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Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization



Ways to think about test suite quality

Today we’re going to consider three ways to think about test suite 
quality:

● test suite quality through the lens of logic
● test suite quality through the lens of statistics
● test suite quality through the lens of adversity
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The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two 
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many 
each pig finds
○ The pig that finds more of the hidden truffles in your 

backyard is assumed to find more real truffles in the wild 
● Suppose you wanted to evaluate the quality of two bug-finding 

test suites …
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The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite 
adequacy metric in which the quality of a test suite is related to the 
number of intentionally-added defects it finds
● Informally: “You claim your test suite is really great at finding 

security bugs? Well, I'll just intentionally add a bug to my source 
code and see if your test suite finds it!”
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● In the truffle-pig example, if every truffle I hide in my backyard is 
next to a smelly red flower, a pig that finds them all may not 
actually do well in the real world 
○ The truffle placements I made up were not indicative of 

real-world truffles
● Similarly, if I add a bunch of defects to my software that are not 

the sort of defects real humans would make, then mutation 
testing is uninformative
○ Implication: mutation testing requires us to know what real 

bugs look like
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Definition: Defect seeding is the process of intentionally introducing 
a defect into a program. 
● The defect introduced is typically intentionally similar to defects 

introduced by real developers. 
● The seeding is typically done by changing the source code. 
● For mutation testing, defect seeding is typically done 

automatically (given a model of what human bugs look like)

This is exactly how 
our “fault injection” 
system for testing 
your IP1&2 tests 
works.
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Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program 
point. In mutation testing, the mutation operators are modeled on 
historical human defects.
● Example mutations:

○ if (a < b) → if (a <= b)
○ if (a == b) → if (a != b)
○ a = b + c → a = b - c
○ f(); g(); → g(); f();
○ x = y → x = z
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Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program 
produced by applying one or more mutation operators to one or 
more program locations. 
Definition: The order of a mutant is the number of mutation 
operators applied.

// original                // 2nd-order mutant 
if (a < b): if (a <= b): 

x = a + b → x = a – b 
print(x) print(x) 
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Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are 
“coupled” to simple faults in such a way that a test suite that 
detects all simple faults in a program will detect a high 
percentage of the complex faults. 

● Is this true? 
○ Tests that detect simple mutants were also able to detect 

over 99% of second- and third-order mutants historically 

[A. J. Offutt. Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20, 

Jan. 1992. ]
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Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the 
mutant fails a test that the original passes. 

● Mutation testing (or mutation analysis) of a test suite proceeds by 
making a number of mutants and measuring the fraction of them 
killed by that test suite. This fraction is called the mutation 
adequacy score (or mutation score).
○ A test suite with a higher score is better.

● (Sorry for all of the vocabulary!)
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● Has the potential to subsume other test suite adequacy criteria 
(it can be very good) 

● Difficult to do well:
○ Which mutation operators do you use? 
○ Where do you apply them? How often do you apply them?

■ Typically done at random, but how? 
● It is very expensive. If you make 1,000 mutants, you must now 

run your test suite 1,000 times!
○ We started by saying testing (1x) was expensive!
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● Suppose you have “x = a + b; y = c + d;” and you swap 
those two statements. 

● The resulting program is a mutant, but it is semantically 
equivalent to the original. 
○ So it will pass and fail all of the tests that the original passes 

and fails. 
○ So it will dilute the mutation score 

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Remember when I 
mentioned reductions 
earlier? Now is a good 
time to do one!
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Mutation testing: equivalent mutant problem

● Detecting these “equivalent mutants” is a big deal. How hard is it?
● It is undecidable! (= there is no algorithm for it that can always 

give the correct answer)
○ by direct reduction to the Halting Problem (or by Rice’s 

theorem)

def foo(): # foo halts if and only if 
if p1() == p2(): # p1 is equivalent to p2 

return 0
foo()



Takeaways

● Individual tests should be hermetic and focused
○ avoid flaky and brittle tests

● Three lenses for test suite quality: logic, statistics, and adversity
● Lens of Logic: “no visit X → no find bug in X” 

○ leads to statement and branch coverage. 
● Lens of Statistics: “sample the inputs the users will make” 

○ leads to beta testing, A/B testing. 
● Lens of Adversity: “poke realistic holes in the program and see if 

you find them” 
○ leads to mutation testing.
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Test data

● What are all the inputs to a test? 
○ Many programs (especially student programs) read from a file 

or stdin … 
○ But what else is “read in” by a program and may influence its 

behavior?

