
Process
Martin Kellogg

Process

Today’s agenda:

● Finish up VCS slides
● Reading Quiz
● Development methodologies
● Planning, estimation, and risk
● Measuring progress

Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices
○ we’ll discuss how to do a code review in a few weeks

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices
○ we’ll discuss how to do a code review in a few weeks

● open PR against “main” repository from your fork’s feature branch

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

I’ve seen people make
all of these mistakes
(and more)!

Process

Today’s agenda:

● Finish up VCS slides
● Reading Quiz
● Development methodologies
● Planning, estimation, and risk
● Measuring progress

Reading Quiz: process

Q1: TRUE or FALSE: the author of “Waterfall doesn't mean what you
think it means” argues that documentation is the key to a successful
software project

Q2: Which of the following would the Agile Manifesto’s authors argue
is the best measure of progress in a software project?
A. how much of the software is working
B. the engineers’ estimate of how much work is left
C. the percentage of statements that are covered by a test

Reading Quiz: process

Q1: TRUE or FALSE: the author of “Waterfall doesn't mean what you
think it means” argues that documentation is the key to a successful
software project

Q2: Which of the following would the Agile Manifesto’s authors argue
is the best measure of progress in a software project?
A. how much of the software is working
B. the engineers’ estimate of how much work is left
C. the percentage of statements that are covered by a test

Reading Quiz: process

Q1: TRUE or FALSE: the author of “Waterfall doesn't mean what you
think it means” argues that documentation is the key to a successful
software project

Q2: Which of the following would the Agile Manifesto’s authors argue
is the best measure of progress in a software project?
A. how much of the software is working
B. the engineers’ estimate of how much work is left
C. the percentage of statements that are covered by a test

Process

Today’s agenda:

● Finish up VCS slides
● Reading Quiz
● Development methodologies
● Planning, estimation, and risk
● Measuring progress

Development methodologies

● Traditionally, a large component of undergrad Software
Engineering classes

Development methodologies

● Traditionally, a large component of undergrad Software
Engineering classes

● I’m not going to make you memorize the stages of the Waterfall
method, or the tenets of Agile, or the like

Development methodologies

● Traditionally, a large component of undergrad Software
Engineering classes

● I’m not going to make you memorize the stages of the Waterfall
method, or the tenets of Agile, or the like
○ Why? No one actually follows these procedures to the letter

Development methodologies

● Traditionally, a large component of undergrad Software
Engineering classes

● I’m not going to make you memorize the stages of the Waterfall
method, or the tenets of Agile, or the like
○ Why? No one actually follows these procedures to the letter

● Instead, my goal in this lecture is to give you an overview of the
traditional ways of organizing a software development effort and
give you the vocabulary to talk about it

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

Definition: a software development methodology is a template for a
process: a specific set of activities (usually accompanied by an
animating philosophy) for a team to follow to achieve a desired result

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

Definition: a software development methodology is a template for a
process: a specific set of activities (usually accompanied by an
animating philosophy) for a team to follow to achieve a desired result

e.g., the Agile manifesto

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

Definition: a software development methodology is a template for a
process: a specific set of activities (usually accompanied by an
animating philosophy) for a team to follow to achieve a desired result

not a guarantee - just a goal

A list of methodologies

● Waterfall
● Spiral
● Agile
● Scrum
● Extreme Programming (XP)
● “wagile”

A list of methodologies

● Waterfall
● Spiral
● Agile
● Scrum
● Extreme Programming (XP)
● “wagile”

We’ll discuss these four - you can look up
the others on your own if you’re curious

Why have a methodology at all?

Why have a methodology at all?

● Standardization among developers
● Shared language
● Estimation: your boss probably wants to know when you’ll be

able to ship!
● You implicitly have a process, whether you know it or not (and it

might not be very good if you’re not paying attention)

Why have a methodology at all?

● Standardization among developers
● Shared language
● Estimation: your boss probably wants to know when you’ll be

able to ship!
● You implicitly have a process, whether you know it or not (and it

might not be very good if you’re not paying attention)

sometimes this is called an ad hoc methodology

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

Project scope expands (a lot!)

