
Working in Teams
Martin Kellogg

Working in Teams

Today’s agenda:

● Reading Quiz
● Team structures and roles
● Deciding who to work with: interviews

○ how to be interviewed
○ how to interview

Reading quiz: working in teams

Q1: Which of the following does the author of the Google interview
article say is “one of the most important things you should know”?
A. QuickSort
B. the Halting Problem
C. how to program in C or C++
D. Big-O notation

Q2: TRUE or FALSE: the author of “Two Pizza Teams” argues that such
teams are “activity-oriented” rather than “outcome-oriented”.

Reading quiz: working in teams

Q1: Which of the following does the author of the Google interview
article say is “one of the most important things you should know”?
A. QuickSort
B. the Halting Problem
C. how to program in C or C++
D. Big-O notation

Q2: TRUE or FALSE: the author of “Two Pizza Teams” argues that such
teams are “activity-oriented” rather than “outcome-oriented”.

Reading quiz: working in teams

Q1: Which of the following does the author of the Google interview
article say is “one of the most important things you should know”?
A. QuickSort
B. the Halting Problem
C. how to program in C or C++
D. Big-O notation

Q2: TRUE or FALSE: the author of “Two Pizza Teams” argues that such
teams are “activity-oriented” rather than “outcome-oriented”.

Working in Teams

Today’s agenda:

● Reading Quiz
● Team structures and roles
● Deciding who to work with: interviews

○ how to be interviewed
○ how to interview

Why have a team at all?

Benefits:

Why have a team at all?

Benefits:
● Attack bigger problems in a short period of time
● Utilize the collective experience of everyone

Why have a team at all?

Benefits:
● Attack bigger problems in a short period of time
● Utilize the collective experience of everyone

Humans are social -
we naturally work in
teams

Why have a team at all?

Benefits:
● Attack bigger problems in a short period of time
● Utilize the collective experience of everyone

Risks:

Why have a team at all?

Benefits:
● Attack bigger problems in a short period of time
● Utilize the collective experience of everyone

Risks:
● Communication and coordination issues
● Groupthink: diffusion of responsibility; going along
● Working by inertia; not planning ahead
● Conflict or mistrust between team members

What impacts team success?

What impacts team success?

● Presence of a shared mission and goals
● Motivation and commitment of team members
● Experience level (and presence of experienced members)
● Team size

○ and the need for bounded yet sufficient communication
● Team organization
● Reward structure within the team

○ incentives, enjoyment, empowerment (ownership, autonomy)

Communication: powerful but costly

● Communication requirements increase with team size
○ Implication: having the right size team is important!

Communication: powerful but costly

● Communication requirements increase with team size
○ Implication: having the right size team is important!

● Everybody to everybody: quadratic (aka O(n^2)) cost
○ Implication: need more efficient structures in large teams

Communication: powerful but costly

● Communication requirements increase with team size
○ Implication: having the right size team is important!

● Everybody to everybody: quadratic (aka O(n^2)) cost
○ Implication: need more efficient structures in large teams

● Every attempt to communicate is a chance to mis-communicate
○ But not communicating will guarantee miscommunicating

Communication: powerful but costly

● Communication requirements increase with team size
○ Implication: having the right size team is important!

● Everybody to everybody: quadratic (aka O(n^2)) cost
○ Implication: need more efficient structures in large teams

● Every attempt to communicate is a chance to mis-communicate
○ But not communicating will guarantee miscommunicating

Group project advice: choose
a communication platform
for your group at the start
and stick to it. I recommend
Slack, but Discord, Chime,
w/e okay too: just choose
one. Protip: not email.

Team structures and roles

Definition: A team structure is a way of organizing a team of people.
● you’re probably familiar with some from other domains, such as

professional sports or musical theater

Team structures and roles

Definition: A team structure is a way of organizing a team of people.
● you’re probably familiar with some from other domains, such as

professional sports or musical theater

Just like in those domains, software teams typically have multiple
possible roles, each of which has responsibilities and competencies.

Team structures and roles

Definition: A team structure is a way of organizing a team of people.
● you’re probably familiar with some from other domains, such as

professional sports or musical theater

Just like in those domains, software teams typically have multiple
possible roles, each of which has responsibilities and competencies.
● By analogy, roles on a sports team might be defined by

competency in a skill (e.g., pitching, goalie) or by responsibility
(e.g., offense, defense)

Roles in a software team

Roles in a software team

● Software engineer (aka “individual contributor”)
○ most of you will probably end up with this role

● Engineering manager (aka “people manager”)
● Project manager (“PM”)
● Tester/quality assurance
● Operations engineer/site reliability engineer
● Business expert (in Agile teams, usually playing the role of

“customer”)
● etc.

