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Static Analysis

Today’s agenda:

● Finish slides on build systems
● Reading Quiz
● Motivations for static analysis
● Basics of dataflow analysis
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Incrementalization: hashing

● Compute hash codes for inputs to each task
● When about to execute a task, check input hashes - if they match 

the last time the task was executed, skip it!
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● Execute many tasks in parallel

○ some build system tasks are embarrassingly parallel: they can 
be reordered without explicit synchronization
■ is this true of all tasks? No: some tasks depend on each 

other. The problem of scheduling tasks with no unbuilt 
dependencies is embarrassingly parallel, though.

● Cache artifacts in the cloud
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How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g. 

make), which is a static scheduling algorithm
○ Dynamic scheduling algorithms are also possible

■ Key idea: compute what dependencies are necessary as 
you go

■ this is how e.g., Bazel actually schedules tasks
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How do build systems differ

● Rebuilding strategy
○ We’ve seen two: 

■ a dirty bit strategy (make’s timestamps)
■ a verifying trace strategy (storing hashes of each object)

○ Other options:
■ constructive traces: store all intermediate objects (usually 

in the cloud) along with the hashes of the inputs used to 
produce them. If we ever see the same input hashes 
again, just return the intermediate object



How do build systems differ

● How are tasks expressed?



How do build systems differ

● How are tasks expressed?
○ traditionally declarative (e.g., make, Ant, Maven)

■ “declarative” = you tell the build system what you want, it 
figures out how to build that thing

■ call back to languages: programming languages can also 
be from the declarative paradigm (e.g., Prolog)



How do build systems differ

● How are tasks expressed?
○ traditionally declarative (e.g., make, Ant, Maven)

■ “declarative” = you tell the build system what you want, it 
figures out how to build that thing

■ call back to languages: programming languages can also 
be from the declarative paradigm (e.g., Prolog)

○ most modern build systems have scripting languages
■ e.g., Groovy in Gradle, Starlark in Bazel, etc.
■ enables us to write tasks as if they are other code
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How to choose a build system

High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason
● follow convention and prefer the tooling that’s “idiomatic” to 

your language
○ e.g., use Gradle or Maven when working in Java
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When to switch build systems

● developers rarely choose to change build systems except when 
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module 
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task 

language
○ most projects keep the same build system forever
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Your CI server is a good place to 
test that your build is hermetic. 
Standard practice: spin up a new 
CI server for each build.
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Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every 

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

A common mistake to avoid: allowing the CI server to fail for 
a long time because “we know what the problem is.” Don’t do 
this: leads to complacency, missing real bugs.
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Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant 
limitations in practice:
○ code review is limited by human error
○ testing is limited by your choice of tests (Dijkstra again)

Today’s goal: discuss other 
automated static analysis 
techniques that complement 
testing and code review in a 
quality assurance process
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Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for 
particular properties
○ Without actually running the program! 
○ Bonus: we don't need test cases!

This is especially true for certain 
kinds of hard-to-test-for defects 
that might not be apparent even 
if you do exercise them, such as 
resource leaks
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● Defects that result from inconsistently following simple, 
mechanical design rules
○ Security: buffer overruns, input validation 
○ Memory safety: null pointers, initialized data 
○ Resource leaks: memory, OS resources 
○ API Protocols: device drivers, GUI frameworks 
○ Exceptions: arithmetic, library, user-defined 
○ Encapsulation: internal data, private functions 
○ Data races: two threads, one variable

There are rules for 
doing each of these 
things correctly, and a 
static analysis can 
automate those rules.
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What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does 

execute the program
● an abstraction, in this context, is a selective representation of the 

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!
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● Dataflow analysis is a technique for gathering information about 
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind many static analyses

● We first abstract the program to an AST or CFG 
● We then abstract what we want to learn (e.g., to help developers) 

down to a small set of abstract values 
● We finally give rules for computing those abstract values

○  Dataflow analyses take programs as input

Typical static analysis: dataflow analysis
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Example dataflow analyses