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

Release with known defects

Defect cost vs. detection time

● An IBM report gives an average defect repair cost of (2008$):
○ $25 during coding
○ $100 at build time
○ $450 during testing/QA
○ $16,000 post-release

[L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

● Defect Tracking: Bug reports collected informally.

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

● Defect Tracking: Bug reports collected informally. Bugs forgotten

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

● Defect Tracking: Bug reports collected informally.
● System Integration: Integration of independently developed

components at the very end of the project.

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

● Defect Tracking: Bug reports collected informally.
● System Integration: Integration of independently developed

components at the very end of the project.Interfaces out of sync

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

● Defect Tracking: Bug reports collected informally.
● System Integration: Integration of independently developed

components at the very end of the project.
● Scheduling: When project is behind, developers are asked weekly

for new estimates.

Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

● QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

● Defect Tracking: Bug reports collected informally.
● System Integration: Integration of independently developed

components at the very end of the project.
● Scheduling: When project is behind, developers are asked weekly

for new estimates. Project falls further behind

A process hypothesis

● A process can increase flexibility and efficiency for software
development.
○ If this is true, an up-front investment (of resources, e.g., “time”)

in process can yield greater returns later on - by avoiding the
problems on the previous slide!

A list of methodologies

● Waterfall
● Spiral
● Agile
● Scrum
● Extreme Programming (XP)
● “wagile”

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

● Requirements gathering: produce a document

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

● Requirements gathering: produce a document
● Analysis: create models, schema, and business rules

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

● Requirements gathering: produce a document
● Analysis: create models, schema, and business rules
● Design: create the software architecture

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

● Requirements gathering: produce a document
● Analysis: create models, schema, and business rules
● Design: create the software architecture
● Coding: the development, proving, and integration of software

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

● Requirements gathering: produce a document
● Analysis: create models, schema, and business rules
● Design: create the software architecture
● Coding: the development, proving, and integration of software
● Testing: the systematic discovery and debugging of defects

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

● Requirements gathering: produce a document
● Analysis: create models, schema, and business rules
● Design: create the software architecture
● Coding: the development, proving, and integration of software
● Testing: the systematic discovery and debugging of defects
● Operations: the installation, migration, support, and maintenance

of complete systems

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

● Requirements gathering: produce a document
● Analysis: create models, schema, and business rules
● Design: create the software architecture
● Coding: the development, proving, and integration of software
● Testing: the systematic discovery and debugging of defects
● Operations: the installation, migration, support, and maintenance

of complete systems

Is this realistic?
Why or why not?

Other lies you’ve probably been told

Other lies you’ve probably been told

Other lies you’ve probably been told

Other lies you’ve probably been told

The Waterfall methodology: an idealized model

● Do NOT attempt to actually follow a strict Waterfall
methodology in real life
○ you will have a bad time

The Waterfall methodology: an idealized model

● Do NOT attempt to actually follow a strict Waterfall
methodology in real life
○ you will have a bad time

● But, it provides a useful foundation for thinking about
methodologies:
○ the Waterfall stages do represent real activities you’ll do

during the development lifecycle
○ you probably won’t do them all in the proscribed order

The Waterfall methodology: an idealized model

● Do NOT attempt to actually follow a strict Waterfall
methodology in real life
○ you will have a bad time

● But, it provides a useful foundation for thinking about
methodologies:
○ the Waterfall stages do represent real activities you’ll do

during the development lifecycle
○ you probably won’t do them all in the proscribed order

● And, as we saw in today’s reading, this “model” isn’t even what
the papers “introducing it” were advocating for!