Roles in a software team

● Software engineer (aka “individual contributor”)
○ most of you will probably end up with this role

● Engineering manager (aka “people manager”)
● Project manager (“PM”)
● Tester/quality assurance
● Operations engineer/site reliability engineer
● Business expert (in Agile teams, usually playing the role of

“customer”)
● etc.

These could be all
different team
members, or some
members could span
multiple roles.

What does a software engineer do?

● Mostly, what we’re talking about in this class!
○ Write code
○ Write specifications
○ Fix bugs
○ Triage bug reports
○ Write tests
○ Debug
○ etc.

Varieties of software engineer

● Not all engineers have the same background, experience,
expertise, etc.
○ typical division is between “junior”, “senior”, and “staff”

engineers (these roles have different names)
■ e.g., “principal” engineer at Amazon

● Some places ask engineers to further specialize: e.g., “backend
engineer”, “front end engineer”

● High-level engineers are sometimes “tech leads” or “architects”

Leveling

● In big tech, often associated with a number
○ numbers vary by company!
○ e.g., Google L3 = Amazon SDE I (4) = Microsoft SDE (59/60)

● Usually associated with your salary
● Promotion: usually requires you to already be operating “at the

next level up”
● More senior engineers are expected to mentor more junior

engineers

from levels.fyi

http://levels.fyi

What’s an engineering manager?

● Mostly to manage people - not that different from managers in other
industries, sometimes
○ performance evaluations, talk to upper level management, etc

● Some places also ask the engineering manager to be the PM - see
next slide

● At some places (e.g., Google), managers are expected to be
technically-competent, too

What’s a program/product manager?

● Manage the product!
● Often this includes, but isn’t limited to:

○ talking to customers
○ writing design docs
○ interfacing with other teams
○ thinking about how different parts of the project fit together

What’s a program/product manager?

● Manage the product!
● Often this includes, but isn’t limited to:

○ talking to customers
○ writing design docs
○ interfacing with other teams
○ thinking about how different parts of the project fit together

“my job is sending emails that people actually read” - a friend of mine
who is a PM at Microsoft

What does a tester do?

● Mostly write tests
● This role isn’t as common anymore: most places I’m familiar with

have asked software engineers to also be responsible for testing
○ E.g., Microsoft laid off most of its Windows QA teams in 2014

and replaced them with crowd-sourced testing (“Windows
Insiders”)

What does a site reliability engineer do?

● “SRE” is a Google-specific term for an engineer whose job is to keep
systems running
○ on-call more often than “line” engineers
○ knows how several services work, can debug issues in any of

them
○ spends ~50% of their time on ops, ~50% on developing new

automation to improve ops
○ we’ll talk more about this role (and how companies that don’t

have an SRE role, like Amazon, manage) in the DevOps lectures

Business expert/other

● Depending on the industry and company, a software team might
have other kinds of experts embedded into it
○ e.g., a UX expert, an expert in some business process that the

team is automating
● Even on very software-focused teams, once the org size becomes

large enough, there are other roles:
○ high-level managers or ICs might have executive assistants
○ HR, payroll, all the other things a small company needs to

function

Interns!

● Most software teams have interns, at least some of the time
● No offense, but most interns are pretty useless

○ Not enough time to ramp up on a very large codebase
● Typically requires planning from the team: what will the interns work

on this year?
○ Ideally a well-defined, well-scoped project

● Training interns is a recruitment tool and a service to their future
teams (ideally at your company, since they had a great time!)

How is a software team structured?

● Tricky balance among
○ progress on the project/product
○ expertise and knowledge (and need to train team members)
○ communication needs

How is a software team structured?

● Tricky balance among
○ progress on the project/product
○ expertise and knowledge (and need to train team members)
○ communication needs

“A team is a set of people with complementary skills who are
committed to a common purpose, performance goals, and approach
for which they hold themselves mutually accountable.”
– Katzenbach and Smith

Organizing principle

Two common principles used to organize teams:

Organizing principle

Two common principles used to organize teams:

● Functional teams organized around a particular goal
○ everyone is working towards a common goal
○ typically have people with different skills
○ e.g., the “Google Slides” team or the “DynamoDB” team

Organizing principle

Two common principles used to organize teams:

● Functional teams organized around a particular goal
○ everyone is working towards a common goal
○ typically have people with different skills
○ e.g., the “Google Slides” team or the “DynamoDB” team

