
Testing (Part 1/3)
Martin Kellogg

Testing (part 1)

Today’s agenda:

● Reading Quiz
● What is testing?
● How to write tests
● Different kinds of tests and how to use them
● Continuous integration (or: why most of your tests should be

automated)

Reading Quiz: testing (1)

Q1: TRUE or FALSE: an important activity in TDD is writing tests
that fail

Q2: The example’s first test case was:

 assertEquals(1, qs.count());

How did the author implement the qs.count() function to get this test
to pass the first time? (Answers that describe the technique or give a
complete implementation are OK.)

Reading Quiz: testing (1)

Q1: TRUE or FALSE: an important activity in TDD is writing tests
that fail

Q2: The example’s first test case was:

 assertEquals(1, qs.count());

How did the author implement the qs.count() function to get this test
to pass the first time? (Answers that describe the technique or give a
complete implementation are OK.)

Reading Quiz: testing (1)

Q1: TRUE or FALSE: an important activity in TDD is writing tests
that fail

Q2: The example’s first test case was:

 assertEquals(1, qs.count());

How did the author implement the qs.count() function to get this test
to pass the first time? (Answers that describe the technique or give a
complete implementation are OK.)

Hardcoded it to always return 1:

public int count() {
return 1;

}

(Anything close gets full credit)

Testing (part 1)

Today’s agenda:

● Reading Quiz
● What is testing?
● How to write tests
● Different kinds of tests and how to use them
● Continuous integration (or: why most of your tests should be

automated)

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

Aside: testing is the canonical
example of a dynamic analysis,
which is program analysis that
requires running the program

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

SUT

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

input

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

output

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

comparator

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

oracle

What is testing?

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

oraclecomparatoroutputinputSUT

Building a test case

● You usually know the SUT

Building a test case

● You usually know the SUT
● You choose inputs (how?)

Building a test case

● You usually know the SUT
● You choose inputs (how?)
● Run the SUT on the chosen inputs to produce the output

Building a test case

● You usually know the SUT
● You choose inputs (how?)
● Run the SUT on the chosen inputs to produce the output
● You choose the comparator (how?)

Building a test case

● You usually know the SUT
● You choose inputs (how?)
● Run the SUT on the chosen inputs to produce the output
● You choose the comparator (how?)
● You choose the oracle (how?)

Building a test case

● You usually know the SUT
● You choose inputs (how?)
● Run the SUT on the chosen inputs to produce the output
● You choose the comparator (how?)
● You choose the oracle (how?)

Ideal situation: you can test every input (“exhaustive testing”)

Building a test case

● You usually know the SUT
● You choose inputs (how?)
● Run the SUT on the chosen inputs to produce the output
● You choose the comparator (how?)
● You choose the oracle (how?)

Ideal situation: you can test every input (“exhaustive testing”)
● in practice, rarely possible: input space is too large

Building a test case

● You usually know the SUT
● You choose inputs (how?)
● Run the SUT on the chosen inputs to produce the output
● You choose the comparator (how?)
● You choose the oracle (how?)

Ideal situation: you can test every input (“exhaustive testing”)
● in practice, rarely possible: input space is too large

“Tests can show
the presence of
bugs, but not
their absence”

Building a test case

● You usually know the SUT
● You choose inputs (how?)
● Run the SUT on the chosen inputs to produce the output
● You choose the comparator (how?)
● You choose the oracle (how?)

Ideal situation: you can test every input (“exhaustive testing”)
● in practice, rarely possible: input space is too large

We’ll talk about these
out of order:
● comparators
● oracles
● inputs

Testing (part 1)

Today’s agenda:

● Reading Quiz
● What is testing?
● How to write tests
● Different kinds of tests and how to use them
● Continuous integration (or: why most of your tests should be

automated)

Choosing a comparator

● Most common: exact match (often a good choice!)

