
Languages (+ end of code
review)

Martin Kellogg

How to write code review comments

How to write code review comments

● Be kind, courteous, and respectful.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.

“In general it is the developer’s
responsibility to fix a CL, not the
reviewer’s”

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.
● Insist developers simplify code or add code comments instead of

just explaining the complexity to you.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.
● Insist developers simplify code or add code comments instead of

just explaining the complexity to you.

“Explanations written only in the
code review tool are not helpful
to future code readers”

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.

Usually authors treat comments
without a severity level as must fix

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.
○ Nit: This is a minor thing. Technically you should do it, but it

won’t hugely impact things.

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.
○ Nit: This is a minor thing. Technically you should do it, but it

won’t hugely impact things.
○ Optional: I think this may be a good idea, but it’s not strictly

required.

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.
○ Nit: This is a minor thing. Technically you should do it, but it

won’t hugely impact things.
○ Optional: I think this may be a good idea, but it’s not strictly

required.
○ FYI: I don’t expect you to do this in this CL, but you may find

this interesting to think about for the future.

Common mistakes to avoid as a reviewer

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.

If you get pushback on a suggestion,
take the time to understand why

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.

Try to get back to the author within
“one business day”, whatever that
means for your team

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax

Common mistake: “LGTM” everything
for the sake of speed

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent

I’ve had reviewers ask for one thing, which I do,
and then ask for something completely different
a week later. Read your previous review!

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent
● Letting complexity through with a promise to clean up later

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent
● Letting complexity through with a promise to clean up later

Doesn’t usually happen! If
the problem is serious,
insist on fixing it now!

Common mistakes to avoid as an author

Common mistakes to avoid as an author

● Respond to every comment

Making a code change
counts as a response!
Don’t write “fixed” or
similar on every comment.

Common mistakes to avoid as an author

● Respond to every comment
● If you fix something in one place, fix it everywhere

As a reviewer, it is very
tedious to point out every
place that an author has
made the same mistake.

Common mistakes to avoid as an author

● Respond to every comment
● If you fix something in one place, fix it everywhere
● Assume good faith

Common mistakes to avoid as an author

● Respond to every comment
● If you fix something in one place, fix it everywhere
● Assume good faith
● Address comments by changing the code, not by explaining in

the review tool

Empirical guidelines for code review

Empirical guidelines for code review

● Recommendation:
Do not exceed 60
minute session

● Reason: focus
fatigue

Empirical guidelines for code review

● Recommendation:
Don’t review more
than 400 LoC per
hour

● Reason: at faster
paces, reviews get
too shallow

[Code Review at Cisco Systems. In J A Cohen et al.'s Best Kept Secrets of Peer Code Review, 2013.]

Empirical guidelines for code review

● Recommendation:
Don’t review more
than 400 LoC per
hour

● Reason: at faster
paces, reviews get
too shallow

[Code Review at Cisco Systems. In J A Cohen et al.'s Best Kept Secrets of Peer Code Review, 2013.]

Overall recommendation:
keep review sessions:
● under 1 hour, and
● under 400 LoC

Empirical guidelines for code review

Important to
review your own
code before giving
it to others

Code Review

Today’s agenda:

● Finish slides on interviewing
● Reading Quiz
● What is code review (and why we do it)
● How to do a code review (with empirical evidence)
● Good and bad examples of code review comments

Example comment: good or bad?

[Many of the examples in the following slides borrowed from Sandya Sankarram’s
“Unlearning toxic behaviors in a code review culture”]

https://medium.com/@sandya.sankarram/unlearning-toxic-behaviors-in-a-code-review-culture-b7c295452a3c
https://medium.com/@sandya.sankarram/unlearning-toxic-behaviors-in-a-code-review-culture-b7c295452a3c

Example comment: good or bad?

Example comment: good or bad?

BAD! comes off as
nitpicking and
condescending

Example comment: good or bad?

BAD! comes off as
nitpicking and
condescending

Example comment: good or bad?

BAD! comes off as
nitpicking and
condescending

BETTER: consolidate
the comment in one
place rather than
repeating yourself

Example comment: good or bad?

Example comment: good or bad?

BAD! frankly, this
is just rude. Use
your words!

Example comment: good or bad?

Example comment: good or bad?

OK: emojis and similar
“casual” language should
only be used to praise,
never to criticize

Example comment: good or bad?

anon-reviewer

I don’t mean we’re mean-spirited. I just mean that we are merciless.
You’ll notice that I left the comment “Beep!” on the imports of every
file you touched. What I meant was, “Your imports violate our
standard convention — we order them by built-ins, then third party,
and then project level,” but that was too much to type on every file.

