Process
Martin Kellogg

Process

Today’s agenda:

Finish up VCS slides

Reading Quiz

Development methodologies
Planning, estimation, and risk
Measuring progress

Version Control

Today’s agenda:

Reading Quiz

How does a version control system work?
How to use your VCS

GitHub workflows

How to make a PR on GitHub

e start by creating a fork of the project
o anew repository controlled by you, connected to the main

How to make a PR on GitHub

e start by creating a fork of the project
o anew repository controlled by you, connected to the main
e inyour fork, create a feature branch

How to make a PR on GitHub

e start by creating a fork of the project

o anew repository controlled by you, connected to the main
e inyour fork, create a feature branch
e write code + tests

How to make a PR on GitHub

e start by creating a fork of the project
o anew repository controlled by you, connected to the main
e inyour fork, create a feature branch
e write code + tests
e commit early and often, push to your fork

How to make a PR on GitHub

e start by creating a fork of the project
o anew repository controlled by you, connected to the main
in your fork, create a feature branch
write code + tests
commit early and often, push to your fork
for code review: follow code review author’s best
practices

How to make a PR on GitHub

e start by creating a fork of the project

o anew repository controlled by you, connected to the main
in your fork, create a feature branch
write code + tests

commit early and often, push to your fork

for code review: follow code review author’s best

practices

o we'll discuss how to do a code review in a few weeks

How to make a PR on GitHub

e start by creating a fork of the project

o anew repository controlled by you, connected to the main

in your fork, create a feature branch
write code + tests

commit early and often, push to your fork

for code review: follow code review author’s best

practices

o we'll discuss how to do a code review in a few weeks
e open PR against” " repository from your fork’s feature branch

How NOT to make a PR on GitHub

e start by creating a hard fork of the project
o anew repository controlled by you, unconnected to the main

How NOT to make a PR on GitHub

e start by creating a hard fork of the project
o anew repository controlled by you, unconnected to the main
e do all of your work on the repository’s main branch

How NOT to make a PR on GitHub

e start by creating a hard fork of the project

o anew repository controlled by you, unconnected to the main
e do all of your work on the repository’s main branch
e write code (if there are already tests, don’t bother to run them)

How NOT to make a PR on GitHub

e start by creating a hard fork of the project
o anew repository controlled by you, unconnected to the main
e do all of your work on the repository’s main branch
e write code (if there are already tests, don’t bother to run them)
e commit all of your code at once, when you’re done

How NOT to make a PR on GitHub

e start by creating a hard fork of the project
o anew repository controlled by you, unconnected to the main
do all of your work on the repository’s main branch
write code (if there are already tests, don’t bother to run them)
commit all of your code at once, when you're done
to check if you've followed best practices

How NOT to make a PR on GitHub

e start by creating a hard fork of the project
o anew repository controlled by you, unconnected to the main
do all of your work on the repository’s main branch
write code (if there are already tests, don’t bother to run them)
commit all of your code at once, when you're done
to check if you've followed best practices
your changes to the maintainer of the original project

How NOT to make a PR on GitHub

e start by creating a hard fork of the project

o anew repository controlled by you, unconnected to the main
do all of your work on the repository’s main branch
write code (if there are already tests, don’t bother to run them)
commit all of your code at once, when you're done

to check if you've followed best practices
your changes to the maintainer of the original project
o bonus points: email the full working copy, not just the diffs

How NOT to make a PR on GitHub

e start by creating a hard fork of the project
o anew repository controlled by you, unconnected to the main
do all of your work on the repository’s main branch
write code (if there are already tests, don’t bother to run them)
commit all of your code at once, whq)

to check if you've follo VR SEE [PROPR TELE

y ~ 77| all of these mistakes
your changes to the maintain

(and more)!
o bonus points: email the full worke— , s

Process

Today’s agenda:

Finish up VCS slides

Reading Quiz

Development methodologies
Planning, estimation, and risk
Measuring progress

Reading Quiz: process

Q1: TRUE or FALSE: the author of “Waterfall doesn't mean what you
think it means” argues that documentation is the key to a successful

software project

Q2: Which of the following would the Agile Manifesto’s authors argue
is the best measure of progress in a software project?