Choosing a comparator

● Most common: exact match (often a good choice!)
● Also common:

○ over-approximation (“is the output one of these good
values”, or, more commonly, “is there any output at all”)

Choosing a comparator

● Most common: exact match (often a good choice!)
● Also common:

○ over-approximation (“is the output one of these good
values”, or, more commonly, “is there any output at all”)

○ under-approximation (“does the output contain this
expected value”)

Choosing a comparator

● Most common: exact match (often a good choice!)
● Also common:

○ over-approximation (“is the output one of these good
values”, or, more commonly, “is there any output at all”)

○ under-approximation (“does the output contain this
expected value”)

● But, could be an arbitrarily-complex boolean function
○ must be boolean, because test needs to either pass or fail

Choosing a comparator

● Most common: exact match (often a good choice!)
● Also common:

○ over-approximation (“is the output one of these good
values”, or, more commonly, “is there any output at all”)

○ under-approximation (“does the output contain this
expected value”)

● But, could be an arbitrarily-complex boolean function
○ must be boolean, because test needs to either pass or fail

Choosing a comparator is
easy for programs that
read and write text. For
programs that e.g., have a
GUI, this can be a very
difficult problem.

Choosing an oracle

● As a human, you get this from the specification
○ ask yourself: “what should the program do with this input?”

Choosing an oracle

● As a human, you get this from the specification
○ ask yourself: “what should the program do with this input?”
○ advice: always write down the oracle

■ common (low quality) oracle: add a printf statement to
the program, run it, check by hand that the output is what
you expect

Choosing an oracle

● As a human, you get this from the specification
○ ask yourself: “what should the program do with this input?”
○ advice: always write down the oracle

■ common (low quality) oracle: add a printf statement to
the program, run it, check by hand that the output is what
you expect

Don’t do this!

Choosing an oracle

● As a human, you get this from the specification
○ ask yourself: “what should the program do with this input?”
○ advice: always write down the oracle

■ common (low quality) oracle: add a printf statement to
the program, run it, check by hand that the output is what
you expect

● Choosing an oracle automatically is very hard
○ key problem in automated test generation
○ we’ll talk about this in more detail later

Choosing inputs

● When writing tests by hand, this is often the hardest part

Choosing inputs

● When writing tests by hand, this is often the hardest part
● Strategies:

○ choose at random (avoid when writing by hand)
○ edge cases
○ partition testing

Choosing inputs

● When writing tests by hand, this is often the hardest part
● Strategies:

○ choose at random (avoid when writing by hand)
○ edge cases
○ partition testing

Edge case examples:
● 0, 1, -1
● null
● empty list
● empty file
● etc.

Choosing inputs

● When writing tests by hand, this is often the hardest part
● Strategies:

○ choose at random (avoid when writing by hand)
○ edge cases
○ partition testing

Partition testing

Key idea: split up the input space into redundant “regions”

Partition testing

Key idea: split up the input space into redundant “regions”

Partition testing

Key idea: split up the input space into redundant “regions”

1
2 3

4
5

6

7

● write one test for each region

Partition testing

Key idea: split up the input space into redundant “regions”

1
2 3

4
5

6

7

● write one test for each region
● possible ways to split up the input:

○ parity (even, odd)
○ positive, negative, zero
○ jpg files vs png files
○ correctly-formatted input vs

incorrectly-formatted input

Partition testing

Key idea: split up the input space into redundant “regions”

1
2 3

4
5

6

7

● write one test for each region
● possible ways to split up the input:

○ parity (even, odd)
○ positive, negative, zero
○ jpg files vs png files
○ correctly-formatted input vs

incorrectly-formatted input

Common technique:
split up input space k
ways, write 2^k tests

Testing (part 1)

Today’s agenda:

● Reading Quiz
● What is testing?
● How to write tests
● Different kinds of tests and how to use them
● Continuous integration (or: why most of your tests should be

automated)

Kinds of tests

Many ways to classify tests:

Kinds of tests

Many ways to classify tests:

● by size: how many resources do the tests need?
● by scope: what sort of thing is the SUT?
● by purpose: why are we testing?
● by manner: how is testing performed?

Kinds of tests

Many ways to classify tests:

● by size: how many resources do the tests need?
● by scope: what sort of thing is the SUT?
● by purpose: why are we testing?
● by manner: how is testing performed?

All valid ways to
classify tests!

Kinds of tests

We’ll discuss the following important kinds of tests:

● unit tests
● integration tests

○ with a discussion of mocking
● regression tests

Kinds of tests: unit tests

Definition: a unit test tests individual “units” of source code:
procedures, methods, classes, modules, etc.

