Free and Open-source

Software
Martin Kellogg

Free and Open-source Software

Today’s agenda:

Finish devops slides

History + the “free software” philosophy
Open-source: licenses and business models
Mid-semester survey: how am | doing?

Service Reliability Hierarchy:
Post-mortems

Product

/ Development \
/ (apacity Planning \
/ Testing + Release procedures \
/ [Postmortem / Root Cause Analysis] \

/ Incident Response \
/ Monitoring \

https://sre.google/sre-book/part-IlI-practices/

https://sre.google/sre-book/part-III-practices/

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is awritten record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
e writing the postmortem is a good way to fully understand what
caused an emergency (cf., “writing clarifies your thinking”)
e good postmortems are blameless and
o “blameless” = find the faults in the process, not the people

o " = gjve specific guidance for how to avoid the
problem in the future (these become tickets)

Post-mortems: blameless

e Why not assign blame after an incident?
o After all, someone should be responsible, right?

Post-mortems: blameless

e Why not assign blame after an incident?
o After all, someone should be responsible, right?
e Somereasons:
o Gives people confidence to escalate issues without fear
o Avoids creating a culture in which incidents and issues are
(which is worse long-term!)
o : engineers who have experienced an
incident won’t make the same mistakes again
o You can't "fix" people, but you can fix systems and processes

Post-mortems: blameless

e \Why not assign bla

o After all. some Historically, software engineering \

adopted a lot of “blameless culture”
® Some reasons: from aviation and medicine, where

o Gives people ¢{ mistakes can be fatal! We might not
o Avoids creatin{y have the same stakes, but all complex |[e

systems are similar in a lot of ways.
o Wmn
incident won’t make the same mistakes again
o You can't "fix" people, but you can fix systems and processes

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be
more senior engineers

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in
response to an incident

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in
response to an incident

o leads to more actionable takeaways and better understanding
of what went wrong

Post-mortems: peer review

e Post-mortems are most effective when they are peer-reviewed
o My peers might be more senior professors, but yours will be

e Peer review raises the bar: senior engineers on other teams will
expect you to the changes you are proposing in

response to an incident
o leads to more actionable takeaways and better understanding

of what went wrong
o alsoenables engineers on different teams to learn from each

others’ mistakes

Post-mortems: example

Shakespeare Sonnet++ Postmortem (incident #465)

Date: 2015-10-21
Authors: jennifer, martym, agoogler
Status: Complete, action items in progress

Summary: Shakespeare Search down for 66 minutes during period of very high interest in Shakespeare due to discovery of
a new sonnet.

Impact:'®® Estimated 1.21B queries lost, no revenue impact.

Root Causes:'* Cascading failure due to combination of exceptionally high load and a resource leak when searches failed
due to terms not being in the Shakespeare corpus. The newly discovered sonnet used a word that had never before
appeared in one of Shakespeare’s works, which happened to be the term users searched for. Under normal circumstances,
the rate of task failures due to resource leaks is low enough to be unnoticed.

Trigger: Latent bug triggered by sudden increase in traffic. [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Shakespeare Sonnet++ Postmortem (incident #465)

Date: 2015-10-21

Authors: jennifer, martym, agoogler

Status: Compll Resolution: Directed traffic to sacrificial cluster and added 10x capacity to mitigate cascading failure. Updated index

deployed, resolving interaction with latent bug. Maintaining extra capacity until surge in public interest in new sonnet
Summary: Sh{

a new sonnet.

passes. Resource leak identified and fix deployed.

Detection: Borgmon detected high level of HTTP 500s and paged on-call.
IMpact:’5? EStibrrerea—r o qerorroo ooy rrorerorrae ot

Root Causes:'* Cascading failure due to combination of exceptionally high load and a resource leak when searches failed
due to terms not being in the Shakespeare corpus. The newly discovered sonnet used a word that had never before
appeared in one of Shakespeare’s works, which happened to be the term users searched for. Under normal circumstances,
the rate of task failures due to resource leaks is low enough to be unnoticed.

Trigger: Latent bug triggered by sudden increase in traffic. [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Action Item

Update playbook with instructions for
responding to cascading failure

Use flux capacitor to balance load
between clusters

Schedule cascading failure test during
next DIRT

Investigate running index MR/fusion
continuously

Type

mitigate

prevent

process

prevent

PMNoise Bl alsisnmiptoamare Taaa by By rapaecaaraail o e s e .