Functional teams are
the most typical
organization for
teams in big tech

Organizing principle

Two common principles used to organize teams:

● Functional teams organized around a particular goal
○ everyone is working towards a common goal
○ typically have people with different skills
○ e.g., the “Google Slides” team or the “DynamoDB” team

● Skill teams organized around a particular set of skills
○ typically are specialists in some hard-to-acquire skills
○ often “consult” for functional teams
○ e.g., AWS ARG, most IT teams

Organizing principle

Two common principles used to organize teams:

● Functional teams organized around a particular goal
○ everyone is working towards a common goal
○ typically have people with different skills
○ e.g., the “Google Slides” team or the “DynamoDB” team

● Skill teams organized around a particular set of skills
○ typically are specialists in some hard-to-acquire skills
○ often “consult” for functional teams
○ e.g., AWS ARG, most IT teams

Skill teams are more
common for SDEs at
non-tech companies

Team size

● most teams are relatively small
○ Amazon’s famous “two-pizza” rule: teams should be small

enough that two pizzas can feed everyone
○ 6-10 people is typical

● larger-scale organization of teams varies a lot by company
○ “divisional” approaches are common

Key questions for any software team

● Who makes decisions? Is there a process for making decisions
that impact most of the team?

Key questions for any software team

● Who makes decisions? Is there a process for making decisions
that impact most of the team?

● Who is responsible for various important tasks:
○ scheduling/process
○ testing/quality assurance
○ documentation (spec, design, write-ups, presentations)
○ build/release preparation
○ external communication (with other teams, customers, upper

management)

Key questions for any software team

● Who makes decisions? Is there a process for making decisions
that impact most of the team?

● Who is responsible for various important tasks:
○ scheduling/process
○ testing/quality assurance
○ documentation (spec, design, write-ups, presentations)
○ build/release preparation
○ external communication (with other teams, customers, upper

management)

Group project advice:
write down the answers
to these questions for
your team (we will ask!)

More group project advice: motivation

How can you get the most out of your team members?

More group project advice: motivation

How can you get the most out of your team members?

● give them specific, small, attainable goals that they can visualize

More group project advice: motivation

How can you get the most out of your team members?

● give them specific, small, attainable goals that they can visualize
● have frequent communication and updates

More group project advice: motivation

How can you get the most out of your team members?

● give them specific, small, attainable goals that they can visualize
● have frequent communication and updates
● meet in person to work as much as possible (video call counts as

“in-person”): pair programming is especially effective

Aside: pair programming

Aside: pair programming

Definition: Pair programming refers to the practice whereby two
programmers work together at one computer, collaborating on the
same design, algorithm, code, or test.

Aside: pair programming

Definition: Pair programming refers to the practice whereby two
programmers work together at one computer, collaborating on the
same design, algorithm, code, or test.

The pair is made up of a driver, who actively types at the computer or
records a design; and a navigator, who watches the work of the driver
and attentively identifies problems, asks clarifying questions, and
makes suggestions. Both are also continuous brainstorming partners.

Aside: pair programming: worth it?

Surveys of professional programmers:

[Cockburn and Williams. The Costs and Benefits of Pair Programming.]

Aside: pair programming: worth it?

Surveys of professional programmers:

● 90+% “enjoyed collaborative programming more than solo
programming”

● 95% were “more confident in their solutions” when they pair
programmed

● Reduces defects by 15% and reduces code size by 15%

[Cockburn and Williams. The Costs and Benefits of Pair Programming.]

Aside: pair programming: worth it?

Surveys of professional programmers:

● 90+% “enjoyed collaborative programming more than solo
programming”

● 95% were “more confident in their solutions” when they pair
programmed

● Reduces defects by 15% and reduces code size by 15%
● Increases development cost by 15% to 100%

[Cockburn and Williams. The Costs and Benefits of Pair Programming.]

More group project advice: motivation

How can you get the most out of your team members?

● give them specific, small, attainable goals that they can visualize
● have frequent communication and updates
● meet in person to work as much as possible (video call counts as

“in-person”): pair programming is especially effective
● put people in small teams; minimize work done "solo"

More group project advice: motivation

How can you get the most out of your team members?

● give them specific, small, attainable goals that they can visualize
● have frequent communication and updates
● meet in person to work as much as possible (video call counts as

“in-person”): pair programming is especially effective
● put people in small teams; minimize work done "solo"
● build good team camaraderie

More group project advice: motivation

How can you get the most out of your team members?