What else besides “input” can influence program behavior?
● User Input (e.g., GUI)
● Environment Variables, Command-Line Args 
● Scheduler Interleavings
● Data from the Filesystem

○ User configuration, data files
● Data from the Network 

○ Server and service responses
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Test input generation

● As a human, often choosing good test inputs is the hardest part 
of writing a test

● For a computer, that’s not true: computers can pick inputs very 
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage
○ Lens of Statistics: choose inputs “at random”
○ Lens of Adversity: choose inputs that kill mutants
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Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths
○ You need 2N tests to cover them

● Path coverage subsumes branch coverage
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Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

● Key idea: solve this problem with math

Definition: a path predicate (or path condition, or path constraint) is a 
boolean formula over program variables that is true when the 
program executes the given path
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Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

● When the path predicate is true, control flow 
will follow the given path

● So, given a path predicate, how do we choose 
a test input that covers the path?
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Lens of Logic: solving path predicates

Definition:  A satisfying assignment is a mapping from variables to 
values that makes a predicate true.

● What is a satisfying assignment for 
○ a >= b && c >= d && e < f  ?

■ a=5, b=4, c=3, d=2, e=1, f=2 
■ a=0, b=0, c=0, d=0, e=0, f=1

■ … many more
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Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.
○ Option 2: repeatedly guess randomly

■ works surprisingly well (when answers are not sparse)
○ Option 3: use an automated theorem prover

■ cf. Wolfram Alpha, MatLab, Mathematica, Z3, etc.
■ works very well for a restricted class of equations (e.g., 

linear but not arbitrary polynomials, etc.)

Ask me about how an SMT solver works in 
office hours if you want to know more!
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Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?
● There could be infinitely many!

while a < b:
  a = a + 1
return a

● One path corresponds to executing the loop once, another to 
twice, another to three times, etc. 
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Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop 
zero times or one time)

○ Consider only taking each loop at most k times
○ Enumerate paths breadth-first or depth-first and stop after k 

paths have been enumerated
● For more on this topic, take a graduate-level course on program 

analysis or compilers
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● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate 
● For each path predicate, solve it
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○ None found? Dead code, tough predicate, etc.
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Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path 

predicate?
○ The path predicate may not be expressible in 

terms of the inputs we control

foo(a,b): 
  str1 = read_from_url(“abc.com”) 
  str2 = read_from_url(“xyz.com”) 
  if (str1 == str2): bar()

Suppose we want to 
exercise the path that 
calls bar. One predicate 
is str1==str2. What do 
you assign to a and b?
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Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their 
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can
○ Ask the solver to find a solution in terms of the input variables
○ If it can’t (because the math is too hard, we don’t control the 

input, etc.), we give up



Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate 
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables 
→ those are your test input 

○ None found? Dead code, tough predicate, etc.
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● Recall: we want to automatically generate test cases
● We have an approach that works well in practice: 

○ Enumerate some paths 
○ Extract their path constraints 
○ Solve those path constraints

● What are we missing?
○ Oracles!



Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization
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Oracle generation

● Generating input is of limited value if we don’t know what the 
program is supposed to do with that input

● Key question: if we generate an input for a given path, how do we 
tell if the program behaved correctly?
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Oracle generation: difficulty

● Oracles are tricky.
○ Many believe that formally writing down what a program 

should do is as hard as coding it.
● The Oracle Problem is the difficulty and cost of determining the 

correct test oracle (i.e., output) for a given input.
○ “What should the program do?”
○ It is expensive both for humans and for machines.

■ and, for machines, sometimes impossible!
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Observation: there are some things programs definitely shouldn’t do 
given any input
● crash, segfault, loop forever, exfiltrate user data, etc.
● key idea: run the program and check if it does any of these 

definitely bad things

Definition: an implicit oracle is one associated with the language or 
architecture, rather than program-specific semantics (e.g., “don't 
segfault”, “don't loop forever”).

Implicit oracles like 
these are used by 
most test generation 
tools in the real world.
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Oracle generation: invariants as oracles

Observation: programs usually behave correctly
● e.g., if I have a human-written test suite with ten tests, and we have 

index == array_len - 1 in every test
● then maybe the correct oracle is that on every input we should 

have index == array_len - 1

Definition: an invariant is a predicate over program expressions that is 
true on every execution
● high-quality invariants can serve as test oracles
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Oracle generation: dynamic invariant detection

● There are tools for invariant detection called dynamic invariant 
detectors
○ Key idea: find invariants that are true on the human-written 

test suite, then apply those to the test inputs we generate
■ report any violation to a human