Example comment: good or bad?

anon-reviewer

I don’t mean we’re mean-spirited. I just mean that we are merciless.
You’ll notice that I left the comment “Beep!” on the imports of every
file you touched. What I meant was, “Your imports violate our
standard convention — we order them by built-ins, then third party,
and then project level,” but that was too much to type on every file.

VERY BAD!
rude, condescending, and sarcastic.
Be helpful, not antagonistic

Example comment: good or bad?

anon-reviewer

This breaks when you enter a negative number. Can you please
address this case?

Example comment: good or bad?

anon-reviewer

This breaks when you enter a negative number. Can you please
address this case?

GOOD: straight to the
point, politely points
out a technical problem

Takeaways: code review

● Code review is one of the best ways to prevent defects
○ You must do it during the course project (I will check!)

● Be nice as both an author and a reviewer
○ Respect each other and each other’s time

● One thing I’ll look for when assessing your group project is the
quality of your code reviews
○ If you’re unsure, you can ask the course staff to review your

reviews (in office hours)

Reading Quiz: Languages

Reading Quiz: Languages

Q1: What was the source of the latency spikes in the original Go
implementation of the Read States service?
A. Go’s default hash table had too many collisions
B. Go is an interpreted language
C. Go arrays require expensive copy operations if they get too big
D. Go’s garbage collector runs every 2 minutes

Q2: TRUE or FALSE: Even with just basic optimization, the Rust
version of the Read States service outperformed the hyper
hand-tuned Go version.

Reading Quiz: Languages

Q1: What was the source of the latency spikes in the original Go
implementation of the Read States service?
A. Go’s default hash table had too many collisions
B. Go is an interpreted language
C. Go arrays require expensive copy operations if they get too big
D. Go’s garbage collector runs every 2 minutes

Q2: TRUE or FALSE: Even with just basic optimization, the Rust
version of the Read States service outperformed the hyper
hand-tuned Go version.

Reading Quiz: Languages

Q1: What was the source of the latency spikes in the original Go
implementation of the Read States service?
A. Go’s default hash table had too many collisions
B. Go is an interpreted language
C. Go arrays require expensive copy operations if they get too big
D. Go’s garbage collector runs every 2 minutes

Q2: TRUE or FALSE: Even with just basic optimization, the Rust
version of the Read States service outperformed the hyper
hand-tuned Go version.

Why discuss programming languages at all?

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

● it’s fairly rare that you get to choose a language, but when you do,
it’s a big responsibility!

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

● it’s fairly rare that you get to choose a language, but when you do,
it’s a big responsibility!
○ lecture goal: give you tools to evaluate the trade-offs

between different languages

Why discuss programming languages at all?

● the language a project is written in has a big impact on how the
project goes
○ as always, choose the right tool for the job

● it’s fairly rare that you get to choose a language, but when you do,
it’s a big responsibility!
○ lecture goal: give you tools to evaluate the trade-offs

between different languages

Advice before we go further:
when you inherit a code base,
don’t try to rewrite it right
away in a “better” language:
it’s usually not worth it

How can programming languages differ?

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs

● usually based on some kind of mathematical foundation

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs

● usually based on some kind of mathematical foundation
● common, important paradigms we’ll discuss today:

○ imperative
○ functional
○ object-oriented

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: ???

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = ?
○ array that is destructively updated = ?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = instructions to the processor
○ array that is destructively updated = ?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = instructions to the processor
○ array that is destructively updated = registers/memory/disk

Imperative programming: examples

Languages with imperative programming (non-exhaustive list):

Imperative programming: examples

Languages with imperative programming (non-exhaustive list):

● FORTRAN
● C
● C++
● Python
● Java
● JavaScript/TypeScript
● many, many others!

Imperative programming: examples

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

Imperative programming: examples

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

semicolons separate
commands, program is a list of
commands

Imperative programming: examples

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

destructive updates of
memory cells

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: ?

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function
○ lambda calculus is as powerful as Turing machines

■ “as powerful” = anything you can compute with a Turing
machine can also be computed with the lambda calculus

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function
○ lambda calculus is as powerful as Turing machines

■ “as powerful” = anything you can compute with a Turing
machine can also be computed with the lambda calculus

● functional programming models math well
○ it is easier to formally reason about functional programs

Functional programming: characteristics

● Computation = evaluating (math) functions

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands
● Important Features of functional languages:

○ Higher-order, first-class functions
○ Closures and recursion
○ Lists and list processing

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands
● Important Features of functional languages:

○ Higher-order, first-class functions
○ Closures and recursion
○ Lists and list processing

Let’s look at how
imperative and functional
languages manage state in
a bit more detail

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

● Functional programs yield new similar states over time.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

● Functional programs yield new similar states over time.
○ let x = y in … , however, only changes x’s value within

the scope of the …

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

NOT the same as a semi-colon:
commands vs expressions

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

even the operators are
type-safe (in OCaml)

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

commands still exist, but
limited to inherently
“imperative” operations (I/O,
saving to disk, etc.)