Two examples of dataflow analyses:

1. an analysis for finding definite null-pointer dereferences

“Whenever execution reaches *ptr at program location L, ptr will 
be NULL”

2. an analysis for finding potential secure information leaks

“We read in a secret string at location L, but there is a possible 
future public use of it”
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A “definite” null-pointer dereference exists if and only the pointer is 
NULL on every program execution

A “potential” secure information leak exists if and only if the secure 
information leaks on any program execution

The use of “every” and “any” 
here guarantee that we must 
reason about all paths through 
the program!
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checking for 
“definite” 
properties usually 
comes with false 
negatives

checking for 
“potential” 
properties usually 
comes with false 
positives

Useful analyses 
in practice 
often have both 
false positives 
and false 
negatives.
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Q: what does “ptr always null” actually 
require about assignments to ptr?
A: on all paths, the last assignment to ptr 
must have been null (= 0 in C)
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Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point 
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for 

which P is true at this point?
● Knowing P at any specific program point usually requires 

knowledge of the entire method body
● Property P is typically undecidable
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undecidable:

“interesting” in this context means 
“not trivial”, i.e., not uniformly true 
or false for all programs
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Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are 
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely 
■ Oops: We can now solve the halting problem. 
■ Take function H and find out if it halts by testing function 

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Rice’s theorem caveats:
● only applies to semantic 

properties (syntactic 
properties are decidable)

● “programs” only includes 
programs with loops
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Loops

● Almost every important program has a loop
○ Often based on user input

● An algorithm always terminates (remember your theory class!)
○ So a dataflow analysis algorithm must terminate even if the 

input program loops
● This is one source of imprecision

○ “imprecision” = “not always getting the right answer”
○ Suppose you dereference the null pointer on the 500th 

iteration but we only analyze 499 iterations
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Conservative program analysis

● Because our analysis must run on a computer, we need the 
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right 
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t 
know”
○ this is called conservative analysis



Conservative program analysis

● It’s always correct to say “I don’t know”



Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as 

rarely as possible



Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as 

rarely as possible

Definition: a sound program analysis has no false negatives



Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as 

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug



Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as 

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Definition: a complete program analysis has no false positives



Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as 

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Definition: a complete program analysis has no false positives
● always answers “I don’t know” if there isn’t a definite bug
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● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a 
complete analysis with high recall (= “few false negatives”) is 
very hard
○ “sound and precise” analyses are my research area :)
○ also relevant in practice: “fast”, “easy to use”, etc.
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● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show 
pictures of cats? False positives waste time, so choose 
completeness.
■ “I don’t know” = don’t issue a warning

○ Are you writing a bug-finding analysis for aircraft autopilots? 
False negatives cause crashes, so choose soundness.
■ “I don’t know” = do issue a warning
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● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and 

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis
○ few complete analyses exist in practice

■ theory is underdeveloped, but another area of active 
research!
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● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted 

away is important?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)
■ but, in practice, we can get very close
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● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined 
(but complicated for a human) rule set while writing code, it might 
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)
■ security rules, etc.
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Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates
○ widely used in industry:

■ ErrorProne at Google, Infer at Meta, SpotBugs at many 
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
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Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more 
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

○ you write a specification
○ tool verifies that code matches that specification
○ very high effort, but enables sound reasoning about complex 

properties (= worth it for very high value systems)
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● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for 

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the 
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (a few kLoC)
■ but these tools (e.g., Coq) are much harder to use

● soundness theorems also usually make some assumptions about 
the code being analyzed (e.g., no calls to native code, no reflection)



Static analysis: summary

● static analysis is very good at enforcing simple rules
○ much better than humans at this

● all interesting semantic properties of programs are undecidable, so 
all static analyses must approximate
○ goal in analysis design is to abstract away unimportant details, 

but keep important details
○ dataflow analysis is one technique for static analysis
○ trade-offs between false positives, false negatives, analysis time

● soundness & completeness are possible, but rare
○ all soundness guarantees come with caveats about the TCB


