
Static Analysis
Martin Kellogg

Static Analysis

Today’s agenda:

● Finish slides on build systems
● Reading Quiz
● Motivations for static analysis
● Basics of dataflow analysis

Incrementalization: hashing

Incrementalization: hashing

● Compute hash codes for inputs to each task
● When about to execute a task, check input hashes - if they match

the last time the task was executed, skip it!

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

○ some build system tasks are embarrassingly parallel: they can
be reordered without explicit synchronization
■ is this true of all tasks?

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

○ some build system tasks are embarrassingly parallel: they can
be reordered without explicit synchronization
■ is this true of all tasks? No: some tasks depend on each

other. The problem of scheduling tasks with no unbuilt
dependencies is embarrassingly parallel, though.

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

○ some build system tasks are embarrassingly parallel: they can
be reordered without explicit synchronization
■ is this true of all tasks? No: some tasks depend on each

other. The problem of scheduling tasks with no unbuilt
dependencies is embarrassingly parallel, though.

● Cache artifacts in the cloud

How do build systems differ

How do build systems differ

● Scheduling algorithm

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm
○ Dynamic scheduling algorithms are also possible

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm
○ Dynamic scheduling algorithms are also possible

■ Key idea: compute what dependencies are necessary as
you go

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm
○ Dynamic scheduling algorithms are also possible

■ Key idea: compute what dependencies are necessary as
you go

■ this is how e.g., Bazel actually schedules tasks

How do build systems differ

● Rebuilding strategy

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

■ a dirty bit strategy (make’s timestamps)

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

■ a dirty bit strategy (make’s timestamps)
■ a verifying trace strategy (storing hashes of each object)

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

■ a dirty bit strategy (make’s timestamps)
■ a verifying trace strategy (storing hashes of each object)

○ Other options:
■ constructive traces: store all intermediate objects (usually

in the cloud) along with the hashes of the inputs used to
produce them. If we ever see the same input hashes
again, just return the intermediate object

How do build systems differ

● How are tasks expressed?

How do build systems differ

● How are tasks expressed?
○ traditionally declarative (e.g., make, Ant, Maven)

■ “declarative” = you tell the build system what you want, it
figures out how to build that thing

■ call back to languages: programming languages can also
be from the declarative paradigm (e.g., Prolog)

How do build systems differ

● How are tasks expressed?
○ traditionally declarative (e.g., make, Ant, Maven)

■ “declarative” = you tell the build system what you want, it
figures out how to build that thing

■ call back to languages: programming languages can also
be from the declarative paradigm (e.g., Prolog)

○ most modern build systems have scripting languages
■ e.g., Groovy in Gradle, Starlark in Bazel, etc.
■ enables us to write tasks as if they are other code

How to choose a build system

How to choose a build system

High level idea: same rules apply to choosing a language

How to choose a build system

High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason

How to choose a build system

High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason
● follow convention and prefer the tooling that’s “idiomatic” to

your language
○ e.g., use Gradle or Maven when working in Java

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task

language

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task

language
○ most projects keep the same build system forever

Best practices

● Automate everything

Best practices

● Automate everything
● Always use a build tool

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)

Your CI server is a good place to
test that your build is hermetic.
Standard practice: spin up a new
CI server for each build.

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

A common mistake to avoid: allowing the CI server to fail for
a long time because “we know what the problem is.” Don’t do
this: leads to complacency, missing real bugs.

Static Analysis

Today’s agenda:

● Finish slides on build systems
● Reading Quiz
● Motivations for static analysis
● Basics of dataflow analysis

Reading quiz: static analysis

Q1: TRUE or FALSE: the goal of the FindBugs tool described in the
reading is to find as many different kinds of bugs as possible. For
example, it supports finding possible null-pointer dereferences,
possible out-of-bounds array accesses, and possible resource leaks.

Q2: TRUE or FALSE: the AWS team that wrote the second article
found that one of the most effective means of selling developers on
the utility of formal verification was for the verification team to not
only identify bugs but provide code patches for them.

Reading quiz: static analysis

Q1: TRUE or FALSE: the goal of the FindBugs tool described in the
reading is to find as many different kinds of bugs as possible. For
example, it supports finding possible null-pointer dereferences,
possible out-of-bounds array accesses, and possible resource leaks.