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Example: functional vs. imperative

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

no “return” statement,
because everything is an
expression

Examples of functional languages

Examples of functional languages

● Lisp
● OCaml/SML
● Haskell

Examples of functional languages

● Lisp
● OCaml/SML
● Haskell
● Python
● JavaScript/TypeScript
● Java (???)
● Closure
● Ruby
● etc.

Examples of functional languages

● Lisp
● OCaml/SML
● Haskell
● Python
● JavaScript/TypeScript
● Java (???)
● Closure
● Ruby
● etc.

Functional advantages

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the

result

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the

result
● “No” side-effects

○ Fewer errors

Functional disadvantages

Functional disadvantages

● Efficiency
○ Copying takes time

Functional disadvantages

● Efficiency
○ Copying takes time

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

● Unfamiliar (to you, and maybe those
you’re hiring!)
○ New programming style

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

● Unfamiliar (to you, and maybe those
you’re hiring!)
○ New programming style

● Not appropriate for every program
○ Some programs are inherently stateful

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism:

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism: type systems? dictionaries?
○ still something of an open research problem

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism: type systems? dictionaries?
○ still something of an open research problem

● extraordinarily common

Object-oriented programming

Definition: in the object-oriented paradigm, programs are composed
of interacting objects, each of which is responsible for some
well-defined part of the program’s state

● underlying mathematical formalism: type systems? dictionaries?
○ still something of an open research problem

● extraordinarily common
● models the real world well

○ objects are good abstractions for real-world entities and
concepts

Object-oriented programming gotchas

● classes vs prototypes

Object-oriented programming gotchas

● classes vs prototypes
○ a class is a template for building objects (but is not itself an

object!)
○ a prototype is an object that is used as a template for building

other objects

Object-oriented programming gotchas

● classes vs prototypes
○ a class is a template for building objects (but is not itself an

object!)
○ a prototype is an object that is used as a template for building

other objects
● similar, but lead to subtle differences

○ prototypes can be modified at run time!

Object-oriented programming gotchas

● classes vs prototypes
○ a class is a template for building objects (but is not itself an

object!)
○ a prototype is an object that is used as a template for building

other objects
● similar, but lead to subtle differences

○ prototypes can be modified at run time!Which of the two does
Java use? What about
JavaScript?

Object-oriented programming languages

Object-oriented programming languages

● Smalltalk
● Java
● C++
● C#
● Python
● JavaScript/TypeScript
● Swift
● R
● etc.

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

What is a type system, anyway?

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

● type theory is the discipline of math (yes!) that studies the formal
properties of type systems

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

● type theory is the discipline of math (yes!) that studies the formal
properties of type systems

● most programming languages include some kind of type system
○ exceptions: assembly, Lisp, a few others

Kinds of type systems

● Static vs dynamic checking

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime
■ shares advantages/disadvantages with other dynamic

analyses

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime
■ shares advantages/disadvantages with other dynamic

analyses
● Insight: typechecking is just another program analysis

Static vs dynamic types

● Both are common in practice

Static vs dynamic types

● Both are common in practice
○ examples of each?

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ ???
○ Benefits of dynamic typing:

■ ???

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ early detection of errors, types are documentation
○ Benefits of dynamic typing:

■ faster prototyping, no false positives

Other ways type systems differ

Other ways type systems differ

● Implicit vs explicit

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties
○ e.g., Kotlin guarantees no null-pointer dereferences, but Java

doesn’t (both compile to Java bytecode)

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties
○ e.g., Kotlin guarantees no null-pointer dereferences, but Java

doesn’t (both compile to Java bytecode)
○ stronger types can be added to a language (ask me more)

■ “pluggable types”

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

Remember: Don’t Repeat Yourself
If someone else has already built
what you need, don’t build it again

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

● Tied to language popularity: languages that are more popular
have better libraries, so people are more likely to use them
○ positive feedback loop!

Library support

● Key question: do the right tools for the job you need to do exist in
the language?

● Tied to language popularity: languages that are more popular
have better libraries, so people are more likely to use them
○ positive feedback loop!

● Common situation: you need library A and library B, but A is
written in language L and B is written in language M
○ What to do?