Owner

jennifer

martym

docbrown

jennifer

Bug

n/a DONE

Bug 5554823 TODO

n/a TODO

Bug 5554824 TODO

[source: https://sre.google/sre-book/example-postmortem/ |
Disre CCC A0 IYOAAIE

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Action Item

Update playbook with instructions for
responding to cascading failure

Use flux capacitor to balance load
between clusters

Schedule cascading failure test during
next DIRT

Investigate running index MR/fusion
continuously

and 5 more...

Type

mitigate

prevent

process

prevent

PMNoise Bl alsisnmiptoamare Taaa by By rapaecaaraail o e s e .

Owner

jennifer

martym

docbrown

jennifer

Bug

n/a DONE

Bug 5554823 TODO

n/a TODO

Bug 5554824 TODO

[source: https://sre.google/sre-book/example-postmortem/ |
Disre CCC A0 IYOAAIE

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Lessons Learned

What went well

» Monitoring quickly alerted us to high rate (reaching ~100%) of HTTP 500s
 Rapidly distributed updated Shakespeare corpus to all clusters

What went wrong

» We're out of practice in responding to cascading failure

» We exceeded our availability error budget (by several orders of magnitude) due to the exceptional surge of traffic
that essentially all resulted in failures

Where we got lucky's®

 Mailing list of Shakespeare aficionados had a copy of new sonnet available

 Server logs had stack traces pointing to file descriptor exhaustion as cause for crash

» Query-of-death was resolved by pushing new index containing popular search term [source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Timeline”

2015-10-21 (all times UTC)

* 14:51 News reports that a new Shakespearean sonnet has been discovered in a Delorean’s glove compartment

» 14:53 Traffic to Shakespeare search increases by 88x after post to /r/shakespeare points to Shakespeare search
engine as place to find new sonnet (except we don’t have the sonnet yet)

» 14:54 OUTAGE BEGINS — Search backends start melting down under load
 14:55 docbrown receives pager storm, ManyHttp5080s from all clusters

» 14:57 All traffic to Shakespeare search is failing: see https:/monitor

» 14:58 docbrown starts investigating, finds backend crash rate very high

» 15:01 INCIDENT BEGINS docbrown declares incident #465 due to cascading failure, coordination on
#shakespeare, names jennifer incident commander

» 15:02 someone coincidentally sends email to shakespeare-discuss@ re sonnet discovery, which happens to be at
top of martym’s inbox
[source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

Timeline”

2015-10-21 (all times UTC)

* 14:51 News reports that a new Shakespearean sonnet has been discovered in a Delorean’s glove compartment

14:53 Traffic to Shakespeare search increases by 88x after post to /r/shakespeare points to Shakespeare search
engine as place to find new sonnet (except we don’t have the sonnet yet)

» 14:54 OUTAGE BEGINS — Search backends start melting down under load

 14:55 docbrown receives pager storm, ManyHttp500s from all clusters

14:57 All traffic to Shakespeare search is failing: see https:/monitor

14:58 docbrown starts investigating, finds backend crash rate very high

el e e dachisuin daclaracinsidani LS dusiacaceadina follansoaidiosiionog

this goes on for several pages!
e shows importance of keeping records

ppens to be at

[source: https://sre.google/sre-book/example-postmortem/ |

https://sre.google/sre-book/example-postmortem/

DevOps: takeaways

e Many modern engineering organizations prefer to combine, rather
than separate, development and operations
o this works best when most systems are services
e Major benefit of DevOps approach is elimination of toil
o developers are best at building automation
e Planning for incidents/emergencies is critical
o Monitoring allows on-call to quickly identify problems
o Have aplan (ideally, in a playbook) for incidents
o Use post-mortems to learn from prior emergencies
m not to blame people for causing them!

FOSS: reading quiz

FOSS: reading quiz

Q1: TRUE or FALSE: all “open-source” software is “free” software, but
all “free” software is not “open-source”.

Q2: The change in HashiCorp’s new license that the author of the
second article is concerned about is that HashiCorp’s new license...
A. isacopyleftlicense

B. specifically forbids competing with HashiCorp
C. forbids production use of their software for other companies
D

allows “Tivoization” of their software

FOSS: reading quiz

Q1: TRUE or FALSE: all “open-source” software is “free” software, but
all “free” software is not “open-source”.

Q2: The change in HashiCorp’s new license that the author of the
second article is concerned about is that HashiCorp’s new license...
A. isacopyleftlicense

B. specifically forbids competing with HashiCorp
C. forbids production use of their software for other companies
D

allows “Tivoization” of their software

FOSS: reading quiz

Q1: TRUE or FALSE: all “open-source” software is “free” software, but
all “free” software is not “open-source”.