● give them specific, small, attainable goals that they can visualize
● have frequent communication and updates
● meet in person to work as much as possible (video call counts as

“in-person”): pair programming is especially effective
● put people in small teams; minimize work done "solo"
● build good team camaraderie
● be professional, and your teammates often will too

Examples of team organization

Team organization: Microsoft (pre 2014)
● Most teams were functional, and composed of these roles:

○ Program Manager. Leads the technical side of a product
development team, managing and defining the functional
specifications and defining how the product will work.

○ Software Design Engineer. Codes and designs new software,
often collaborating as a member of a software development
team to create and build products.

○ Software Test Engineer. Tests and critiques software to
assure quality and identify potential improvement
opportunities and projects.

Team organization: Airbnb

● fewer than ten people
● teams are functional

○ mix of engineers, product managers, designers, and data
scientists

○ sometimes include domain experts: e.g., “Payments includes
people from finance”

● Engineers have (relative) freedom to change teams
○ Don’t need to re-apply for a job, just need manager approval

https://medium.com/airbnb-engineering/engineering-culture-at-airbnb-345797c17cbe

https://medium.com/airbnb-engineering/engineering-culture-at-airbnb-345797c17cbe

Working in Teams

Today’s agenda:

● Reading Quiz
● Team structures and roles
● Deciding who to work with: interviews

○ how to be interviewed
○ how to interview

Typical SE hiring process
● Someone at the company, typically a recruiter or an engineer, gets your

resume and puts it into their pipeline

○ If they're interested, you'll probably get 1-2 phone interviews

○ If you pass the phone screen, you'll probably be invited to interview

with the company on-site

○ Depending on the company, you may then have some follow-up phone

calls to find a team to be placed on

○ If they offer a job, you'll negotiate the offer to end up with the best deal

possible

○ If this offer is the best out of all the offers you've received, you accept!

● Can take as long as 1-2 months or as short as 10-14 days

Goals of a technical interview

● “The interview process at Google has been designed (and
redesigned!) from the ground up to avoid false positives. We want
to avoid making offers to candidates who would not be successful
at Google. (The cost of this unfortunately includes more false
negatives, which are times when we turn down somebody who
would have done well.)”

Goals of a technical interview

Goals of a technical interview

● Determine if you have the right technical skills:
○ Can you write code? Test it? Document it? Etc.
○ Can you think on your feet?

Goals of a technical interview

● Determine if you have the right technical skills:
○ Can you write code? Test it? Document it? Etc.
○ Can you think on your feet?

● Can you communicate computer science concepts?
○ Can you explain your ideas to coworkers?
○ Would you “raise the bar” for the team?

Goals of a technical interview

● Determine if you have the right technical skills:
○ Can you write code? Test it? Document it? Etc.
○ Can you think on your feet?

● Can you communicate computer science concepts?
○ Can you explain your ideas to coworkers?
○ Would you “raise the bar” for the team?

● Are you a nice person?
○ Do they want to work with you?

Goals of a technical interview

● Determine if you have the right technical skills:
○ Can you write code? Test it? Document it? Etc.
○ Can you think on your feet?

● Can you communicate computer science concepts?
○ Can you explain your ideas to coworkers?
○ Would you “raise the bar” for the team?

● Are you a nice person?
○ Do they want to work with you?

It’s not just technical
skill! Many interview
questions are behavioral

Interview format

● “For about 45 minutes you meet with a single technical
interviewer, who will present a programming problem and ask
you to work out one or more solutions to it.”
○ some variations of this, such as “tell me about a technical

problem you’ve solved” and “design (but don’t implement) a
solution to this problem”

● Interviewer perspective: “you know in the first ten minutes”

Example interview problem

“The Two-Sum Problem”:

● You are given an array of n integers and a number k. Determine if
there is a pair of elements in the array that sums to exactly k.

● For example, given the array [1, 3, 7] and k = 8, the answer is
“yes,” but given k = 6 the answer is “no.”

Example interview problem

“The Two-Sum Problem”:

● You are given an array of n integers and a number k. Determine if
there is a pair of elements in the array that sums to exactly k.

● For example, given the array [1, 3, 7] and k = 8, the answer is
“yes,” but given k = 6 the answer is “no.”

What do you do first?
(Hint: it’s not trying to
solve the problem!)

Example interview problem: ask questions!

Example interview problem: ask questions!

