
Free and Open-source
Software

Martin Kellogg

Free and Open-source Software

Today’s agenda:

● Finish devops slides
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

Service Reliability Hierarchy:
Post-mortems

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

○ “blameless” = find the faults in the process, not the people
○ “actionable” = give specific guidance for how to avoid the

problem in the future (these become tickets)

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Historically, software engineering
adopted a lot of “blameless culture”
from aviation and medicine, where
mistakes can be fatal! We might not
have the same stakes, but all complex
systems are similar in a lot of ways.

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong
○ also enables engineers on different teams to learn from each

others’ mistakes

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]and 5 more…

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

this goes on for several pages!
● shows importance of keeping records

https://sre.google/sre-book/example-postmortem/

DevOps: takeaways

● Many modern engineering organizations prefer to combine, rather
than separate, development and operations
○ this works best when most systems are services

● Major benefit of DevOps approach is elimination of toil
○ developers are best at building automation

● Planning for incidents/emergencies is critical
○ Monitoring allows on-call to quickly identify problems
○ Have a plan (ideally, in a playbook) for incidents
○ Use post-mortems to learn from prior emergencies

■ not to blame people for causing them!

FOSS: reading quiz

FOSS: reading quiz

Q1: TRUE or FALSE: all “open-source” software is “free” software, but
all “free” software is not “open-source”.

Q2: The change in HashiCorp’s new license that the author of the
second article is concerned about is that HashiCorp’s new license…
A. is a copyleft license
B. specifically forbids competing with HashiCorp
C. forbids production use of their software for other companies
D. allows “Tivoization” of their software

FOSS: reading quiz

Q1: TRUE or FALSE: all “open-source” software is “free” software, but
all “free” software is not “open-source”.

Q2: The change in HashiCorp’s new license that the author of the
second article is concerned about is that HashiCorp’s new license…
A. is a copyleft license
B. specifically forbids competing with HashiCorp
C. forbids production use of their software for other companies
D. allows “Tivoization” of their software

FOSS: reading quiz

Q1: TRUE or FALSE: all “open-source” software is “free” software, but
all “free” software is not “open-source”.

Q2: The change in HashiCorp’s new license that the author of the
second article is concerned about is that HashiCorp’s new license…
A. is a copyleft license
B. specifically forbids competing with HashiCorp
C. forbids production use of their software for other companies
D. allows “Tivoization” of their software

Free and Open-source Software

Today’s agenda:

● Finish devops slides
● History + the “free software” philosophy
● Open-source: licenses and business models

The rest of this slide deck is heavily based on the work of Jonathan Bell, Adeel Bhutta, and Mitch Wand, ©2022,
released under CC-BY-SA. My modifications ©2023-4, by Martin Kellogg, also released under CC-BY-SA.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Why does this matter?

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

● “Free” vs “open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

● “Free” vs “open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

● This debate has consequences for both how you build and how you
use software that, as a software engineer, you should understand

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

● “Free” vs “open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

● This debate has consequences for both how you build and how you
use software that, as a software engineer, you should understand
○ plus, it’s the sort of thing that other, more senior engineers will

expect you to have an informed opinion about

What is “open-source”?

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]
● “open source” != “open source software” (we’ll talk about why later)

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]
● “open source” != “open source software” (we’ll talk about why later)
● I’ll abbreviate “open source software” as OSS

The Case against Open Source

The Case against Open Source

● “Open-Source Doomsday”: Once all
software is free, we’ll stop making more
software and have a market collapse

● Innovation will be stifled by the risk that
software will be copied

● Making source code public means easier
to attack

● “Anarchistic” licensing prevents
companies from profiting from open
source software

The Case for Open Source

The Case for Open Source

● “Many eyes make all bugs shallow”
● End-users can improve and customize

software to their needs
● New features can be proposed and

developed organically
● Greater productivity when more code is

reused (easier with open source)
○ i.e., DRY on an industry-wide scale

History: open-source

History: open-source

● in the early days of computing, innovation focused on hardware

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code
○ Unix quickly gained a lot of popularity for two reasons:

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code
○ Unix quickly gained a lot of popularity for two reasons:

■ portable between hardware (just need a C compiler)

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code
○ Unix quickly gained a lot of popularity for two reasons:

■ portable between hardware (just need a C compiler)
■ Bell Labs practically gave it away to universities

History: Unix

● 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

History: Unix

● 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

● 1983: AT&T broken up by US DoJ, UNIX
licensing changed: no more source
releases

History: Unix

● 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

● 1983: AT&T broken up by US DoJ, UNIX
licensing changed: no more source
releases

● Also 1983: “Starting this Thanksgiving I
am going to write a complete
Unix-compatible software system called
GNU (Gnu’s Not Unix), and give it away
free to everyone who can use it”

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish
2. The freedom to redistributed copies (of the original) so you can

help others

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish
2. The freedom to redistributed copies (of the original) so you can

help others
3. The freedom to distribute copies of your modified version to

others

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish
2. The freedom to redistributed copies (of the original) so you can

help others
3. The freedom to distribute copies of your modified version to

others
“Free as in speech, not as in beer”

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?
○ Are you allowed to use the software in a restrictive hardware

environment? (“tivoization”)

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?
○ Are you allowed to use the software in a restrictive hardware

environment? (“tivoization”)

Difference between GPL v2 and
GPL v3: is tivoization banned?