A. how much of the software is working

B. theengineers’ estimate of how much work is left

C. thepercentage of statements that are covered by a test

Reading Quiz: process

Q1: TRUE or FALSE: the author of “Waterfall doesn't mean what you
think it means” argues that documentation is the key to a successful

software project

Q2: Which of the following would the Agile Manifesto’s authors argue
is the best measure of progress in a software project?

A. how much of the software is working

B. theengineers’ estimate of how much work is left

C. thepercentage of statements that are covered by a test

Reading Quiz: process

Q1: TRUE or FALSE: the author of “Waterfall doesn't mean what you
think it means” argues that documentation is the key to a successful

software project

Q2: Which of the following would the Agile Manifesto’s authors argue
is the best measure of progress in a software project?
how much of the software is working
B. theengineers’ estimate of how much work is left
C. thepercentage of statements that are covered by a test

Process

Today’s agenda:

Finish up VCS slides

Reading Quiz

Development methodologies
Planning, estimation, and risk
Measuring progress

Development methodologies

e Traditionally, alarge component of undergrad Software
Engineering classes

Development methodologies

Traditionally, a large component of undergrad Software
Engineering classes

I’m not going to make you memorize the stages of the Waterfall
method, or the tenets of Agile, or the like

Development methodologies

Traditionally, a large component of undergrad Software
Engineering classes

I’m not going to make you memorize the stages of the Waterfall
method, or the tenets of Agile, or the like

o Why? No one actually follows these procedures to the letter

Development methodologies

e Traditionally, alarge component of undergrad Software
Engineering classes

e |I'm not going to make you memorize the stages of the Waterfall
method, or the tenets of Agile, or the like
o Why? No one actually follows these procedures to the letter

e |[nstead, my goal in this lecture is to give you an overview of the
traditional ways of organizing a software development effort and
give you the vocabulary to talk about it

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

Definition: a software development methodology is a template for a
process: a specific set of activities (usually accompanied by an
animating philosophy) for a team to follow to achieve a desired result

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

Definition: a software development methodology is a template for a
process: a specific set of activities (usually accompanied by an
animating philosophy) for a team to follow to achieve a desired result

e.g., the Agile manifesto

What is a process? A methodology?

Definition: a software process is the set of activities and associated
results that produce a software product

Definition: a software development methodology is a template for a
process: a specific set of activities (usually accompanied by an
animating philosophy) for a team to follow to achieve a desired result

not a guarantee - just a goal

A list of methodologies

Waterfall

Spiral

Agile

Scrum

Extreme Programming (XP)
“wagile”

A list of methodologies

e Waterfall

e Spiral WEe'll discuss these four - you can look up
o Agile the others on your own if you’re curious
e Scrum

e Extreme Programming (XP)

e “wagile”

Why have a methodology at all?

Why have a methodology at all?

e Standardization among developers

e Sharedlanguage

e Estimation: your boss probably wants to know when you’ll be
able to ship!

e You implicitly have a process, whether you know it or not (and it
might not be very good if you're not paying attention)

Why have a methodology at all?

e Standardization among developers

e Sharedlanguage

e Estimation: your boss probably wants to know when you’ll be
able to ship!

e You implicitly have a process, whether you know it or not (and it
might not be very good if you're not paying attention)

A
sometimes this is called an ad hoc methodology

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

Examples of issues with ad hoc process

e Requirements: Mid-project inf[

Project scope expands (a lot!) J
suggested by customer or mani_

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes

suggested by customer or manager.
e QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

e QA:Late dete<.:t|0n of reqwrem[Release with known defects J
Test-debug-reimplement cycle |

Defect cost vs. detection time

e AnIBM report gives an average defect repair cost of (2008$):
o $25 during coding

$100 at build time

$450 during testing/QA

$16,000 post-release

O O O

[L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes

suggested by customer or manager.
e QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

e Defect Tracking: Bug reports collected informally.

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes

suggested by customer or manager.
e QA: Late detection of requirements and design issues.

Test-debug-reimplement cycle limits ¢— — ——s.
e Defect Tracking: Bug reports coIIect;[Bugs forgotten]

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

e QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

e Defect Tracking: Bug reports collected informally.

e System Integration: Integration of independently developed
components at the very end of the project.

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

e QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

e Defect Tracking: Bug reports coIIected mformally

e System Integration: Integratio ; :
components at the very end of t Interfaces out of sync

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

e QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

e Defect Tracking: Bug reports collected informally.

e System Integration: Integration of independently developed
components at the very end of the project.

e Scheduling: When project is behind, developers are asked weekly
for new estimates.