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

Multi-language projects are common!
Developer quote: ““My last 4 jobs have been apps
that called: Java from C#, and C# from F#; Java from
Ruby; Python from Tcl, C++ from Python, and C from
Tcl; Java from Python, and Java from Scheme (And
that's not even counting SQL, JS, OQL, etc.)””

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application

For example, concurrency might be better
handled in F#/OCaml (immutable functional) or
Ruby (designed to hide such details), while
low-level OS or hardware access is much easier
in C or C++, while rapid prototyping is much
easier in Python or Lua, etc.

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language
○ Scripts are written in a dynamically typed, interpreted language

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language
○ Scripts are written in a dynamically typed, interpreted language

Examples: Emacs (C / Lisp), Adobe Lightroom (C++
/ Lua), NRAO Telescope (C / Python), Google
Android (C / Java), most games (C++ / Lua), etc.

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language
○ Scripts are written in a dynamically typed, interpreted language

Examples: Emacs (C / Lisp), Adobe Lightroom (C++
/ Lua), NRAO Telescope (C / Python), Google
Android (C / Java), most games (C++ / Lua), etc.

C/C++ is a
lingua franca

Multi-language projects

● Another common approach: common language infrastructure
○ enables easy integration and interoperability

Multi-language projects

● Another common approach: common language infrastructure
○ enables easy integration and interoperability

● Examples:
○ .NET framework (Microsoft)

■ C++, C#, J#, F#, Visual Basic, etc.
○ Java bytecode + Java virtual machine

■ Java, Scala, Kotlin, Closure, etc.
○ LLVM bytecode
○ etc.

Multi-language projects: complications

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next week) becomes more complicated

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next class) becomes more complicated
● Developer expertise is required in multiple languages

○ Must understand types (etc.) in all languages

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next class) becomes more complicated
● Developer expertise is required in multiple languages

○ Must understand types (etc.) in all languages
● Most tools are language specific: testing frameworks (+ generation,

coverage, etc.), static analysis, build systems, debuggers, etc.

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Language performance

● Three main axes to trade-off between languages:

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write
○ Python: easy to write, okay safety, slow

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write
○ Python: easy to write, okay safety, slow
○ C: good performance, easy-ish to write, very unsafe

What impacts performance

What impacts performance

● #1: safety features enforced at run time

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations
○ interpreted languages almost always slower: no optimizing

compiler

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations
○ interpreted languages almost always slower: no optimizing

compiler
○ JITs (just-in-time compilers) can produce surprisingly fast code

■ e.g., Java Virtual Machine

Trade-off: safety features

● #1 performance problem: safety features enforced at run time

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

■ the garbage collector in Java/Go/etc. is automatic
■ but writing Rust code requires follows its (complex) type

discipline

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

■ the garbage collector in Java/Go/etc. is automatic
■ but writing Rust code requires follows its (complex) type

discipline
○ bottom line: statically safe languages can be faster, but are

generally harder to program in

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Team/process factors

● Learning a new programming language takes time

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!
● If you need performance, you usually need at least one expert

○ cf. AWS employs some JVM experts to tune the garbage
collector for AWS services that use Java

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!
● If you need performance, you usually need at least one expert

○ cf. AWS employs some JVM experts to tune the garbage
collector for AWS services that use Java

Implication: if you’re going to need an expert,
make sure you have one! This often seriously limits
your choice of languages in practice :(

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster
○ but this impact is relatively small over a typical engineer’s

tenure at a company

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster
○ but this impact is relatively small over a typical engineer’s

tenure at a company
● Implication: if all else is equal, choose the more popular language

When to rewrite

● the reading talked about moving a service from one language to
another
○ why?

When to rewrite

● the reading talked about moving a service from one language to
another
○ why? Performance problems.

When to rewrite

● the reading talked about moving a service from one language to
another
○ why? Performance problems.

● This is usually a risky thing to do:
○ you’re not building new features
○ integration problems
○ will the benefits be worth it?

When to rewrite

● the reading talked about moving a service from one language to
another
○ why? Performance problems.

● This is usually a risky thing to do:
○ you’re not building new features
○ integration problems
○ will the benefits be worth it?Implication: rewriting is a good idea if you’re

confident that the benefits of the new language are
worthwhile, but be cautious: it can expensive!

Takeaways

● there is a wider world of languages than just imperative and
object-oriented (but those are the most popular)
○ learning to write functional code can make you a better

programmer
● different programming languages have different trade-offs

○ performance vs safety vs ease of use vs …
● when starting a new project, think carefully about the requirements

before choosing a language
● rewrite a project in a new language only after careful consideration

