
Technical debt, refactoring,
and maintenance (1/2)

Martin Kellogg

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Creational patterns: example

● Suppose we're implementing a computer game with a
polymorphic Enemy class hierarchy, and we want to spawn
different versions of enemies based on the difficulty level.

● e.g., normal difficulty = regular Goomba

● hard difficulty = spiked Goomba

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Why is this bad?
● code duplication
● consider how you’d add a

new difficulty level…

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Why is this bad?
● code duplication
● consider how you’d add a

new difficulty level…

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

// Only have to do this once!
AbstractEnemyFactory* factory = nullptr;
if (difficulty == “normal”)
 factory = new NormalEnemyFactory();
else if (difficulty == “hard”)
 factory = new HardEnemyFactory();
Enemy* goomba = factory->create_goomba();

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).
○ fails to control access or updates!

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).
○ fails to control access or updates!

● A “less bad” solution is to put all of the state in one class and have
a global instance of that class.

Scenario: global application state

● Global variables are usually a poor design choice. However:

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.
○ Or if you need to access state stored outside your program (e.g.,

database, web API)

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.
○ Or if you need to access state stored outside your program (e.g.,

database, web API)
○ Then global variables may be acceptable

Scenario: global application state

● The singleton pattern restricts the instantiation of a class to exactly
one logical instance. It ensures that a class has only one logical
instance at runtime and provides a global point of access to it.

Singleton design pattern

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

lazy initializaton
of single object

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

this constructor
can’t be called any
other way

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

all clients share
this global state

What is the output of this code?

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().increment_billing_count();
 bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);
 }
}

Singleton design pattern:
example

What is the output of this code?

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().increment_billing_count();
 bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);
 }
}

Singleton design pattern:
example

Output:
Singleton DB created
0
1

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

Singleton design pattern: get_instance()

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

● Is this a good idea or not?

Singleton design pattern: get_instance()

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

● Is this a good idea or not?

Singleton design pattern: get_instance()

This is a bad idea. There is no
guarantee that get_instance() will
return the same pointer (same
object) every time it is called. (It
may return different concrete
copies of the same logical item.)

● Suppose we are implementing a computer version of the card game
Euchre. In addition to a few abstract datatypes, we have a Game
class that stores the state needed for a game of Euchre. When
started, our application prototype plays one game of Euchre and
then exits.

● Design question: should we make Game a singleton?

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

● We should only use the Singleton pattern when current or future
requirements dictate that only one instance should exist.

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

● We should only use the Singleton pattern when current or future
requirements dictate that only one instance should exist.
○ Singleton is not a license to make everything global.

Singleton design pattern: another example

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

■ e.g., same underlying algorithm, different interfaces or
same interface, different underlying algorithms

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

■ e.g., same underlying algorithm, different interfaces or
same interface, different underlying algorithms

○ Examples: strategy pattern, template method pattern,
iterator pattern, observer pattern, etc.

Behavioural Design Patterns

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.
○ e.g., Java’s List interface doesn’t care whether it’s backed by an

array or a linked list

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.
○ e.g., Java’s List interface doesn’t care whether it’s backed by an

array or a linked list
● Similar patterns exist for other kinds of data structures

○ e.g., visitor pattern for tree-like structures

Strategy Design Pattern

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context
○ Introduces extra interfaces and classes: code can be harder to

understand; adds overhead if the strategies are simple

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Template Method Design Pattern

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

○ Inverted (“Hollywood-style”) control for customization: “don’t call us,

we’ll call you” (cf. comparison function in sorting)

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

○ Inverted (“Hollywood-style”) control for customization: “don’t call us,

we’ll call you” (cf. comparison function in sorting)

○ Invariant parts of the algorithm are not changed by subclasses

Template vs. Strategy Design Pattern

Template vs. Strategy Design Pattern

● Both support variation in a larger context

Template vs. Strategy Design Pattern

● Both support variation in a larger context
● Template method uses inheritance + an overridable method

Template vs. Strategy Design Pattern

● Both support variation in a larger context
● Template method uses inheritance + an overridable method
● Strategy uses an interface and polymorphism (via composition)

○ Strategy objects are reusable across multiple classes
○ Multiple strategy objects are possible per class

Scenario: binge-watching

● Suppose we're implementing a video streaming website in which
users can “binge-watch” (or “lock on”) to one channel. The user will
then see that channel's videos in sequence. When the last such
video is watched, the user should stop binge-watching that channel.

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

class Channel {
 // Called when the last video is shown
 public void on_last_video_shown() {
 // Global accessor for the user
 get_user().release_binge_watch(this);
 }
}

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

● What are some problems with this approach?

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

class Channel {
 // Called when the last video is shown
 public void on_last_video_shown() {
 // Global accessor for the user
 get_user().release_binge_watch(this);
 }
}

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?
● Whenever requirements change and we want to do something else

when a video finishes (e.g., update advertising) we must update the
Channel class and couple it to the new feature

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?
● Whenever requirements change and we want to do something else

when a video finishes (e.g., update advertising) we must update the
Channel class and couple it to the new feature

What can we do instead?

Observer Pattern

● The observer pattern (also called “publish-subscribe”) allows
dependent objects to be notified automatically when the state of a
subject changes. It defines a one-to-many dependency between
objects so that when one object changes state, all of it dependents
are notified.