Examples of issues with ad hoc process

e Requirements: Mid-project informal agreement to changes
suggested by customer or manager.

e QA: Late detection of requirements and design issues.
Test-debug-reimplement cycle limits development of new features.

e Defect Tracking: Bug reports collected informally.

e System Integration: Integration of independently developed
components at the very end of the project.

e Scheduling: When projecti I ly
for new estimates.

A process hypothesis

e A process can increase flexibility and efficiency for software
development.
o If thisis true, an up-front investment (of resources, e.g., “time”)
in process can yield greater returns later on - by avoiding the
problems on the previous slide!

A list of methodologies

Waterfall

Spiral

Agile

Scrum

Extreme Programming (XP)
“wagile”

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

e Requirements gathering: produce a document

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

e Requirements gathering: produce a document
e Analysis: create models, schema, and business rules

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

e Requirements gathering: produce a document
e Analysis: create models, schema, and business rules
e Design: create the software architecture

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

e Requirements gathering: produce a document

e Analysis: create models, schema, and business rules

e Design: create the software architecture

e Coding: the development, proving, and integration of software

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

Requirements gathering: produce a document

Analysis: create models, schema, and business rules

Design: create the software architecture

Coding: the development, proving, and integration of software
Testing: the systematic discovery and debugging of defects

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

Requirements gathering: produce a document

Analysis: create models, schema, and business rules

Design: create the software architecture

Coding: the development, proving, and integration of software
Testing: the systematic discovery and debugging of defects
Operations: the installation, migration, support, and maintenance
of complete systems

The Waterfall methodology

In the waterfall software development model, the following phases
are carried out “in order”:

\
Requirements gathering: produce a doc Is this realistic?

Analysis: create models, schema, and bu§ Why or why not?
Design: create the software architectur y
Coding: the development, proving, and integration of software
Testing: the systematic discovery and debugging of defects
Operations: the installation, migration, support, and maintenance
of complete systems

Other lies you've probably been told

Other lies you've probably been told

PI1C32MX Pipelined Instruction Execution

) (0] (3] (M) (A) (W)
Instruction #1 Fetch Execute Memory Align Writeback
. 0} (3] (M) (A) (W)
Instruction #2 Fetch Execute Mem Align Writeback
) (0) (3] (M) (A) ()]
Instruction #3 Fetch Exe Mem Writeback
) () (E) (M) (A)
Instruction #4 Fetch Execute Memory Align
_ (1) (E) (M) (A) (W)
Instruction #5 Fetch Execute Memory Align Writeback

Time

Other lies you've probably been told

PI1C32MX Pipelined Instruction Execution

. (1 (E) (M) (A) (W)
Instruction #1 Fetch Execute Memory Al eback
) (1) (E) (M) ((W)
Instruction #2 Fetch Execute Memory Align Writeback
) (0] (3] (M) (A) (W)
Instruction #3 Fetch Execute Memory Align Writeback
) (1) (E) (A) (W)
Instruction #4 Fetch Execute Align Writeback
) (0) (3] (M) (A) (W)
Instruction #5 Fetch Execute Memory Align Writeback

Time

Atom structure
@ Proton

© Neutron
© Electron

Other lies you've probably been told

Instruction #1

Instruction #2

Instruction #3

Instruction #4

Instruction #5

PIC32MX Pipelined Instruction Execution

I T) (N

Memory Align Writeback
Fetch Execute Memory Align Writeback

Fetch Memory Align
Fetch Execute Memory Align
e
Fetch Memory

(W)
Writeback

(W)
Writeback

(A)

Align

Atom structure
@ Proton

© Neutron
© Electron

ReqUirements » Product requirements document
m» Software architecture
Implementation| JEES

The Waterfall methodology: an idealized model

e Do NOT attempt to actually follow a strict Waterfall
methodology in real life
o you will have a bad time

The Waterfall methodology: an idealized model

e Do NOT attempt to actually follow a strict Waterfall
methodology in real life
o you will have a bad time

e But, it provides a for thinking about
methodologies:
o the Waterfall stages do represent real activities you’ll do

during the development lifecycle

o you probably won’t do them all in the proscribed order

The Waterfall methodology: an idealized model

e Do NOT attempt to actually follow a strict Waterfall
methodology in real life
o you will have a bad time

e But, it provides a for thinking about
methodologies:
o the Waterfall stages do represent real activities you’ll do

during the development lifecycle

o you probably won’t do them all in the proscribed order

e And, as we saw in today’s reading, this “model” isn’'t even what
the papers “introducing it” were advocating for!