Kinds of tests: unit tests

Definition: a unit test tests individual “units” of source code:
procedures, methods, classes, modules, etc.

● unit tests are characterized by scope: you can tell a test is a unit
test because it tests only a single component

Kinds of tests: unit tests

Definition: a unit test tests individual “units” of source code:
procedures, methods, classes, modules, etc.

● unit tests are characterized by scope: you can tell a test is a unit
test because it tests only a single component

● typically they should be small and fast

Kinds of tests: unit tests

Definition: a unit test tests individual “units” of source code:
procedures, methods, classes, modules, etc.

● unit tests are characterized by scope: you can tell a test is a unit
test because it tests only a single component

● typically they should be small and fast
● tests features in isolation, which makes debugging easier

Kinds of tests: unit tests

Definition: a unit test tests individual “units” of source code:
procedures, methods, classes, modules, etc.

● unit tests are characterized by scope: you can tell a test is a unit
test because it tests only a single component

● typically they should be small and fast
● tests features in isolation, which makes debugging easier
● modern frameworks are often based on SUnit (for Smalltalk)

○ e.g., JUnit (Java), unittest (Python), googletest (C++), etc.

Kinds of tests: unit tests

Definition: a unit test tests individual “units” of source code:
procedures, methods, classes, modules, etc.

● unit tests are characterized by scope: you can tell a test is a unit
test because it tests only a single component

● typically they should be small and fast
● tests features in isolation, which makes debugging easier
● modern frameworks are often based on SUnit (for Smalltalk)

○ e.g., JUnit (Java), unittest (Python), googletest (C++), etc.

Collectively referred to as
xUnit frameworks

Kinds of tests: unit tests: xUnit

● Test cases “look like other code”
○ They are special methods written to return a boolean or raise

assertion failures

Kinds of tests: unit tests: xUnit

● Test cases “look like other code”
○ They are special methods written to return a boolean or raise

assertion failures
● A test case discoverer finds all such tests

○ Special naming scheme, dynamic reflection, etc.

Kinds of tests: unit tests: xUnit

● Test cases “look like other code”
○ They are special methods written to return a boolean or raise

assertion failures
● A test case discoverer finds all such tests

○ Special naming scheme, dynamic reflection, etc.
● A test case runner chooses which tests to run

Kinds of tests: unit tests: xUnit

● Test cases “look like other code”
○ They are special methods written to return a boolean or raise

assertion failures
● A test case discoverer finds all such tests

○ Special naming scheme, dynamic reflection, etc.
● A test case runner chooses which tests to run
● Each test is run in a “fresh” environment

○ A test fixture specifies which code to run before/after the
test case to setup/teardown the right environment

Kinds of tests

We’ll discuss the following important kinds of tests:

● unit tests
● integration tests

○ with a discussion of mocking
● regression tests

Kinds of tests: integration tests

Definition: an integration test tests that multiple sub-components of
a software system work correctly when combined

Kinds of tests: integration tests

Definition: an integration test tests that multiple sub-components of
a software system work correctly when combined

● Goal: answer the question “Does our application work from start
to finish?”

Kinds of tests: integration tests

Definition: an integration test tests that multiple sub-components of
a software system work correctly when combined

● Goal: answer the question “Does our application work from start
to finish?”

● Typically combined with unit testing: unit test individual
components, then test that they integrate together properly

Kinds of tests: integration tests vs unit tests

Question: what determines whether a test is a unit test of a module,
or an integration test of its sub-components?

Kinds of tests: integration tests vs unit tests

Question: what determines whether a test is a unit test of a module,
or an integration test of its sub-components?

Answer: perspective!

Remember, all of computer science is based on abstractions. An
integration test for layer n of a software stack might be a unit test for
layer n+1

Kinds of tests: integration tests vs unit tests

Question: what determines whether a test is a unit test of a module,
or an integration test of its sub-components?

Answer: perspective!

Remember, all of computer science is based on abstractions. An
integration test for layer n of a software stack might be a unit test for
layer n+1

This also promotes a
modular, decoupled design

Testing SUTs that are hard to test

What if we want to write unit or integration tests for some SUT, but
the SUT has expensive dependencies?

Exercise: take one minute and, in pairs, generate three examples of
things that are hard to test because of their dependencies or other
expense factors.