○ For more information (e.g., how to build one) take a 
graduate-level class on program analysis or read the Daikon 
paper (September 27 optional reading!)
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Oracle generation: differential testing

Observation: there are many programs with similar or identical 
specifications
● if we are building such a program, we can use another 

implementation as an oracle
● e.g., if we’re writing a C compiler, we can compare our output to gcc

Definition: differential testing is a technique for testing two related 
programs by comparing their output on generated test inputs. Any 
difference indicates non-conformance in one of the two.
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Oracle generation: differential testing

Advantages and disadvantages of differential testing:
● only applicable in limited situations: need another implementation

○ but useful more often than you might think - for example, 
when writing a “fast” version of a routine, you can compare its 
output to a “slow” but easy-to-implement version

● a human needs to decide which of the two is correct
○ and sometimes neither is!

● but, differential testing provides a much stronger oracle than 
other automated techniques



Testing (part 3)

Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization

This is how far we got on 
9/20/24. This lecture will 
resume on October 2.



Test input generation

● As a human, often choosing good test inputs is the hardest part 
of writing a test

● For a computer, that’s not true: computers can pick inputs very 
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage
○ Lens of Statistics: choose inputs “at random”
○ Lens of Adversity: choose inputs that kill mutants



Lens of Statistics: fuzzing and random testing

Key idea: provide inputs “at random” to the program and use an 
implicit oracle



Lens of Statistics: fuzzing and random testing

Key idea: provide inputs “at random” to the program and use an 
implicit oracle



Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique 
that involves providing random or semi-random inputs to a program 
and monitoring for violations of an implicit oracle.



Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique 
that involves providing random or semi-random inputs to a program 
and monitoring for violations of an implicit oracle.
● typical oracle: crashes



Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique 
that involves providing random or semi-random inputs to a program 
and monitoring for violations of an implicit oracle.
● typical oracle: crashes
● totally random input rarely works well



Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique 
that involves providing random or semi-random inputs to a program 
and monitoring for violations of an implicit oracle.
● typical oracle: crashes
● totally random input rarely works well

○ most programs have structured input
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Definition: fuzzing (or fuzz testing) is an automated testing technique 
that involves providing random or semi-random inputs to a program 
and monitoring for violations of an implicit oracle.
● typical oracle: crashes
● totally random input rarely works well

○ most programs have structured input
○ so modern fuzzers use some kind of semi-random, directed 

search
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Modern fuzzers deal with structured input in a few ways:
● mutating seed inputs:

○ start with a seed pool of valid or useful inputs
○ new test cases are evolved from old ones

● reward or fitness functions:
○ when an input increases coverage (or some other test goal), 

choose more inputs like that (e.g., add it to the seed pool)
● combination with path predicates:

○ add inputs that are guaranteed to increase coverage to the 
seed pool
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● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects 

constantly using industry resources
● Fuzzing is machine-intensive

○ most inputs aren’t useful
● Fuzzing finds real bugs

○ especially useful for finding security bugs



Test input generation

● As a human, often choosing good test inputs is the hardest part 
of writing a test

● For a computer, that’s not true: computers can pick inputs very 
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Logic: choose inputs that will maximize coverage
○ Lens of Statistics: choose inputs “at random”
○ Lens of Adversity: choose inputs that kill mutants
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Lens of Adversity: killing mutants

● Actually, not as useful as it seems for automatic test generation
○ still need to use either path predicates or fuzzing to choose 

inputs
● Can be a useful fitness function or guide for other automated test 

input generation approaches
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Today’s agenda:

● Reading Quiz
● Finish up slides from last lecture
● Test input generation (fuzzing)
● Test oracle generation
● Test prioritization & test suite minimization
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Too many tests

● At this point, we may actually have too many test cases
○  Surprisingly, this is normal in industry: you almost always 

have far too few or far too many!
● This is especially true when using automated test generation 

tools 
○ Which many produce many tests but lower-quality ones than 

humans would produce 
○ A big cost problem!
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Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar, 
the test suite prioritization problem is deciding which tests to run to 
maximize coverage while staying within the budget

● very similar to test suite minimization (same techniques are 
useful for both)

● question: how hard are these problems?
○ theory strikes again!
○ answer: it’s “hard” (similar “traditional” problem that you 

might consider a reduction to: knapsack)



Takeaways

● two typical ways to generate test inputs:
○ solve path constraints
○ “at random” via fuzzing

● both common in practice
● both suffer from the oracle problem

○ implicit oracles are most common solution
○ invariants, differential testing, etc. also options

● in practice, you often have too many tests
○ deciding which to run is a hard problem, too