A slightly more realistic model: spiral

A Cumulative cost

1.Determine Progress 2. Identify and
objectives /"’ﬁ resolve risks

Requirements i
plan Prototype 1 \ Prototype 2 | prototype

Review

Concept of Concept of .
operation | requirements Detailed
Requirements

Development | Verification
plan | & Validation

Testplan | Verification
& Validation

Implementation

4- Plan the Release
next iteration 3. Development
and Test

A slightly more realistic model: spiral

e Key idea: construct aseries
of increasingly-complete

e Effectively iterated

waterfall

1.Determine
objectives

Review

\ Cumulative cost

Progress
—

2. Identify and
resolve risks

4. Plan the
next iteration

Release

Requirements eration:
plan Prototype 1 \ Prototype 2 | prototype
Concept of Y
operation
é Requirements Draft

Implementation

3. Development
and Test

A list of methodologies

Waterfall

Spiral

Agile

Scrum

Extreme Programming (XP)
“wagile”

Agile & Scrum

e Agileismorea than a methodology in the traditional
sense

Agile & Scrum

e Agileismorea than a methodology in the traditional
sense
e Scrum is aninstantiation of that philosophy as a methodology

Agile Principles

e Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

Agile Principles
[Focus on people }

e |Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

Agile Principles

e Individuals and interactions over processes and tools

e \Working software over comprehensive dc[Always have a prototype]
e Customer collaboration over contract negotiation
e Responding to change over following a plan

Agile Principles

e Individuals and interactions over processes and tools
® Working software over comprehensive documentation

o over contract n

e Responding to change over following a plan

Agile Principles

e Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

Change requirements as you
learn about the problem

The Scrum methodology

e Scrum is one common Agile methodology
e Focused around a “scrum master” who is responsible for process
e Work s divided into sprints where each team member is
responsible for dealing with certain tasks
o starts with a “sprint planning meeting”: tasks are assigned
o eachday includes a “standup” ceremony
o atthe end of the sprint, a “sprint retrospective meeting”
looks back on how the sprint went
o typically sprints are 1-2 weeks

Common features of Agile methodologies

e Sprint terminology is common, even when not directly using
scrum

e “Daily standups” are a routine for many engineers

e Planning often happens in the form of user stories

Common features of Agile methodologies

e Sprint terminology is common, even when not directly using
scrum

e “Daily standups” are a routine for many engineers

e Planning often happens in the form of user stories
o Asa__,lwantto__

Common features of Agile methodologies

e Sprint terminology is common, even when not directly using
scrum

e “Daily standups” are a routine for many engineers

e Planning often happens in the form of user stories
o Asa_ ,lwantto_
o E.g.,“as anew Covey.Town user, | want to create an account”

Common features of Agile methodologies

e Sprint terminology is common, even when not directly using
scrum

e “Daily standups” are a routine for many engineers

e Planning often happens in the form of user stories
o Asa_ ,lwantto_
o E.g.,“as anew Covey.Town user, | want to create an account”

4 ™
You'll need to describe your group project

using user stories in your project proposal
- y,

Process

Today’s agenda:

Finish up VCS slides

Reading Quiz

Development methodologies
Planning, estimation, and risk
Measuring progress

Planning

e Aprojectshould plan time, cost and resources adequately to
estimate the work needed and to effectively manage risk during
project execution.

Planning

e Aprojectshould plan time, cost and resources adequately to
estimate the work needed and to effectively manage risk during
project execution.