Q2: The change in HashiCorp’s new license that the author of the
second article is concerned about is that HashiCorp’s new license...
A. isacopyleftlicense

specifically forbids competing with HashiCorp
forbids production use of their software for other companies

C.
D. allows “Tivoization” of their software

Free and Open-source Software

Today’s agenda:

e Finish devops slides
e History + the “free software” philosophy
e Open-source: licenses and business models

The rest of this slide deck is heavily based on the work of Jonathan Bell, Adeel Bhutta, and Mitch Wand, ©2022,
released under CC-BY-SA. My modifications ©2023-4, by Martin Kellogg, also released under CC-BY-SA.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Why does this matter?

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

o “Free” vs“open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

o “Free” vs“open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

e Thisdebate has consequences for both how you build and how you
use software that, as a software engineer, you should understand

Why does this matter?

e Part of being a software engineer (vs just a programmer) is
understanding the context of your work

o “Free” vs“open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

e Thisdebate has consequences for both how you build and how you
use software that, as a software engineer, you should understand

o plus,it’s the sort of thing that other, more senior engineers will

expect you to have an about

What is “open-source”?

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]
e “opensource” !=“open source software” (we'll talk about why later)

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]

e “opensource” !=“open source software” (we'll talk about why later)
e ['llabbreviate “open source software” as OSS

The Case against Open Source

A REMINDER
from

YOUR FRIENDS AT MICROSOFT
[Variation of popular meme, original source unknown]

The Case against Open Source

e “Open-Source Doomsday”: Once all
software is free, we'll stop making more
software and have a market collapse

e Innovation will be stifled by the risk that
software will be copied

e Making source code public means easier
to attack

e “Anarchistic” licensing prevents

companies from profiting from open =

YOUR FRIENDS AT MICROSOFT

source software

The Case for Open Source

.= Microsoft | Open Source Getinwoled Projacts Ecos

Open Source enables Microsoft products and services to

bring choice, technology and community to our customers.

[Screenshot, 2022, opensource.microsoft.com]

The Case for Open Source

e “Many eyes make all bugs shallow” Tr——

e End-users canimprove and customize
software to their needs

e New features can be proposed and
developed organically

e Greater productivity when more code is s el
reused (easier with open source) IPASRERaY 2060 S e e o
o i.e., DRY on anindustry-wide scale

History: open-source

History: open-source

e intheearly days of computing, innovation

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway

e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway
e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs
e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code

History: open-source

e intheearly days of computing, innovation

o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway

e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs

e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code
o Unix quickly gained a lot of popularity for two reasons:

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway
e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs
e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code
o Unix quickly gained a lot of popularity for two reasons:
m portable between hardware (just need a C compiler)

History: open-source

e intheearly days of computing, innovation
o noone was worried about keeping their code secret, since it
usually would only run on their hardware anyway
e what software development did occur happened mostly in
academic labs, and AT&T’s Bell Research Labs
e Unix created at Bell Labs using the new, portable language “C”
(~1970), licenses initially released with source code
o Unix quickly gained a lot of popularity for two reasons:
m portable between hardware (just need a C compiler)
m Bell Labs practically gave it away to universities

History: Unix

e 197/8:UC Berkeley begins distributing
their own derived version of Unix (BSD)

History: Unix

o 1978:UC Berkeley begins distributing
their own derived version of Unix (BSD)

o 1983: AT&T broken up by US DoJ, UNIX
licensing changed: no more source
releases

History: Unix

o 1978:UC Berkeley begins distributing
their own derived version of Unix (BSD)

o 1983: AT&T broken up by US DoJ, UNIX
licensing changed: no more source
releases

e Also 1983: “Starting this Thanksgiving |
am going to write a complete
Unix-compatible software system called
GNU (Gnu’s Not Unix), and give it away
free to everyone who can use it”

GNU logo (a gnu wildebeest)

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license
e The Free Software Foundation promoted four “ "

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license
e The Free Software Foundation promoted four “ "
0. The freedom to run the program as you wish, for any purpose

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

e The Free Software Foundation promoted four “ "
0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license
e The Free Software Foundation promoted four “ "
0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so
it does your computing as you wish
2. Thefreedom to redistributed copies (of the original) so you can
help others

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

e The Free Software Foundation promoted four “
0.
1.