Q2: TRUE or FALSE: the AWS team that wrote the second article
found that one of the most effective means of selling developers on
the utility of formal verification was for the verification team to not
only identify bugs but provide code patches for them.

Reading quiz: static analysis

Q1: TRUE or FALSE: the goal of the FindBugs tool described in the
reading is to find as many different kinds of bugs as possible. For
example, it supports finding possible null-pointer dereferences,
possible out-of-bounds array accesses, and possible resource leaks.

Q2: TRUE or FALSE: the AWS team that wrote the second article
found that one of the most effective means of selling developers on
the utility of formal verification was for the verification team to not
only identify bugs but provide code patches for them.

Motivations for static analysis

Motivations for static analysis

● Quality assurance is critical to software engineering

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:
○ code review is limited by human error

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:
○ code review is limited by human error
○ testing is limited by your choice of tests (Dijkstra again)

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:
○ code review is limited by human error
○ testing is limited by your choice of tests (Dijkstra again)

Today’s goal: discuss other
automated static analysis
techniques that complement
testing and code review in a
quality assurance process

Motivation: many defects are hard to test for

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!
○ Bonus: we don't need test cases!

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!
○ Bonus: we don't need test cases!

This is especially true for certain
kinds of hard-to-test-for defects
that might not be apparent even
if you do exercise them, such as
resource leaks

What does static analysis do well?

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules
○ Security: buffer overruns, input validation
○ Memory safety: null pointers, initialized data
○ Resource leaks: memory, OS resources
○ API Protocols: device drivers, GUI frameworks
○ Exceptions: arithmetic, library, user-defined
○ Encapsulation: internal data, private functions
○ Data races: two threads, one variable

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules
○ Security: buffer overruns, input validation
○ Memory safety: null pointers, initialized data
○ Resource leaks: memory, OS resources
○ API Protocols: device drivers, GUI frameworks
○ Exceptions: arithmetic, library, user-defined
○ Encapsulation: internal data, private functions
○ Data races: two threads, one variable

There are rules for
doing each of these
things correctly, and a
static analysis can
automate those rules.

What is a static analysis?

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program
● an abstraction, in this context, is a selective representation of the

program that is simpler to analyze

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program
● an abstraction, in this context, is a selective representation of the

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!

Typical static analysis: dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind many static analyses

Typical static analysis: dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind many static analyses

● We first abstract the program to an AST or CFG

Typical static analysis: dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind many static analyses

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g., to help developers)

down to a small set of abstract values

Typical static analysis: dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind many static analyses

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g., to help developers)

down to a small set of abstract values
● We finally give rules for computing those abstract values

Typical static analysis: dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind many static analyses

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g., to help developers)

down to a small set of abstract values
● We finally give rules for computing those abstract values

○ Dataflow analyses take programs as input

Typical static analysis: dataflow analysis

Example dataflow analyses

Two examples of dataflow analyses:

Example dataflow analyses

Two examples of dataflow analyses:

1. an analysis for finding definite null-pointer dereferences

“Whenever execution reaches *ptr at program location L, ptr will
be NULL”

Example dataflow analyses

Two examples of dataflow analyses:

1. an analysis for finding definite null-pointer dereferences

“Whenever execution reaches *ptr at program location L, ptr will
be NULL”

2. an analysis for finding potential secure information leaks

“We read in a secret string at location L, but there is a possible
future public use of it”

Definite vs potential

A “definite” null-pointer dereference exists if and only the pointer is
NULL on every program execution

A “potential” secure information leak exists if and only if the secure
information leaks on any program execution

Definite vs potential

A “definite” null-pointer dereference exists if and only the pointer is
NULL on every program execution

A “potential” secure information leak exists if and only if the secure
information leaks on any program execution

The use of “every” and “any”
here guarantee that we must
reason about all paths through
the program!

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

checking for
“potential”
properties usually
comes with false
positives

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

checking for
“definite”
properties usually
comes with false
negatives

checking for
“potential”
properties usually
comes with false
positives

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

checking for
“definite”
properties usually
comes with false
negatives

checking for
“potential”
properties usually
comes with false
positives

Useful analyses
in practice
often have both
false positives
and false
negatives.