Planning = estimate +/- risk

Why is planning a software project difficult?

e Software tends to be innovative

Why is planning a software project difficult?

e Software tends to be innovative
o Cost of copying existing code = 0, so any project you're
actually working on probably is different than what came
before

Why is planning a software project difficult?

e Software tends to be innovative
o Cost of copying existing code = 0, so any project you're
actually working on probably is different than what came
before
o “It's not research if you know it’s going to work”

Why is planning a software project difficult?

e Software tends to be innovative

o Cost of copying existing code = 0, so any project you're
actually working on probably is different than what came
before

o “It's not research if you know it’s going to work”

o Compare to other kinds of engineering: one
highway/bridge/skyscraper/etcisn’t that different than the
next

Planning: milestones and deliverables

Definition: A milestone is a clean end point of a (sub)task

Planning: milestones and deliverables

Definition: A milestone is a clean end point of a (sub)task

e Reports, prototypes, completed subprojects, etc.
e “80%done” is NOT a suitable milestone (too vague)

Planning: milestones and deliverables

Definition: A milestone is a clean end point of a (sub)task

e Reports, prototypes, completed subprojects, etc.
e “80%done” is NOT a suitable milestone (too vague)

Definition: A deliverable is a milestone that’s customer-facing

e sometimes used interchangeably with milestone

Why milestones and deliverables?

e It'seasyto tell when a milestone or deliverable is done
e Progress towards milestones and deliverables is hard to measure

Why milestones and deliverables?

e It'seasyto tell when a milestone or deliverable is done
e Progress towards milestones and deliverables is hard to measure

“All | need to do is fix this one bug and then it’ll work, promise.”

Estimation

Two parts:

e How longdo you think it will take to reach the next milestone?
e Splitting larger tasks into smaller ones

Estimation

Two parts:

e How longdo you think it will take to reach the next milestone?
e Splitting larger tasks into smaller ones

Naturally very fuzzy: we can't see the future

Estimation techniques: t-shirt sizing

ﬁ small = | can do this task in an afternoon

Estimation techniques: t-shirt sizing

ﬁ small = | can do this task in an afternoon

<V> medium = | can do this task in a day or two

Estimation techniques: t-shirt sizing

U
-

small = | can do this task in an afternoon

medium = | can do this task in a day or two

large = too big to estimate how long it will take

e |arge tasks should usually come with a small
task that is breaking the large task up into
medium and small tasks

Estimation techniques: story points

e Assignstories 1, 2, 4, or 8 points (these numbers can vary, but the
relationship should be exponential)

e Like large t-shirt estimates, high-point-value stories should
usually have a smaller task to break them apart

Estimation techniques: story points

e Assignstories 1, 2, 4, or 8 points (these numbers can vary, but the
relationship should be exponential)

e Like large t-shirt estimates, high-point-value stories should
usually have a smaller task to break them apart

e T-shirt estimates and story points are two different ways to
quantify the relative size of tasks
o Also lots of other ways!

Estimation techniques: cocomo

Definition: a constructive cost model (cocomo) is a predictive model of
time costs based on project history

Estimation techniques: cocomo

Definition: a constructive cost model (cocomo) is a predictive model of
time costs based on project history

® requires experience with similar projects

e rewards documentation of experience

e basically, it's an empirically-derived set of “effort multipliers”.
You multiply the time cost by some numbers from a chart:

Ratings
Cost Drivers Very Low Low Nominal High Very High | Extra High

Product attributes
Required software reliability 0.75 V 0.88 1.00 1:15 | 1.40
Size of application database | | 0.94 | 1.00 | 1.08 | 1.16
Complexity of the product o070 | 085 1.00 115 | 130 | 166
Hardware attributes |
Run-time performance constraints 1.00 1.1 1.30 | 1.66
Memory constraints | | . 1.00 | 1.06 | 12 | 1.56
Volatility of the virtual machine environment ' V 0.87 V 1.00 1.156 | 1.30 |
Required turnabout time | | 0.87 | 1.00 1.07 | 115
Personnel attributes |
Analyst capability 1.46 1.19 1.00 0.86 0.71
Applications experience | 1.29 . 1.13 | 1.00 | 0.91 | 0.82
Software engineer capability | 1.42 | 1.17 . 1.00 | 0.86 | 0.70
Virtual machine experience 1.21 V 1.10 V 1.00 | 0.90 |
Programming language experience 1.14 | 1.07 | 1.00 | 0.95
Project attributes |
Application of software engineering methods | 1.24 1.10 1.00 0.91 0.82
Use of software tools | 1.24 | 1.10 | 1.00 | 0.91 | 0.83

Required development schedule 1.23 1.08 1.00 1.04 1.10

Risk and uncertainty

e Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

Risk and uncertainty

e Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

e Any effective plan for software development must take into
account commonrisks, e.g.,:

Risk and uncertainty

e Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

e Any effective plan for software development must take into
account commonrisks, e.g.,:

o Staff illness or turnover, product is too slow, competitor
introduces a similar product, etc.

