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Process

Today’s agenda:

● Finish up VCS slides
● Reading Quiz
● Development methodologies
● Planning, estimation, and risk
● Measuring progress



Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows
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● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best 

practices
○ we’ll discuss how to do a code review in a few weeks

● open PR against “main” repository from your fork’s feature branch



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs



How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

I’ve seen people make 
all of these mistakes 
(and more)!
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Development methodologies

● Traditionally, a large component of undergrad Software 
Engineering classes

● I’m not going to make you memorize the stages of the Waterfall 
method, or the tenets of Agile, or the like
○ Why? No one actually follows these procedures to the letter

● Instead, my goal in this lecture is to give you an overview of the 
traditional ways of organizing a software development effort and 
give you the vocabulary to talk about it
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What is a process? A methodology?

Definition: a software process is the set of activities and associated 
results that produce a software product

Definition: a software development methodology is a template for a 
process: a specific set of activities (usually accompanied by an 
animating philosophy) for a team to follow to achieve a desired result

not a guarantee - just a goal
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We’ll discuss these four - you can look up 
the others on your own if you’re curious
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Why have a methodology at all?

● Standardization among developers
● Shared language
● Estimation: your boss probably wants to know when you’ll be 

able to ship!
● You implicitly have a process, whether you know it or not (and it 

might not be very good if you’re not paying attention)

sometimes this is called an ad hoc methodology
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● Requirements: Mid-project informal agreement to changes 
suggested by customer or manager.

● QA: Late detection of requirements and design issues. 
Test-debug-reimplement cycle limits development of new features.

Release with known defects



Defect cost vs. detection time

● An IBM report gives an average defect repair cost of (2008$):
○ $25 during coding 
○ $100 at build time 
○ $450 during testing/QA 
○ $16,000 post-release

[L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]
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Examples of issues with ad hoc process

● Requirements: Mid-project informal agreement to changes 
suggested by customer or manager.

● QA: Late detection of requirements and design issues. 
Test-debug-reimplement cycle limits development of new features.

● Defect Tracking: Bug reports collected informally. 
● System Integration: Integration of independently developed 

components at the very end of the project.
● Scheduling: When project is behind, developers are asked weekly 

for new estimates.  Project falls further behind



A process hypothesis

● A process can increase flexibility and efficiency for software 
development.
○ If this is true, an up-front investment (of resources, e.g., “time”) 

in process can yield greater returns later on - by avoiding the 
problems on the previous slide!
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The Waterfall methodology

In the waterfall software development model, the following phases 
are carried out “in order”:

● Requirements gathering: produce a document
● Analysis: create models, schema, and business rules
● Design: create the software architecture
● Coding: the development, proving, and integration of software
● Testing: the systematic discovery and debugging of defects
● Operations: the installation, migration, support, and maintenance 

of complete systems

Is this realistic? 
Why or why not?
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The Waterfall methodology: an idealized model

● Do NOT attempt to actually follow a strict Waterfall 
methodology in real life
○ you will have a bad time

● But, it provides a useful foundation for thinking about 
methodologies:
○ the Waterfall stages do represent real activities you’ll do 

during the development lifecycle
○ you probably won’t do them all in the proscribed order

● And, as we saw in today’s reading, this “model” isn’t even what 
the papers “introducing it” were advocating for!
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A slightly more realistic model: spiral

● Key idea: construct a series 
of increasingly-complete 
prototypes 

● Effectively iterated 
waterfall 
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● Agile is more a philosophy than a methodology in the traditional 
sense

● Scrum is an instantiation of that philosophy as a methodology
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Agile Principles

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

Change requirements as you 
learn about the problem



The Scrum methodology

● Scrum is one common Agile methodology
● Focused around a “scrum master” who is responsible for process
● Work is divided into sprints where each team member is 

responsible for dealing with certain tasks
○ starts with a “sprint planning meeting”: tasks are assigned
○ each day includes a “standup” ceremony
○ at the end of the sprint, a “sprint retrospective meeting” 

looks back on how the sprint went
○ typically sprints are 1-2 weeks
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Common features of Agile methodologies

● Sprint terminology is common, even when not directly using 
scrum

● “Daily standups” are a routine for many engineers
● Planning often happens in the form of user stories 

○ As a ___, I want to ____
○ E.g., “as a new Covey.Town user, I want to create an account”

You’ll need to describe your group project 
using user stories in your project proposal
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●  A project should plan time, cost and resources adequately to 
estimate the work needed and to effectively manage risk during 
project execution. 