Observer Pattern

● The observer pattern (also called “publish-subscribe”) allows
dependent objects to be notified automatically when the state of a
subject changes. It defines a one-to-many dependency between
objects so that when one object changes state, all of it dependents
are notified.

Observer Pattern: bing-watch scenario

Observer Pattern: bing-watch scenario

class Channel {
 public void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

Observer Pattern: bing-watch scenario

class Channel {
 public void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

interface ChannelObserver {
 void update_video_shown(Channel channel);
}

Observer Pattern: bing-watch scenario

class Channel {
 public void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

interface ChannelObserver {
 void update_video_shown(Channel channel);
}

class User: ChannelObserver {
 public void update_video_shown(Channel c) {
 if (c == binged_channel)
 binged_channel = null;
 }
 public void binge_watch(Channel c) {
 binged_channel = c;
 }
 private Channel binged_channel;
}

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular
○ Observers that do not care about a particular type of update

can ignore it (via an empty implementation of the update
function)

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular
○ Observers that do not care about a particular type of update

can ignore it (via an empty implementation of the update
function)

● Generally it is better to pass the newly-updated data as a parameter
to the update function (push) as opposed to making observers fetch
it each time (pull)

Design patterns: takeaways

● Thinking about design before you start coding is usually worthwhile
for large projects
○ Design around the most expensive parts of the software

engineering process (usually maintainence!)
● Design patterns are re-usable solutions to common problems
● Be familiar with them enough to recognize when they’re being used

○ and to know when to use them yourself
○ you can look up details of a pattern if you remember its name!

● Be mindful of and avoid common anti-patterns

Tech debt, refactoring, and maintenance (1/2)

Today’s agenda:

● Finish design pattern slides
● Technical debt: the costs of bad design
● How to pay off technical debt: refactoring

Reading quiz: technical debt

Reading quiz: technical debt

Q1: TRUE or FALSE: the article argued that it is both possible and
desirable to avoid technical debt entirely.

Q2: The cost of taking on a financial debt is interest. The cost of taking
on technical debt is increased _____________________ costs.

Reading quiz: technical debt

Q1: TRUE or FALSE: the article argued that it is both possible and
desirable to avoid technical debt entirely.

Q2: The cost of taking on a financial debt is interest. The cost of taking
on technical debt is increased _____________________ costs.

Reading quiz: technical debt

Q1: TRUE or FALSE: the article argued that it is both possible and
desirable to avoid technical debt entirely.

Q2: The cost of taking on a financial debt is interest. The cost of taking
on technical debt is increased ___maintanence____ costs.

Technical debt

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● analogy to financial debts:

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● analogy to financial debts:

○ you gain some immediate benefit
■ in a financial debt, you gain a large sum of money
■ in a technical debt, you gain implementation speed, etc.

Technical debt

Definition: a technical debt is a sub-optimal design decision taken
intentionally in order to gain some immediate benefit
● analogy to financial debts:

○ you gain some immediate benefit
■ in a financial debt, you gain a large sum of money
■ in a technical debt, you gain implementation speed, etc.

○ you pay for it over time
■ in a financial debt, you pay interest
■ in a technical debt, your maintenance costs increase

Technical debt: benefits

● Why might you intentionally make a sub-optimal design decision?

Technical debt: benefits

● Why might you intentionally make a sub-optimal design decision?
○ Cost

■ either in dev time or because the code isn’t done yet
○ Need to meet a deadline
○ Avoid premature optimization
○ Code reuse
○ Principle of least surprise
○ Organizational requirements/politics
○ etc.

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system
● Recall our goals in good design:

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system
● Recall our goals in good design:

○ design for change and reuse
○ make the system easy to extend, modify, etc.

Technical debt: paying interest

● Unlike a financial debt, a technical debt doesn’t have a creditor
○ Conceptually, when you take on technical debt you are

borrowing from future maintainers of the system
● Recall our goals in good design:

○ design for change and reuse
○ make the system easy to extend, modify, etc.

● Implication: a system with technical debt is harder to change and
reuse

Technical debt: benefits and costs

Examples of debt: Examples of costs:

Technical debt: benefits and costs

Examples of debt:
● code smells

Examples of costs:

Technical debt: benefits and costs

Examples of debt:
● code smells

Examples of costs:
● “smelly” code is less flexible

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests

Examples of costs:
● “smelly” code is less flexible

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works
● may need to take over

maintenance of old system

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems
● inefficient and/or non-scalable

algorithms

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works
● may need to take over

maintenance of old system

Technical debt: benefits and costs

Examples of debt:
● code smells
● missing tests
● missing documentation
● dependency on old versions of

third-party systems
● inefficient and/or non-scalable

algorithms

Examples of costs:
● “smelly” code is less flexible
● tests don’t catch breaking

change, causing outages
● need to spend time to figure

out how to system works
● may need to take over

maintenance of old system
● lose potential customers

Technical debt: when is it worth it?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now
○ whether this is worthwhile varies case by case

Technical debt: when is it worth it?

● Key consideration:
○ What are the quality attributes that our software needs to

ultimately satisfy?
■ e.g., safety, performance, scalability, etc.

○ And how do our architectural decisions reflect those attributes?
■ i.e., will we be able to reach our goals using this design?

● The choice to take on technical debt is always a tradeoff:
○ give up some flexibility later, gain something now
○ whether this is worthwhile varies case by case

Whether to take on technical debt is
often one of the most consequential
choices you get to make as an
engineer. Take it seriously!

