Mutation testing (or mutation analysis) of a test suite proceeds by
making a number of mutants and measuring the fraction of them
killed by that test suite. This fraction is called the mutation
adequacy score (or mutation score).
○ A test suite with a higher score is better.

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

● Mutation testing (or mutation analysis) of a test suite proceeds by
making a number of mutants and measuring the fraction of them
killed by that test suite. This fraction is called the mutation
adequacy score (or mutation score).
○ A test suite with a higher score is better.

● (Sorry for all of the vocabulary!)

Mutation testing: pros and cons

Mutation testing: pros and cons

● Has the potential to subsume other test suite adequacy criteria
(it can be very good)

Mutation testing: pros and cons

● Has the potential to subsume other test suite adequacy criteria
(it can be very good)

● Difficult to do well:
○ Which mutation operators do you use?
○ Where do you apply them? How often do you apply them?

■ Typically done at random, but how?

Mutation testing: pros and cons

● Has the potential to subsume other test suite adequacy criteria
(it can be very good)

● Difficult to do well:
○ Which mutation operators do you use?
○ Where do you apply them? How often do you apply them?

■ Typically done at random, but how?
● It is very expensive. If you make 1,000 mutants, you must now

run your test suite 1,000 times!
○ We started by saying testing (1x) was expensive!

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.
○ So it will dilute the mutation score

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.
○ So it will dilute the mutation score

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.
○ So it will dilute the mutation score

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Remember when I
mentioned reductions
earlier? Now is a good
time to do one!

Mutation testing: equivalent mutant problem

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Mutation testing: equivalent mutant problem

● Detecting these “equivalent mutants” is a big deal. How hard is it?
● It is undecidable! (= there is no algorithm for it that can always

give the correct answer)

Mutation testing: equivalent mutant problem

● Detecting these “equivalent mutants” is a big deal. How hard is it?
● It is undecidable! (= there is no algorithm for it that can always

give the correct answer)
○ by direct reduction to the Halting Problem (or by Rice’s

theorem)

def foo(): # foo halts if and only if
if p1() == p2(): # p1 is equivalent to p2

return 0
foo()

Takeaways

● Individual tests should be hermetic and focused
○ avoid flaky and brittle tests

● Three lenses for test suite quality: logic, statistics, and adversity
● Lens of Logic: “no visit X → no find bug in X”

○ leads to statement and branch coverage.
● Lens of Statistics: “sample the inputs the users will make”

○ leads to beta testing, A/B testing.
● Lens of Adversity: “poke realistic holes in the program and see if

you find them”
○ leads to mutation testing.

Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

Test data

● What are all the inputs to a test?

Test data

● What are all the inputs to a test?
○ Many programs (especially student programs) read from a file

or stdin …

Test data

● What are all the inputs to a test?
○ Many programs (especially student programs) read from a file

or stdin …
○ But what else is “read in” by a program and may influence its

behavior?

Test data

● What are all the inputs to a test?
○ Many programs (especially student programs) read from a file

or stdin …
○ But what else is “read in” by a program and may influence its

behavior?

What else besides “input” can influence program behavior?
● User Input (e.g., GUI)
● Environment Variables, Command-Line Args
● Scheduler Interleavings
● Data from the Filesystem

○ User configuration, data files
● Data from the Network

○ Server and service responses

Test data: operating systems philosophy

Test data: operating systems philosophy

● “Everything is a file.”

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

● System calls (plus OS scheduling, etc.) are the full inputs

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

● System calls (plus OS scheduling, etc.) are the full inputs

1. Fully hermetic tests should
include all these inputs

2. We want fully hermetic tests
3. 1 & 2 imply test input

generation must also control
the environment

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

● System calls (plus OS scheduling, etc.) are the full inputs

1. Fully hermetic tests should
include all these inputs

2. We want fully hermetic tests
3. 1 & 2 imply test input

generation must also control
the environment

Test input generation

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage
○ Lens of Statistics: choose inputs “at random”

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage
○ Lens of Statistics: choose inputs “at random”
○ Lens of Adversity: choose inputs that kill mutants

Lens of Logic: maximize coverage

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

How would you
choose inputs that
maximize:
● line coverage?
● branch coverage?
● path coverage?