                               Planning  =  estimate  +/-  risk
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Why is planning a software project difficult?

● Software tends to be innovative 
○ Cost of copying existing code ≈ 0, so any project you’re 

actually working on probably is different than what came 
before

○ “It’s not research if you know it’s going to work”
○ Compare to other kinds of engineering: one 

highway/bridge/skyscraper/etc isn’t that different than the 
next
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Planning: milestones and deliverables

Definition: A milestone is a clean end point of a (sub)task

● Reports, prototypes, completed subprojects, etc.
● “80% done” is NOT a suitable milestone (too vague)

Definition: A deliverable is a milestone that’s customer-facing

● sometimes used interchangeably with milestone



Why milestones and deliverables?

● It’s easy to tell when a milestone or deliverable is done
● Progress towards milestones and deliverables is hard to measure



Why milestones and deliverables?

● It’s easy to tell when a milestone or deliverable is done
● Progress towards milestones and deliverables is hard to measure

        “All I need to do is fix this one bug and then it’ll work, promise.”



Estimation

Two parts:

● How long do you think it will take to reach the next milestone?
● Splitting larger tasks into smaller ones



Estimation

Two parts:

● How long do you think it will take to reach the next milestone?
● Splitting larger tasks into smaller ones

Naturally very fuzzy: we can’t see the future
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Estimation techniques: t-shirt sizing

small = I can do this task in an afternoon

medium = I can do this task in a day or two

large = too big to estimate how long it will take

● large tasks should usually come with a small 
task that is breaking the large task up into 
medium and small tasks
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● Assign stories 1, 2, 4, or 8 points (these numbers can vary, but the 
relationship should be exponential)

● Like large t-shirt estimates, high-point-value stories should 
usually have a smaller task to break them apart



Estimation techniques: story points

● Assign stories 1, 2, 4, or 8 points (these numbers can vary, but the 
relationship should be exponential)

● Like large t-shirt estimates, high-point-value stories should 
usually have a smaller task to break them apart

● T-shirt estimates and story points are two different ways to 
quantify the relative size of tasks
○ Also lots of other ways!



Estimation techniques: cocomo

Definition: a constructive cost model (cocomo) is a predictive model of 
time costs based on project history



Estimation techniques: cocomo

Definition: a constructive cost model (cocomo) is a predictive model of 
time costs based on project history

● requires experience with similar projects
● rewards documentation of experience 
● basically, it's an empirically-derived set of “effort multipliers”. 

You multiply the time cost by some numbers from a chart:
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Risk and uncertainty

● Risk management is the identification, assessment, and 
prioritization of risks, followed by efforts to minimize, monitor 
and control unfortunate event outcomes and probabilities.

● Any effective plan for software development must take into 
account common risks, e.g.,:
○ Staff illness or turnover, product is too slow, competitor 

introduces a similar product, etc.

bus factor: number of people that need to be simultaneously 
unavailable until there is a part of the system that no one understands
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● Selectively innovate to increase value while minimizing risk (i.e., 

focus risk where needed) 
● Use iteration and feedback (e.g., prototypes) 
● Estimate likelihood and consequences 
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● Have contingency plans



Strategies for risk management

● Address risk early 
● Selectively innovate to increase value while minimizing risk (i.e., 

focus risk where needed) 
● Use iteration and feedback (e.g., prototypes) 
● Estimate likelihood and consequences 

○ Requires experienced project leads 
○ Rough estimates (e.g., <10%, <25%) are OK 

● Have contingency plans

Your ability to do this will 
come from practice (in your 
first job, senior engineers + 
tech leads + PMs should do 
these things)
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Measuring progress

Easy strategy: only track milestones and deliverables

● Downside: no way to know how close you are to the next one

Can we do better? Unfortunately, not really.
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Measuring progress: best practices

● have many milestones/deliverables
○ think back to Agile: this is a reason to always have a prototype

● avoid relying too heavily on developers’ estimates
○ we are bad at estimating
○ “last mile” problem: what seems to be last 10% of the work 

often takes 40% or more of the development time
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Measuring progress: tools

● Gantt chart
● KanBan board
● Many others: use what works for you



Takeaways

● Process can save time, but don’t overdo it
● Lots of methodologies: choose what makes sense for you
● Agile philosophy is generally a good one to follow

○ But don’t focus on it at the expense of actually doing your job
● Estimation is hard and you will get it wrong

○ Use rough estimation strategies to avoid over-promising
● Include lots of buffer + risk in your estimates
● Don’t trust developer estimates in general