Mocking

Definition: Mock objects are simulated objects that mimic the
behavior of real objects in controlled ways.

In testing, mocking uses a mock object to test the behavior of some
other object.
● analogy: use a crash test dummy instead of real human to test

automobiles

Mocking example: Web API Dependency

● Suppose we're writing a single-page web app
● The API we'll use (e.g., Speech to Text, an LLM, etc.) hasn't been

implemented yet or costs money to use
● We want to be able to write our frontend (website) code without

waiting on the server-side developers to implement the API and
without spending money each time

● What should we do?

Mocking example: Web API Dependency

● Solution: make our own “fake” (“mock”) implementation of the
API

● For each method the API exposes, write a substitute for it that
just returns some hardcoded data (or any other approximation)
○ Why does this work?

Mocking example: Error Handling

● Suppose we're writing some code where certain kinds of errors
will occur sporadically once deployed, but “never” in
development
○ Out of memory, disk full, network down, etc.

Mocking example: Error Handling

● Suppose we're writing some code where certain kinds of errors
will occur sporadically once deployed, but “never” in
development
○ Out of memory, disk full, network down, etc.

● We'd like to apply the same strategy: write a fake version of the
function …
○ But that sounds difficult to do manually, because many

functions would be impacted
○ Example: many functions use the disk

Mocking example: Error Handling

● Strategy one: static (= “before running the program”) mocking
○ Move all disk access to a wrapper API, use mocking there at

that one point (coin flip fake error)
○ Combines modularity/encapsulation with mocking

Mocking example: Error Handling

● Strategy one: static (= “before running the program”) mocking
○ Move all disk access to a wrapper API, use mocking there at

that one point (coin flip fake error)
○ Combines modularity/encapsulation with mocking

● Strategy two: dynamic (= “while running the program”) mocking
○ While the program is executing, have it rewrite itself and

replace its existing code with fake or mocked versions
○ this approach is common but has serious downsides, so let’s

explore it in a little more detail

Dynamic mocking

● Some languages provide dynamic mocking libraries that allow
you to substitute objects and functions at runtime

Dynamic mocking

● Some languages provide dynamic mocking libraries that allow
you to substitute objects and functions at runtime
○ For one test, we could use a mocking library to force another

line of code inside our target function to throw an exception
when reached

Dynamic mocking

● Some languages provide dynamic mocking libraries that allow
you to substitute objects and functions at runtime
○ For one test, we could use a mocking library to force another

line of code inside our target function to throw an exception
when reached

● This feature is available in modern dynamic languages with
reflection (Python, Java, etc.)
○ the Jest library used by Covey.Town supports this

Dynamic mocking library uses

● Track how many times a function was called and/or with what
arguments (“spying”)
○ How would you do this with dynamic mocking?

Dynamic mocking library uses

● Track how many times a function was called and/or with what
arguments (“spying”)
○ How would you do this with dynamic mocking?

● Add or remove side effects
○ Exceptions are considered a side effect by mocking libraries

Dynamic mocking library uses

● Track how many times a function was called and/or with what
arguments (“spying”)
○ How would you do this with dynamic mocking?

● Add or remove side effects
○ Exceptions are considered a side effect by mocking libraries

● Test locking in multithreaded code
○ e.g., force a thread to stall after acquiring a lock

Dynamic mocking library disadvantages

Dynamic mocking library disadvantages

● Test cases with dynamic mocking can be very fragile
○ What if someone moves or removes the call to the operation

you mocked?

Dynamic mocking library disadvantages

● Test cases with dynamic mocking can be very fragile
○ What if someone moves or removes the call to the operation

you mocked?
● Dynamic mocking requires good integration tests

○ If we mock dependencies, we need to be extra careful that
our data structures play nicely together

Dynamic mocking library disadvantages

● Test cases with dynamic mocking can be very fragile
○ What if someone moves or removes the call to the operation

you mocked?
● Dynamic mocking requires good integration tests

○ If we mock dependencies, we need to be extra careful that
our data structures play nicely together

● Dynamic mocking libraries have a learning curve
○ Many language-specific caveats, based on the

implementation of the library
○ Error messages are often cryptic (modified program)