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

How would you
choose inputs that
maximize:
● line coverage?
● branch coverage?
● path coverage?

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

How would you
choose inputs that
maximize:
● line coverage?
● branch coverage?
● path coverage?

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths
○ You need 2N tests to cover them

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths
○ You need 2N tests to cover them

● Path coverage subsumes branch coverage

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

● Key idea: solve this problem with math

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

● Key idea: solve this problem with math

Definition: a path predicate (or path condition, or path constraint) is a
boolean formula over program variables that is true when the
program executes the given path

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

● When the path predicate is true, control flow
will follow the given path

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

● When the path predicate is true, control flow
will follow the given path

● So, given a path predicate, how do we choose
a test input that covers the path?

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

● What is a satisfying assignment for
○ a >= b && c >= d && e < f ?

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

● What is a satisfying assignment for
○ a >= b && c >= d && e < f ?

■ a=5, b=4, c=3, d=2, e=1, f=2
■ a=0, b=0, c=0, d=0, e=0, f=1

■ … many more

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.
○ Option 2: repeatedly guess randomly

■ works surprisingly well (when answers are not sparse)

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.
○ Option 2: repeatedly guess randomly

■ works surprisingly well (when answers are not sparse)
○ Option 3: use an automated theorem prover

■ cf. Wolfram Alpha, MatLab, Mathematica, Z3, etc.
■ works very well for a restricted class of equations (e.g.,

linear but not arbitrary polynomials, etc.)

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.
○ Option 2: repeatedly guess randomly

■ works surprisingly well (when answers are not sparse)
○ Option 3: use an automated theorem prover

■ cf. Wolfram Alpha, MatLab, Mathematica, Z3, etc.
■ works very well for a restricted class of equations (e.g.,

linear but not arbitrary polynomials, etc.)

Ask me about how an SMT solver works in
office hours if you want to know more!

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

○ None found? Dead code, tough predicate, etc.

Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?

Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?
● There could be infinitely many!

while a < b:
 a = a + 1
return a

Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?
● There could be infinitely many!

while a < b:
 a = a + 1
return a

● One path corresponds to executing the loop once, another to
twice, another to three times, etc.

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

○ Consider only taking each loop at most k times

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

○ Consider only taking each loop at most k times
○ Enumerate paths breadth-first or depth-first and stop after k

paths have been enumerated

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

○ Consider only taking each loop at most k times
○ Enumerate paths breadth-first or depth-first and stop after k

paths have been enumerated
● For more on this topic, take a graduate-level course on program

analysis or compilers

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

○ None found? Dead code, tough predicate, etc.

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?
○ The path predicate may not be expressible in

terms of the inputs we control

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?
○ The path predicate may not be expressible in

terms of the inputs we control

foo(a,b):
 str1 = read_from_url(“abc.com”)
 str2 = read_from_url(“xyz.com”)
 if (str1 == str2): bar()

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?
○ The path predicate may not be expressible in

terms of the inputs we control

foo(a,b):
 str1 = read_from_url(“abc.com”)
 str2 = read_from_url(“xyz.com”)
 if (str1 == str2): bar()

Suppose we want to
exercise the path that
calls bar. One predicate
is str1==str2. What do
you assign to a and b?

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can
○ Ask the solver to find a solution in terms of the input variables

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can
○ Ask the solver to find a solution in terms of the input variables
○ If it can’t (because the math is too hard, we don’t control the

input, etc.), we give up

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

○ None found? Dead code, tough predicate, etc.

Lens of Logic: test input generation plan

● Recall: we want to automatically generate test cases

Lens of Logic: test input generation plan

● Recall: we want to automatically generate test cases
● We have an approach that works well in practice:

○ Enumerate some paths
○ Extract their path constraints
○ Solve those path constraints

Lens of Logic: test input generation plan

● Recall: we want to automatically generate test cases
● We have an approach that works well in practice:

○ Enumerate some paths
○ Extract their path constraints
○ Solve those path constraints

● What are we missing?

Lens of Logic: test input generation plan

● Recall: we want to automatically generate test cases
● We have an approach that works well in practice:

○ Enumerate some paths
○ Extract their path constraints
○ Solve those path constraints

● What are we missing?
○ Oracles!

Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

Oracle generation

● Generating input is of limited value if we don’t know what the
program is supposed to do with that input

Oracle generation

● Generating input is of limited value if we don’t know what the
program is supposed to do with that input

● Key question: if we generate an input for a given path, how do we
tell if the program behaved correctly?

Oracle generation: difficulty

● Oracles are tricky.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”
○ It is expensive both for humans and for machines.

Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”
○ It is expensive both for humans and for machines.

■ and, for machines, sometimes impossible!

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these

definitely bad things

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these

definitely bad things

Definition: an implicit oracle is one associated with the language or
architecture, rather than program-specific semantics (e.g., “don't
segfault”, “don't loop forever”).

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these

definitely bad things

Definition: an implicit oracle is one associated with the language or
architecture, rather than program-specific semantics (e.g., “don't
segfault”, “don't loop forever”).

Implicit oracles like
these are used by
most test generation
tools in the real world.

Oracle generation: invariants as oracles

Observation: programs usually behave correctly

Oracle generation: invariants as oracles

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test

Oracle generation: invariants as oracles

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should

have index == array_len - 1

Oracle generation: invariants as oracles

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should

have index == array_len - 1

Definition: an invariant is a predicate over program expressions that is
true on every execution

Oracle generation: invariants as oracles

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should

have index == array_len - 1

Definition: an invariant is a predicate over program expressions that is
true on every execution
● high-quality invariants can serve as test oracles

Oracle generation: dynamic invariant detection

● There are tools for invariant detection called dynamic invariant
detectors

Oracle generation: dynamic invariant detection

● There are tools for invariant detection called dynamic invariant
detectors
○ Key idea: find invariants that are true on the human-written

test suite, then apply those to the test inputs we generate

Oracle generation: dynamic invariant detection

● There are tools for invariant detection called dynamic invariant
detectors
○ Key idea: find invariants that are true on the human-written

test suite, then apply those to the test inputs we generate
■ report any violation to a human

Oracle generation: dynamic invariant detection

● There are tools for invariant detection called dynamic invariant
detectors
○ Key idea: find invariants that are true on the human-written

test suite, then apply those to the test inputs we generate
■ report any violation to a human

○ For more information (e.g., how to build one) take a
graduate-level class on program analysis or read the Daikon
paper (September 27 optional reading!)

Oracle generation: differential testing

Observation: there are many programs with similar or identical
specifications

Oracle generation: differential testing

Observation: there are many programs with similar or identical
specifications
● if we are building such a program, we can use another

implementation as an oracle

Oracle generation: differential testing

Observation: there are many programs with similar or identical
specifications
● if we are building such a program, we can use another

implementation as an oracle
● e.g., if we’re writing a C compiler, we can compare our output to gcc

Oracle generation: differential testing

Observation: there are many programs with similar or identical
specifications
● if we are building such a program, we can use another

implementation as an oracle
● e.g., if we’re writing a C compiler, we can compare our output to gcc

Definition: differential testing is a technique for testing two related
programs by comparing their output on generated test inputs. Any
difference indicates non-conformance in one of the two.

Oracle generation: differential testing

Advantages and disadvantages of differential testing:

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct
○ and sometimes neither is!

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct
○ and sometimes neither is!

● but, differential testing provides a much stronger oracle than
other automated techniques

Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

This is how far we got on
9/20/24. This lecture will
resume on October 2.

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage
○ Lens of Statistics: choose inputs “at random”
○ Lens of Adversity: choose inputs that kill mutants

Lens of Statistics: fuzzing and random testing

Key idea: provide inputs “at random” to the program and use an
implicit oracle

Lens of Statistics: fuzzing and random testing

Key idea: provide inputs “at random” to the program and use an
implicit oracle

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes
● totally random input rarely works well

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes
● totally random input rarely works well

○ most programs have structured input

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes
● totally random input rarely works well

○ most programs have structured input
○ so modern fuzzers use some kind of semi-random, directed

search

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

○ start with a seed pool of valid or useful inputs

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

○ start with a seed pool of valid or useful inputs
○ new test cases are evolved from old ones