”,

The freedom to run the program as you wish, for any purpose
The freedom to study how the program works, and change it so
it does your computing as you wish

The freedom to redistributed copies (of the original) so you can
help others

The freedom to distribute copies of your modified version to
others

The Free Software Philosophy

e UNIXdistributed with source code, but with a restrictive license

e The Free Software Foundation promoted four “
0.
1.

”,

The freedom to run the program as you wish, for any purpose
The freedom to study how the program works, and change it so
it does your computing as you wish

The freedom to redistributed copies (of the original) so you can
help others

The freedom to distribute copies of your modified version to
others

[“Free as in speech, not as in beer”]

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?
o Areyou allowed to use the software in a restrictive hardware
environment? (“tivoization”)

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?
o Areyou allowed to use the software in a restrictive hardware

environment? (“tivoization”)
4)
Difference between GPL v2 and

GPL v3:is tivoization banned?
_ Y,

The Free Software Philosophy

e the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
o Areyourequired to redistribute any modifications (under same
license) - “copyleft”
o Canyou redistribute executable binaries, or only source?
o Areyou allowed to use the software in a restrictive hardware
environment? (“tivoization”)
e Popular alternative: “Do whatever you want with this software, but
don’t blame me if it doesn’t work” (“freeware”)

History: GNU/Linux (1991-Today)

e Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“
") that are needed by an OS (compiler, utilities, etc)

()

H iStOFY‘ GNU/Linux Remember: 1983 = Unix licensing
' changed because of AT&T breakup

e Stallman (FSF founder) sethsereromerrororroperorerrs—oyorerrrr—"

1983, ended up building a tremendous set of utilities (“
") that are needed by an OS (compiler, utilities, etc)

History: GNU/Linux (1991-Today)

e Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (*
") that are needed by an OS (compiler, utilities, etc)
e Linuxisanoperating system built around and with the GNU
utilities, licensed under GPL

History: GNU/Linux (1991-Today)

e Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (*
") that are needed by an OS (compiler, utilities, etc)
e Linuxisanoperating system built around and with the GNU

utilities, licensed under GPL
e Riseof theinternet,demand for drives demand

for cheap/free OS

History: GNU/Linux (1991-Today)

Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (*

") that are needed by an OS (compiler, utilities, etc)
Linux is an operating system built around and with the GNU
utilities, licensed under GPL
Rise of the internet, demand for drives demand
for cheap/free OS
Companies began adopting and supporting Linux for enterprise
customers: e.g., IBM committed over $1B; Red Hat and others

The Cathedral and the Bazaar (1997)

e Eric SRaymond’sinfluential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

The Cathedral and the Bazaar (1997)

e Eric SRaymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

° " model, where releases are available for anyone to
see, but the development process is restricted to insiders

The Cathedral and the Bazaar (1997)

e Eric SRaymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”
o “ " model, where releases are available for anyone to
see, but the development process is restricted to insiders
e However, most of the open source software ecosystem today
follows the “bazaar” model:
o Users treated as co-developers
o Release software early for feedback
o Modularize + reuse components
O

Democratic organization

The Cathedral and the Bazaar (1997)

e Eric SRaymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

" model, where releases are available for anyone to
see, but the development process is restricted to insiders

e However, most of the open source software ecosystem today
follows the “bazaar” model:

«

O

O
O
O

Users treated as co-developers
Release software early for feedback
Modularize + reuse components
Democratic organization

(
How did the bazaar

model become
dominant is OSS?

_

~

J

History: Netscape’s “Collaborating with the Net”

° was the dominant web browser in the early 90’s
o Business model: free for home and education use,
companies paid to use it

History: Netscape’s “Collaborating with the Net”

° was the dominant web browser in the early 90’s
o Business model: free for home and education use,
companies paid to use it
e Microsoft entered browser market with Internet Explorer,
bundled with Windows in 1995, soon overtakes Netscape in
usage (it's free, with Windows!)
o alsosued by US DoJ for antitrust bundling (!)

History: Netscape’s “Collaborating with the Net”

° was the dominant web browser in the early 90’s
o Business model: free for home and education use,
companies paid to use it
e Microsoft entered browser market with Internet Explorer,
bundled with Windows in 1995, soon overtakes Netscape in
usage (it's free, with Windows!)
o alsosued by US DoJ for antitrust bundling (!)

e January 1998: Netscape becomes first (?) company to make
(Mozilla)

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL
e “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development

)«

process, Eric Raymond’s “Bazaar”

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL
e “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
o Publisher Tim O’Reilly organizes a “Freeware Summit” later
in 1998, soon rebranded as “Open Source Summit”

History: Free vs Open Source

e Until Netscape/Mozilla, much of open source movement was
in the Free Software Foundation and its GPL
e “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
o Publisher Tim O’Reilly organizes a “Freeware Summit” later
in 1998, soon rebranded as “Open Source Summit”
o “Open Source is a development methodology; free software
is a social movement” - Richard Stallman, FSF founder

Free and Open-source Software

Today’s agenda:

e Finish devops slides
e History + the “free software” philosophy
e Open-source: licenses and business models

What makes an open source project successful?