Kinds of tests

We’ll discuss the following important kinds of tests:

● unit tests
● integration tests

○ with a discussion of mocking
● regression tests

Kinds of tests: regression tests

Definition: a regression test tests that the system no longer suffers
from a specific bug

Kinds of tests: regression tests

Definition: a regression test tests that the system no longer suffers
from a specific bug

● prevents old bugs from being reintroduced
○ by you or someone else

Kinds of tests: regression tests

Definition: a regression test tests that the system no longer suffers
from a specific bug

● prevents old bugs from being reintroduced
○ by you or someone else

● theory: monotonically increasing software quality

Kinds of tests: regression tests

Definition: a regression test tests that the system no longer suffers
from a specific bug

● prevents old bugs from being reintroduced
○ by you or someone else

● theory: monotonically increasing software quality
● best practice: when you fix a bug, add a test that specifically

exposes that bug
○ that test is a regression test

How to use tests

How to use tests

● as acceptance criteria
○ for a feature or bug-fix: test driven development

How to use tests

● as acceptance criteria
○ for a feature or bug-fix: test driven development
○ or for a customer accepting the work is done:

■ “if these tests pass, we agree the project is finished”

How to use tests

● as acceptance criteria
○ for a feature or bug-fix: test driven development
○ or for a customer accepting the work is done:

■ “if these tests pass, we agree the project is finished”
● to prevent the recurrence of past mistakes

○ regression testing

How to use tests

● as acceptance criteria
○ for a feature or bug-fix: test driven development
○ or for a customer accepting the work is done:

■ “if these tests pass, we agree the project is finished”
● to prevent the recurrence of past mistakes

○ regression testing
● as a gatekeeper to prevent breaking changes to the system

○ continuous integration

Test driven development

Definition: test driven development (TDD) is a software development
process that relies on the repetition of a very short development
cycle: requirements are turned into very specific test cases, then the
software is improved so that the tests pass.

Test driven development

Definition: test driven development (TDD) is a software development
process that relies on the repetition of a very short development
cycle: requirements are turned into very specific test cases, then the
software is improved so that the tests pass.

● key idea: using TDD guarantees that you have a test for each line
of code that you write

Test driven development

Definition: test driven development (TDD) is a software development
process that relies on the repetition of a very short development
cycle: requirements are turned into very specific test cases, then the
software is improved so that the tests pass.

● key idea: using TDD guarantees that you have a test for each line
of code that you write

● research shows that TDD dramatically improves software
quality (as measured by defect density)
○ implication: always use TDD if possible

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

requirement: the test must fail when first written!

● “run your entire suite of tests and watch the new test fail”

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

requirement: the test must fail when first written!

● “run your entire suite of tests and watch the new test fail”
● what if your new test doesn’t fail?

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

requirement: the test must fail when first written!

● “run your entire suite of tests and watch the new test fail”
● what if your new test doesn’t fail?

○ actually a very common problem!
○ when reporting a bug, this is why you should try to

provide a failing test case

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

2. write the test and observe the test failure

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

2. write the test and observe the test failure

Common mistake: don’t
actually run the tests, just
assume that your test will fail

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

2. write the test and observe the test failure
3. write just enough code to get the test to pass

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

2. write the test and observe the test failure
3. write just enough code to get the test to pass

Don’t worry too much about
elegance - goal in step 3 is to
get back to working code

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

2. write the test and observe the test failure
3. write just enough code to get the test to pass
4. refactor your code to improve its quality/elegance, re-running

the test after each change to make sure that it still passes

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

2. write the test and observe the test failure
3. write just enough code to get the test to pass
4. refactor your code to improve its quality/elegance, re-running

the test after each change to make sure that it still passes
5. commit the new code and the test; make a PR

Test driven development: steps

1. “think of a test that will force you to add the next few lines of
production code”

2. write the test and observe the test failure
3. write just enough code to get the test to pass
4. refactor your code to improve its quality/elegance, re-running

the test after each change to make sure that it still passes
5. commit the new code and the test; make a PR
6. go back to step 1

Why does TDD improve code quality?

Why does TDD improve code quality?

● every behavior has a regression test immediately

Why does TDD improve code quality?

● every behavior has a regression test immediately
● fast edit-test-debug cycle

Why does TDD improve code quality?