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?
○ Are you allowed to use the software in a restrictive hardware

environment? (“tivoization”)
● Popular alternative: “Do whatever you want with this software, but

don’t blame me if it doesn’t work” (“freeware”)

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

Remember: 1983 = Unix licensing
changed because of AT&T breakup

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

● Linux is an operating system built around and with the GNU
utilities, licensed under GPL

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

● Linux is an operating system built around and with the GNU
utilities, licensed under GPL

● Rise of the internet, demand for internet servers drives demand
for cheap/free OS

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

● Linux is an operating system built around and with the GNU
utilities, licensed under GPL

● Rise of the internet, demand for internet servers drives demand
for cheap/free OS

● Companies began adopting and supporting Linux for enterprise
customers: e.g., IBM committed over $1B; Red Hat and others

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

● “cathedral” model, where releases are available for anyone to
see, but the development process is restricted to insiders

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

● “cathedral” model, where releases are available for anyone to
see, but the development process is restricted to insiders

● However, most of the open source software ecosystem today
follows the “bazaar” model:
○ Users treated as co-developers
○ Release software early for feedback
○ Modularize + reuse components
○ Democratic organization

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

● “cathedral” model, where releases are available for anyone to
see, but the development process is restricted to insiders

● However, most of the open source software ecosystem today
follows the “bazaar” model:
○ Users treated as co-developers
○ Release software early for feedback
○ Modularize + reuse components
○ Democratic organization

How did the bazaar
model become
dominant is OSS?

History: Netscape’s “Collaborating with the Net”

● Netscape was the dominant web browser in the early 90’s
○ Business model: free for home and education use,

companies paid to use it

History: Netscape’s “Collaborating with the Net”

● Netscape was the dominant web browser in the early 90’s
○ Business model: free for home and education use,

companies paid to use it
● Microsoft entered browser market with Internet Explorer,

bundled with Windows in 1995, soon overtakes Netscape in
usage (it’s free, with Windows!)
○ also sued by US DoJ for antitrust bundling (!)

History: Netscape’s “Collaborating with the Net”

● Netscape was the dominant web browser in the early 90’s
○ Business model: free for home and education use,

companies paid to use it
● Microsoft entered browser market with Internet Explorer,

bundled with Windows in 1995, soon overtakes Netscape in
usage (it’s free, with Windows!)
○ also sued by US DoJ for antitrust bundling (!)

● January 1998: Netscape becomes first (?) company to make
source code for proprietary product open (Mozilla)

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

● “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

● “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
○ Publisher Tim O’Reilly organizes a “Freeware Summit” later

in 1998, soon rebranded as “Open Source Summit”

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

● “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
○ Publisher Tim O’Reilly organizes a “Freeware Summit” later

in 1998, soon rebranded as “Open Source Summit”
○ “Open Source is a development methodology; free software

is a social movement” - Richard Stallman, FSF founder

Free and Open-source Software

Today’s agenda:

● Finish devops slides
● History + the “free software” philosophy
● Open-source: licenses and business models

What makes an open source project successful?

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

● Communities form around collective ownership (even if it’s only
perceived)

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

● Communities form around collective ownership (even if it’s only
perceived)

● Contributors bring more than code: also documentation, testing,
support, and outreach

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

● Communities form around collective ownership (even if it’s only
perceived)

● Contributors bring more than code: also documentation, testing,
support, and outreach

● Community/ownership models:
○ Corporate owner, community outreach (MySQL, MongoDB)
○ Foundation owner, corporate sponsors (GNU, Linux)

Is Open Source a Good Business Model?

Is Open Source a Good Business Model?

Is Open Source a Good Business Model?

What business
models can you
combine with open
source successfully?

Model: “Open Core”, closed plugins

● “Open Core” model: core component of a product is an open
source utility; premium plugins available for a fee

Model: “Open Core”, closed plugins

● “Open Core” model: core component of a product is an open
source utility; premium plugins available for a fee

● Example: Apache Kafka, a distributed message broker (glue in an
event-based system)
○ Product is open source, maintained by Apache foundation,

supported by company “Confluent”
○ Confluent provides plugins to connect Kafka to many

different systems out-of-the-box

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
○ i.e., sell expertise

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
○ i.e., sell expertise
○ many companies provide specialized “distributions” of these

open source infrastructure and specialized tools to improve
them; support the upstream project

Open source and the law

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)
● Open source software is generally copyrighted, with copyright

retained by contributors or assigned to a foundation/corporation
that maintains the product

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)
● Open source software is generally copyrighted, with copyright

retained by contributors or assigned to a foundation/corporation
that maintains the product

● Copyright holder can grant a license for use, placing restrictions on
how it can be used (perhaps for a fee)
○ Common open source licenses: MIT, BSD, Apache, GPL

Open source licenses

Two broad classes of open source licenses:

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license
○ goal: protect the commons, require users to contribute back

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license
○ goal: protect the commons, require users to contribute back

Philosophy: do we force
participation, or try to
grow/incentivize it in
other ways?