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

e Communities form around collective ownership (even if it’s only
perceived)

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

e Communities form around collective ownership (even if it’s only
perceived)

e Contributors bring : also documentation, testing,
support, and outreach

What makes an open source project successful?

e Opensource projects thrive when the community surrounding
them contributes to push the project forwards

e Communities form around collective ownership (even if it’s only
perceived)

e Contributors bring : also documentation, testing,
support, and outreach

e Community/ownership models:
o Corporate owner,community outreach (MySQL, MongoDB)
o Foundation owner, corporate sponsors (GNU, Linux)

|s Open Source a Good Business Model?

Is Open Source a Good Business Model?

-2- mﬂm

February 3, 1976

: ; 2 €he New 1Jork Times
i ik S T MS' Ballmer: Linux is communism

e e D A U Aiter a shrt sience, Motormouth s back,folks.. Microsoft Buys GitHub for $7.5

i3 the lack of good software coursos, books and software itself,
Without geod software ard an owner who understands progqrameing, a A GiaremLea Von 31002000 10.10 UTC

:::y’ :::::;r is wasted. Will guality software be written for the Billion, Moving to Grow in Coding’s

MS ANALYSTS Steve Ballmer was the only person Lo raise the issue of Linux when he

Almost a year ago, Paul Allen and myself, cxpecting the hobby J
marhet £ axpand, Nirad Moate Devidoff snd develoged Altair BAGIO: Wippad up Miciosafis snaual iencil wndtysts movtig In Sacwe, SNouoh he P ew Lra
Though the initial work took only two months, the three of us have Sun and Oracle ahead in terms of being sronger competitors. They of course are
spent most of the last year documenting, improving and adding fea- ‘civilised’ compatitors - but tha Linux crowd, in the world of Prez Steve, are communists.

tuzes to BASIC. MNow we have 4K, BK, EXTENDED, ROM and DISK BASIC.
The value of Lhe computer tims we have used exceeds $§40,000.

The feedback we have gotten from the hundreds of people who Horvetisatice A []
say they are using DASIC has all been positive. Two surpcising
things are apparent, howsver. 1) Mot of these “uvecs® nover bought
BASIC (less than LOX of all Altair cwncrs have bought BASIC), il
2) The amount of royalties we received from s to hobbyists

Bihes the tisa Spenk 8F ALWLr RAETE wirth 1ees then §2 sn hoees Redmond top man Satya Nadella: ‘Microsoft

e major o L] e aware, . i o
e S e . e LOVES Linux
ware is scmething to share. Who cares Af the people who worked on X
e Open-source 'love' fairly runneth over at cloud event

Ps this falz? One thing you don't do by stealing software s
gt back at MITS for scee problem you way have had. MITS doesn't
make monay selling software. The royalty pald o us, the manual,
the tape and the overhesd make it a break-even operation. One thing
you do do is prevent goocd software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
J-man yoars into programeing, tinding sll bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has

invested a lot of money in hobby software. We have written 6800

BASIC, and arw wziting 5080 APL and 6800 APL, but therw is very Lit-

tle incentive to make this software available to hobbyista. MNoat

directly, the thing you do is theft.

What about the guys who re-sell Altair EASIC, aren't they mak- ¥

ing money on hobby software? Yes, but those who have been repocted A
-
2

t0 us may lose in the end. They are the ohes who give hobbyists a
bad name, and should be kicked out of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, or
bas & suggestion or comwent. Just write me at 1180 Alvarado SE, 8114,
Albugquerque, New Mexico, 87108, Nothing would please me more than
being able to hire ten programwers and deluge the hobby market with
good softwvare,

Bl Dt

A GitHub billboard being installed in San Francisco in 2014. Microsoft said on Monday
811 oates i " : g ’ ac s the any for $7.5 avid Paul } =
‘; ‘"n”“' sloro-sofe | 20 Oct 2014 at 23:45, Nall McAll ster & o o @ that it would acquire the company for $7.5 billion. David Paul Morris/Bloomberg

By Steve Lohr

Is Open Source a Good Business Model?