● every behavior has a regression test immediately
● fast edit-test-debug cycle

Definition: the edit-test-debug cycle is the main loop of
software development:
● edit the code
● test to make sure it works
● debug why it doesn’t

Research shows that having a fast edit-test-debug
cycle is critical for programmer productivity.
Advice: Try to avoid “test” steps of > 30 seconds.

Why does TDD improve code quality?

● every behavior has a regression test immediately
● fast edit-test-debug cycle

Definition: the edit-test-debug cycle is the main loop of
software development:
● edit the code
● test to make sure it works
● debug why it doesn’t

Research shows that having a fast edit-test-debug
cycle is critical for programmer productivity.
Advice: Try to avoid “test” steps of > 30 seconds.

Why does TDD improve code quality?

● every behavior has a regression test immediately
● fast edit-test-debug cycle

Definition: the edit-test-debug cycle is the main loop of
software development:
● edit the code
● test to make sure it works
● debug why it doesn’t

Research shows that having a fast edit-test-debug
cycle is critical for programmer productivity.
Advice: Try to avoid “test” steps of > 10 seconds.

Why does TDD improve code quality?

● every behavior has a regression test immediately
● fast edit-test-debug cycle
● code is working most of the time (TDD and Agile are closely

related: almost all Agile methodologies advocate for TDD)

Why does TDD improve code quality?

● every behavior has a regression test immediately
● fast edit-test-debug cycle
● code is working most of the time (TDD and Agile are closely

related: almost all Agile methodologies advocate for TDD)
○ we’ll come back to this in the “Process” lecture

Testing (part 1)

Today’s agenda:

● Reading Quiz
● What is testing?
● How to write tests
● Different kinds of tests and how to use them
● Continuous integration (or: why most of your tests should be

automated)

Continuous integration

A few slides ago, I mentioned that it’s a good idea to avoid
edit-test-debug cycles with > 10 second “test” steps

● but what if your tests take longer than that to run?

Continuous integration

A few slides ago, I mentioned that it’s a good idea to avoid
edit-test-debug cycles with > 10 second “test” steps

● but what if your tests take longer than that to run?
● answer: move them from the developer’s machine to a

continuous integration server

Continuous integration

Definition: continuous integration (CI) “is a software development
practice where developers regularly merge their code changes into a
central repository, after which automated builds and tests are run”

[https://aws.amazon.com/devops/continuous-integration/]

https://aws.amazon.com/devops/continuous-integration/

Continuous integration

Definition: continuous integration (CI) “is a software development
practice where developers regularly merge their code changes into a
central repository, after which automated builds and tests are run”

● use of CI is practically mandatory in industry

[https://aws.amazon.com/devops/continuous-integration/]

https://aws.amazon.com/devops/continuous-integration/

Continuous integration

Definition: continuous integration (CI) “is a software development
practice where developers regularly merge their code changes into a
central repository, after which automated builds and tests are run”

● use of CI is practically mandatory in industry
● best practices:

○ use CI for every project, even very small ones
○ all changes to a project should be gated by CI tests passing
○ run all tests (and other quality checks) automatically in CI

[https://aws.amazon.com/devops/continuous-integration/]

https://aws.amazon.com/devops/continuous-integration/

Continuous integration

Definition: continuous integration (CI) “is a software development
practice where developers regularly merge their code changes into a
central repository, after which automated builds and tests are run”

● use of CI is practically mandatory in industry
● best practices:

○ use CI for every project, even very small ones
○ all changes to a project should be gated by CI tests passing
○ run all tests (and other quality checks) automatically in CI

[https://aws.amazon.com/devops/continuous-integration/]

Advice: be very concerned
about any project that:
● doesn’t have a CI setup
● doesn’t run all tests in CI
● lets CI builds regularly fail

for long periods of time
○ a failing CI build is an

emergency

https://aws.amazon.com/devops/continuous-integration/

Takeaways

● A test is an input + a comparator + an oracle
● Use strategies like partition testing when writing test cases by

hand
● Different kinds of tests serve different purposes

○ understand the difference between unit, integration tests
○ regression testing prevents bugs (especially when combined

with TDD + CI)
● Use TDD + CI to improve software quality
● Next time: test suite quality and mutation testing