A slightly more realistic model: spiral

A slightly more realistic model: spiral

● Key idea: construct a series
of increasingly-complete
prototypes

● Effectively iterated
waterfall

A list of methodologies

● Waterfall
● Spiral
● Agile
● Scrum
● Extreme Programming (XP)
● “wagile”

Agile & Scrum

● Agile is more a philosophy than a methodology in the traditional
sense

Agile & Scrum

● Agile is more a philosophy than a methodology in the traditional
sense

● Scrum is an instantiation of that philosophy as a methodology

Agile Principles

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

Agile Principles

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

Focus on people

Agile Principles

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

Always have a prototype

Agile Principles

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

Keep the client involved

Agile Principles

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

Change requirements as you
learn about the problem

The Scrum methodology

● Scrum is one common Agile methodology
● Focused around a “scrum master” who is responsible for process
● Work is divided into sprints where each team member is

responsible for dealing with certain tasks
○ starts with a “sprint planning meeting”: tasks are assigned
○ each day includes a “standup” ceremony
○ at the end of the sprint, a “sprint retrospective meeting”

looks back on how the sprint went
○ typically sprints are 1-2 weeks

Common features of Agile methodologies

● Sprint terminology is common, even when not directly using
scrum

● “Daily standups” are a routine for many engineers
● Planning often happens in the form of user stories

Common features of Agile methodologies

● Sprint terminology is common, even when not directly using
scrum

● “Daily standups” are a routine for many engineers
● Planning often happens in the form of user stories

○ As a ___, I want to ____

Common features of Agile methodologies

● Sprint terminology is common, even when not directly using
scrum

● “Daily standups” are a routine for many engineers
● Planning often happens in the form of user stories

○ As a ___, I want to ____
○ E.g., “as a new Covey.Town user, I want to create an account”

Common features of Agile methodologies

● Sprint terminology is common, even when not directly using
scrum

● “Daily standups” are a routine for many engineers
● Planning often happens in the form of user stories

○ As a ___, I want to ____
○ E.g., “as a new Covey.Town user, I want to create an account”

You’ll need to describe your group project
using user stories in your project proposal

Process

Today’s agenda:

● Finish up VCS slides
● Reading Quiz
● Development methodologies
● Planning, estimation, and risk
● Measuring progress

Planning

● A project should plan time, cost and resources adequately to
estimate the work needed and to effectively manage risk during
project execution.

Planning

● A project should plan time, cost and resources adequately to
estimate the work needed and to effectively manage risk during
project execution.

 Planning = estimate +/- risk

Why is planning a software project difficult?

● Software tends to be innovative

Why is planning a software project difficult?

● Software tends to be innovative
○ Cost of copying existing code ≈ 0, so any project you’re

actually working on probably is different than what came
before

Why is planning a software project difficult?

● Software tends to be innovative
○ Cost of copying existing code ≈ 0, so any project you’re

actually working on probably is different than what came
before

○ “It’s not research if you know it’s going to work”

Why is planning a software project difficult?

● Software tends to be innovative
○ Cost of copying existing code ≈ 0, so any project you’re

actually working on probably is different than what came
before

○ “It’s not research if you know it’s going to work”
○ Compare to other kinds of engineering: one

highway/bridge/skyscraper/etc isn’t that different than the
next

Planning: milestones and deliverables

Definition: A milestone is a clean end point of a (sub)task

Planning: milestones and deliverables

Definition: A milestone is a clean end point of a (sub)task

● Reports, prototypes, completed subprojects, etc.
● “80% done” is NOT a suitable milestone (too vague)

Planning: milestones and deliverables

Definition: A milestone is a clean end point of a (sub)task

● Reports, prototypes, completed subprojects, etc.
● “80% done” is NOT a suitable milestone (too vague)

Definition: A deliverable is a milestone that’s customer-facing

● sometimes used interchangeably with milestone

Why milestones and deliverables?

● It’s easy to tell when a milestone or deliverable is done
● Progress towards milestones and deliverables is hard to measure

Why milestones and deliverables?

● It’s easy to tell when a milestone or deliverable is done
● Progress towards milestones and deliverables is hard to measure

 “All I need to do is fix this one bug and then it’ll work, promise.”