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

○ start with a seed pool of valid or useful inputs
○ new test cases are evolved from old ones

● reward or fitness functions:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

○ start with a seed pool of valid or useful inputs
○ new test cases are evolved from old ones

● reward or fitness functions:
○ when an input increases coverage (or some other test goal),

choose more inputs like that (e.g., add it to the seed pool)

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

○ start with a seed pool of valid or useful inputs
○ new test cases are evolved from old ones

● reward or fitness functions:
○ when an input increases coverage (or some other test goal),

choose more inputs like that (e.g., add it to the seed pool)
● combination with path predicates:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

○ start with a seed pool of valid or useful inputs
○ new test cases are evolved from old ones

● reward or fitness functions:
○ when an input increases coverage (or some other test goal),

choose more inputs like that (e.g., add it to the seed pool)
● combination with path predicates:

○ add inputs that are guaranteed to increase coverage to the
seed pool

Lens of Statistics: fuzzing in practice

Lens of Statistics: fuzzing in practice

● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects

constantly using industry resources

Lens of Statistics: fuzzing in practice

● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects

constantly using industry resources
● Fuzzing is machine-intensive

○ most inputs aren’t useful

Lens of Statistics: fuzzing in practice

● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects

constantly using industry resources
● Fuzzing is machine-intensive

○ most inputs aren’t useful
● Fuzzing finds real bugs

○ especially useful for finding security bugs

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage
○ Lens of Statistics: choose inputs “at random”
○ Lens of Adversity: choose inputs that kill mutants

Lens of Adversity: killing mutants

● Actually, not as useful as it seems for automatic test generation
○ still need to use either path predicates or fuzzing to choose

inputs

Lens of Adversity: killing mutants

● Actually, not as useful as it seems for automatic test generation
○ still need to use either path predicates or fuzzing to choose

inputs
● Can be a useful fitness function or guide for other automated test

input generation approaches

Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

Too many tests

● At this point, we may actually have too many test cases

Too many tests

● At this point, we may actually have too many test cases
○ Surprisingly, this is normal in industry: you almost always

have far too few or far too many!

Too many tests

● At this point, we may actually have too many test cases
○ Surprisingly, this is normal in industry: you almost always

have far too few or far too many!
● This is especially true when using automated test generation

tools

Too many tests

● At this point, we may actually have too many test cases
○ Surprisingly, this is normal in industry: you almost always

have far too few or far too many!
● This is especially true when using automated test generation

tools
○ Which many produce many tests but lower-quality ones than

humans would produce

Too many tests

● At this point, we may actually have too many test cases
○ Surprisingly, this is normal in industry: you almost always

have far too few or far too many!
● This is especially true when using automated test generation

tools
○ Which many produce many tests but lower-quality ones than

humans would produce
○ A big cost problem!

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Example:

● T1 covers lines 1,2,3
● T2 covers lines 2,3,4,5
● T3 covers lines 1,2
● T4 covers lines 1, 6

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Example:

● T1 covers lines 1,2,3
● T2 covers lines 2,3,4,5
● T3 covers lines 1,2
● T4 covers lines 1, 6

Which of these tests
would you pick to
minimize the number
that need to be run?

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Example:

● T1 covers lines 1,2,3
● T2 covers lines 2,3,4,5
● T3 covers lines 1,2
● T4 covers lines 1, 6

Which of these tests
would you pick to
minimize the number
that need to be run?

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

● very similar to test suite minimization (same techniques are
useful for both)

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

● very similar to test suite minimization (same techniques are
useful for both)

● question: how hard are these problems?

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

● very similar to test suite minimization (same techniques are
useful for both)

● question: how hard are these problems?
○ theory strikes again!

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

● very similar to test suite minimization (same techniques are
useful for both)

● question: how hard are these problems?
○ theory strikes again!
○ answer: it’s “hard” (similar “traditional” problem that you

might consider a reduction to: knapsack)

Takeaways

● two typical ways to generate test inputs:
○ solve path constraints
○ “at random” via fuzzing

● both common in practice
● both suffer from the oracle problem

○ implicit oracles are most common solution
○ invariants, differential testing, etc. also options

● in practice, you often have too many tests
○ deciding which to run is a hard problem, too