Null-pointer analysis example

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

dereference

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

dereference

Common traits of dataflow analysis

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?

∀

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point? ∃

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?
● Knowing P at any specific program point usually requires

knowledge of the entire method body

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?
● Knowing P at any specific program point usually requires

knowledge of the entire method body
● Property P is typically undecidable

Undecidability of program properties

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:

“interesting” in this context means
“not trivial”, i.e., not uniformly true
or false for all programs

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Rice’s theorem caveats:
● only applies to semantic

properties (syntactic
properties are decidable)

● “programs” only includes
programs with loops

Loops

● Almost every important program has a loop
○ Often based on user input

Loops

● Almost every important program has a loop
○ Often based on user input

● An algorithm always terminates (remember your theory class!)
○ So a dataflow analysis algorithm must terminate even if the

input program loops

Loops

● Almost every important program has a loop
○ Often based on user input

● An algorithm always terminates (remember your theory class!)
○ So a dataflow analysis algorithm must terminate even if the

input program loops
● This is one source of imprecision

○ “imprecision” = “not always getting the right answer”
○ Suppose you dereference the null pointer on the 500th

iteration but we only analyze 499 iterations

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t
know”

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t
know”
○ this is called conservative analysis

Conservative program analysis

● It’s always correct to say “I don’t know”

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Definition: a complete program analysis has no false positives

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Definition: a complete program analysis has no false positives
● always answers “I don’t know” if there isn’t a definite bug

Soundness vs completeness

● Building a sound or complete analysis is easy

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a
complete analysis with high recall (= “few false negatives”) is
very hard

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a
complete analysis with high recall (= “few false negatives”) is
very hard
○ “sound and precise” analyses are my research area :)

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a
complete analysis with high recall (= “few false negatives”) is
very hard
○ “sound and precise” analyses are my research area :)
○ also relevant in practice: “fast”, “easy to use”, etc.

Soundness vs completeness

● Which is more important: soundness or completeness?

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.
■ “I don’t know” = don’t issue a warning

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.
■ “I don’t know” = don’t issue a warning

○ Are you writing a bug-finding analysis for aircraft autopilots?
False negatives cause crashes, so choose soundness.

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.
■ “I don’t know” = don’t issue a warning

○ Are you writing a bug-finding analysis for aircraft autopilots?
False negatives cause crashes, so choose soundness.
■ “I don’t know” = do issue a warning

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis
○ few complete analyses exist in practice

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis
○ few complete analyses exist in practice

■ theory is underdeveloped, but another area of active
research!

Limitations of static analysis

Limitations of static analysis

● static analysis abstracts away information to remain decidable

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
○ can we ever have a “perfect” abstraction?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)
■ but, in practice, we can get very close

Limitations of static analysis

● static analysis is best when the rules it enforces are:

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)
■ security rules, etc.

Static analysis in practice

You’re likely to encounter:

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

heuristic is a fancy
word for “best effort”

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates
○ widely used in industry:

■ ErrorProne at Google, Infer at Meta, SpotBugs at many
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

Static analysis in practice

Less common, but useful to know about:

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

○ you write a specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

○ you write a specification
○ tool verifies that code matches that specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

○ you write a specification
○ tool verifies that code matches that specification
○ very high effort, but enables sound reasoning about complex

properties (= worth it for very high value systems)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (a few kLoC)
■ but these tools (e.g., Coq) are much harder to use

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (a few kLoC)
■ but these tools (e.g., Coq) are much harder to use

● soundness theorems also usually make some assumptions about
the code being analyzed (e.g., no calls to native code, no reflection)

Static analysis: summary

● static analysis is very good at enforcing simple rules
○ much better than humans at this

● all interesting semantic properties of programs are undecidable, so
all static analyses must approximate
○ goal in analysis design is to abstract away unimportant details,

but keep important details
○ dataflow analysis is one technique for static analysis
○ trade-offs between false positives, false negatives, analysis time

● soundness & completeness are possible, but rare
○ all soundness guarantees come with caveats about the TCB