Risk and uncertainty

e Risk management is the identification, assessment, and
prioritization of risks, followed by efforts to minimize, monitor
and control unfortunate event outcomes and probabilities.

e Any effective plan for software development must take into
account commonrisks, e.g.,:

o Staff illness or turnover, product is too slow, competitor
introduces a similar product, etc.

: number of people that need to be simultaneously
unavailable until there is a part of the system that no one understands

Strategies for risk management

Strategies for risk management

e Addressrisk early

e Selectively innovate to increase value while minimizing risk (i.e.,
focus risk where needed)

e Use iteration and feedback (e.g., prototypes)

e Estimate likelihood and consequences
o Requires experienced project leads
o Rough estimates (e.g., <10%, <25%) are OK

e Have contingency plans

Strategies for risk management

e Addressrisk early

e Selectively innovate to increase value while minimizing risk (i.e.,
focus risk where needed)

e Use iteration and feedback (e.g., prototypes)

e Estimate likelihood and consequencr

o Requires experienced project lef Your ability to do this will A

o Rough estimates (e.g., <10%, <2| ¢OMe from practicg (inyour
first job, senior engineers +

tech leads + PMs should do
\these things))

e Have contingency plans

Process

Today’s agenda:

Finish up VCS slides

Reading Quiz

Development methodologies
Planning, estimation, and risk
Measuring progress

Measuring progress

Easy strategy: only track milestones and deliverables

Measuring progress

Easy strategy: only track milestones and deliverables

e Downside: no way to know how close you are to the next one

Measuring progress

Easy strategy: only track milestones and deliverables

e Downside: no way to know how close you are to the next one

Can we do better? Unfortunately, not really.

Measuring progress: best practices

e have many milestones/deliverables
o think back to Agile: this is a reason to always have a prototype

Measuring progress: best practices

e have many milestones/deliverables
o think back to Agile: this is a reason to always have a prototype
e avoid relying too heavily on developers’ estimates
o we are bad at estimating
o ‘“last mile” problem: what seems to be last 10% of the work
often takes 40% or more of the development time

Measuring progress: tools

47 1157 187 257 1/8 B/R 15/8 22/8 29/8 39 12/9 15/9

e Ganttchart § sur] I

T4

Ti]
T2 |

M1é |

T7 #=ﬁ I

T3 I

Ms A| : ;
T8
VEE = i
M2 0000
Te 11
TS
evs | |
T9 | |
M7 4
T10[|
| * M6
T11 | '
$ME
riz
I ? l‘:nis*

Measuring progress: tools

To Do Research In Progress Review Completed
o antt chart - - =

. Check all internal URLs work in Create 5x FB ads Redesign About Us page
blog archive 02 -
P = o5 (5]
. I Oreb2s = O2 (M) (O g _— -
m— - o o
. —

. a l l a l I O a r - Sharpen copy across homepage Redesign logo
Create e-mail newsletter for blog s A P

- subscribers ©7 02 (3 o4 02 [2

Create offer notification email o1 Offer notification email

= 03 o1 n —_—
- Create infographics for weekly
blog post
—-— =04
Compile video animation Email to last week's conference Oifsn = B4 2
alongside blog articles attendees
1 520 = ©2 =) —
- Snapchat Story on upcoming
S -—
S— &t Update i0S app
o Update social media content = o1
Launch podcast = 02 s A Q
= 02 =3
g e
— Source images for blog post
— Brainstorm & suggest 10 blog = 9% O
Prepare onboarding materials for post ideas - o
new Ul designers ~
Structure editorial calendar 9 o3 2
Create logo for Medium
==
©7 02 [2)
Research weekly blog post and Prompt comments on blog posts e
suggest images o ~
03 D6 L) -
E=3

nave

Measuring progress: tools

e Ganttchart
e KanBan board
e Many others: use what works for you

Takeaways

e Process can save time, but don’t overdo it
e |ots of methodologies: choose what makes sense for you
e Agile philosophy is generally a good one to follow
o Butdon'’t focus on it at the expense of actually doing your job
e Estimationis hard and you will get it wrong
o Use rough estimation strategies to avoid over-promising
e Include lots of buffer + risk in your estimates
e Don't trust developer estimates in general