= A

February 3, 1976

An open Letter to mobbyists

T0 me, the most critical thing the hobby macket right mow
i3 the lack of good software courses, books and software itself,
Without good software ard an owner who understands progqramsing, a
hobby computer is wasted. Will guality softwere be written for the
hoblby market?

Almost a year ago, Paul Allen and myself, cxpecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, K, EXTENDED, ROM and DISK BASIC.
The value of Lhe compuler tims we have used exceeds $40,000.

The feedback we ha gotten from the hundreds of pecple who
say they are using DASIC has all been positive. Two surpcising
things are apparent, however. 1) Most of th “users” nover bought
BASIC (less than LO% of all Altair za have bought BASIC), il
2) The amount of royalties we have received from sales to hobbyists
makes the time spant of Altair BASTC worth less than $2 an howr.

Why is this? As the majority of hobbyists must be aware, wmost
of you steal your softwa Hardware must be paid for. but soft-
ware is scmething to sha Wro cares Af the people who worked on
1t get paid?

Ts this falz? One thing you don't o by stealing software ks
get back at MITS for some problem you way have had. MITS doesn't
make money selling eoftware. The. royalty pasd to ua, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is pravent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
J-man years into programeing, tinding sll bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobty software. We have written 6800
BASIC, and are wziting 5080 APL and 6800 APL, Lut therw is very Lit-
tle incontive to make this software available to hobbyista. Most
directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobly software? Yes, but those who have been repotted
t0 us may lose in the end. They are the ohes who give hobbyists a
bad name, and should be kicked cut of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, of
bas & suggestion or comwent. Just write me at 1180 Alvarado SE, 8114,
Albugquerque, New Mexico, 87108, Nothing would please me more than
being able to hire ten programwers and deluge the hobby market with

good softvare. s
Bl Dita

8] Oates
General Partner, Micro-soft

The A Register
€he New 1Jork Times

Microsoft Buys GitHub for $7.5
Billion, Moving to Grow in Coding’s
New Era

MS' Ballmer: Linux is communism
After a short silence, Motormouth is back, folks...

A GiaremLea Von 31002000 10.10 UTC

MS ANALYSTS Steve Ballmer was the only person Lo raise the issue of Linux when he
wrapped up Microsoft's annual financial analysts meeling in Seattie, aithough he put
Sun and Oracle ahead in terms of being stronger competitors. They of course are
‘civilised’ compatitors - but the Linux crowd, in the world of Prez Steve, are communists.

€5 Give this article 2~ N

Redmond top man Satya Nadella: ‘Microsoft
LOVES Linux’

Open-source 'love' fairly runneth over at cloud event

What business
models can you
combine with open
source successfully?

e\

20 Oct 2014 at 23:45, Neil McAllster

By Steve Lohr

Model: “Open Core”, closed plugins

e “Open Core” model: core component of a product is an open
source utility; available for a fee

Model: “Open Core”, closed plugins

e “Open Core” model: core component of a product is an open
source utility; available for a fee

e Example: Apache Kafka, a distributed message broker (glue in an

event-based system)
o Product is open source, maintained by Apache foundation,

supported by company “Confluent”
o Confluent provides plugins to connect Kafka to many

different systems out-of-the-box

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those

utilities, contribute improvements back to the ecosystem
o i.e., sell expertise

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
o i.e., sell expertise
o many companies provide specialized “distributions” of these
open source infrastructure and specialized tools to improve
them; support the upstream project

Open source and the law

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)
e Open source software is generally copyrighted, with copyright
retained by contributors or assigned to a foundation/corporation

that maintains the product

Open source and the law

e Copyright provides creators with protection for creative,

intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)

e Open source software is generally copyrighted, with copyright
retained by contributors or assigned to a foundation/corporation
that maintains the product

e Copyright holder can grant a license for use, placing restrictions on
how it can be used (perhaps for a fee)

o Common open source licenses: MIT, BSD, Apache, GPL

Open source licenses

Two broad classes of open source licenses:

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

e copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the

Open source licenses

Two broad classes of open source licenses:

permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the

o goal: protect the commons, require users to contribute back

(.)

. Philosophy: do we force
Open source licenses participation, or try to
grow/incentivize itin

Two broad classes of open source licenses: 7
other ways:

e permissive licenses (e.g., MIT, Apache, B
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)
o goal: encourage adoption and use of the software

e copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the
o goal: protect the commons, require users to contribute back