Estimation

Two parts:

● How long do you think it will take to reach the next milestone?
● Splitting larger tasks into smaller ones

Estimation

Two parts:

● How long do you think it will take to reach the next milestone?
● Splitting larger tasks into smaller ones

Naturally very fuzzy: we can’t see the future

Estimation techniques: t-shirt sizing

small = I can do this task in an afternoon

Estimation techniques: t-shirt sizing

small = I can do this task in an afternoon

medium = I can do this task in a day or two

Estimation techniques: t-shirt sizing

small = I can do this task in an afternoon

medium = I can do this task in a day or two

large = too big to estimate how long it will take

● large tasks should usually come with a small
task that is breaking the large task up into
medium and small tasks

Estimation techniques: story points

● Assign stories 1, 2, 4, or 8 points (these numbers can vary, but the
relationship should be exponential)

● Like large t-shirt estimates, high-point-value stories should
usually have a smaller task to break them apart

Estimation techniques: story points

● Assign stories 1, 2, 4, or 8 points (these numbers can vary, but the
relationship should be exponential)

● Like large t-shirt estimates, high-point-value stories should
usually have a smaller task to break them apart

● T-shirt estimates and story points are two different ways to
quantify the relative size of tasks
○ Also lots of other ways!

Estimation techniques: cocomo

Definition: a constructive cost model (cocomo) is a predictive model of
time costs based on project history

Estimation techniques: cocomo

Definition: a constructive cost model (cocomo) is a predictive model of
time costs based on project history

● requires experience with similar projects
● rewards documentation of experience
● basically, it's an empirically-derived set of “effort multipliers”.

You multiply the time cost by some numbers from a chart:

Risk and uncertainty

● Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

Risk and uncertainty

● Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

● Any effective plan for software development must take into
account common risks, e.g.,:

Risk and uncertainty

● Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

● Any effective plan for software development must take into
account common risks, e.g.,:
○ Staff illness or turnover, product is too slow, competitor

introduces a similar product, etc.

Risk and uncertainty

● Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

● Any effective plan for software development must take into
account common risks, e.g.,:
○ Staff illness or turnover, product is too slow, competitor

introduces a similar product, etc.

bus factor: number of people that need to be simultaneously
unavailable until there is a part of the system that no one understands

Strategies for risk management

Strategies for risk management

● Address risk early
● Selectively innovate to increase value while minimizing risk (i.e.,

focus risk where needed)
● Use iteration and feedback (e.g., prototypes)
● Estimate likelihood and consequences

○ Requires experienced project leads
○ Rough estimates (e.g., <10%, <25%) are OK

● Have contingency plans

Strategies for risk management

● Address risk early
● Selectively innovate to increase value while minimizing risk (i.e.,

focus risk where needed)
● Use iteration and feedback (e.g., prototypes)
● Estimate likelihood and consequences

○ Requires experienced project leads
○ Rough estimates (e.g., <10%, <25%) are OK

● Have contingency plans

Your ability to do this will
come from practice (in your
first job, senior engineers +
tech leads + PMs should do
these things)

Process

Today’s agenda:

● Finish up VCS slides
● Reading Quiz
● Development methodologies
● Planning, estimation, and risk
● Measuring progress

Measuring progress

Easy strategy: only track milestones and deliverables

Measuring progress

Easy strategy: only track milestones and deliverables

● Downside: no way to know how close you are to the next one

Measuring progress

Easy strategy: only track milestones and deliverables

● Downside: no way to know how close you are to the next one

Can we do better? Unfortunately, not really.

Measuring progress: best practices

● have many milestones/deliverables
○ think back to Agile: this is a reason to always have a prototype

Measuring progress: best practices

● have many milestones/deliverables
○ think back to Agile: this is a reason to always have a prototype

● avoid relying too heavily on developers’ estimates
○ we are bad at estimating
○ “last mile” problem: what seems to be last 10% of the work

often takes 40% or more of the development time

Measuring progress: tools

● Gantt chart

Measuring progress: tools

● Gantt chart
● KanBan board

Measuring progress: tools

● Gantt chart
● KanBan board
● Many others: use what works for you

Takeaways

● Process can save time, but don’t overdo it
● Lots of methodologies: choose what makes sense for you
● Agile philosophy is generally a good one to follow

○ But don’t focus on it at the expense of actually doing your job
● Estimation is hard and you will get it wrong

○ Use rough estimation strategies to avoid over-promising
● Include lots of buffer + risk in your estimates
● Don’t trust developer estimates in general