● Can you modify the array? Yes.
● Do we know something about the range of the numbers in the array? No, they

can be arbitrary integers.
● Are the array elements necessarily positive? No, they can be positive, negative,

or zero.
● Do we know anything about the value of k relative to n or the numbers in the

array? No, it can be arbitrary.
● Can we consider pairs of an element and itself? No, the pair should consist of

two different array elements.
● Can the array contain duplicates? Sure, that's a possibility.
● What about integer overflow? Don't worry about it.

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works
● e.g., for the two-sum problem, you could write:

boolean sumsToTarget (int[]arr, int k) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] + arr[j] == k) {
 return true;
 } } }
 return false;
}

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works
● e.g., for the two-sum problem, you could write:

boolean sumsToTarget (int[]arr, int k) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] + arr[j] == k) {
 return true;
 } } }
 return false;
}

Usually at this point the
interviewer will ask you
about how good this
solution is.

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works
● e.g., for the two-sum problem, you could write:

boolean sumsToTarget (int[]arr, int k) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] + arr[j] == k) {
 return true;
 } } }
 return false;
}

Usually at this point the
interviewer will ask you
about how good this
solution is. O(n^2) time!

Example interview problem: be clever

● once you have something that works, try to come up with a clever solution

Example interview problem: be clever

● once you have something that works, try to come up with a clever solution
● e.g., for the two-sum problem, you might come up with:

boolean sumsToTarget (int[]arr, int k) {
 HashSet < Integer > values = new HashSet < Integer > ();
 for (int i = 0; i < arr.length; i++) {
 if (values.contains (k – A[i])) return true;
 values.add (A[i]);
 }
 return false;
}

Example interview problem: be clever

● once you have something that works, try to come up with a clever solution
● e.g., for the two-sum problem, you might come up with:

boolean sumsToTarget (int[]arr, int k) {
 HashSet < Integer > values = new HashSet < Integer > ();
 for (int i = 0; i < arr.length; i++) {
 if (values.contains (k – A[i])) return true;
 values.add (A[i]);
 }
 return false;
}

Why is this better?

Example interview problem

● there are lots of possible solutions to the problem
● part of your goal while you’re interviewing is showing that you

understand the trade-offs between them
● think of interviewing as a microcosm of software engineering:

○ if you don’t show them you know it, they’ll assume you don’t

Example interview problem

● there are lots of possible solutions to the problem
● part of your goal while you’re interviewing is showing that you

understand the trade-offs between them
● think of interviewing as a microcosm of software engineering:

○ if you don’t show them you know it, they’ll assume you don’t
○ implication: even though the interview problem is small and

simple, you show try to show all the steps of the software
engineering process

Do Not Forget!

Even though the problem is small, you should:
● perform requirements elicitation (ask questions!)
● ask about both functional and non-functional properties
● talk about process considerations

○ e.g., mention maintainability when relevant
● write good quality code, including e.g., documentation, tests, etc.

○ mention things you’d be thinking about if this was part of a
real system

Interviewing mistakes

#1 Practicing on a computer
#2 Not rehearsing behavioral questions
#3 Not doing a mock interview
#4 Trying to memorize solutions
#5 Not solving problems out loud
#6 Rushing
#7 Sloppy coding (bad style)
#8 Not testing
#9 Fixing mistakes carelessly
#10 Giving up [Gayle McDowell, Cracking the Coding Interview]

Interviewing mistakes

#1 Practicing on a computer
#2 Not rehearsing behavioral questions
#3 Not doing a mock interview
#4 Trying to memorize solutions
#5 Not solving problems out loud
#6 Rushing
#7 Sloppy coding (bad style)
#8 Not testing
#9 Fixing mistakes carelessly
#10 Giving up [Gayle McDowell, Cracking the Coding Interview]

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.
It’s easy to sound unimpressive
if you haven’t thought about
your answers ahead of time.

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.

How can they tell
if you are nice?
lunch!

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.

How can they tell
if you are nice?

lunch!

Interviewing: the other side

Interviewing: the other side

● Choose the technical problem you ask carefully
○ Common solution: use the “best” interview question you’ve

ever been asked
○ Alternative: base the problem on something you personally

had to deal with at work
● Think through all the possible solutions to the problem
● Remember that it’s stressful for the person being interviewed!

Interviewing: does it work?

● The answer is that we don’t really know
● Technical interviews haven’t been studied in depth
● But they’re the industry standard, so we have to deal with them
● Open area of research!

Takeaways

● How you organize your team can have a big impact on your
productivity

● Communication is key
● For the group project, especially, make sure you decide on how

you’ll make decisions (no one is the manager!)
● Interviewing is a microcosm of software engineering

○ Show the interviewer what you know, even if it seems like too
much for the problem at hand

