
DevOps (part 2)
Martin Kellogg

Reading quiz: DevOps

Reading quiz: DevOps

Q1: Which of the following does Luu (second article’s author) suggest
as the best way to mitigate human error during ops?
A. having multiple people watch or confirm the operation
B. having ops people standing by in case of disaster
C. having a human perform manual error checking
D. none of these

Q2: On Wednesday, 11/27, what room will this class held in?

Reading quiz: DevOps

Q1: Which of the following does Luu (second article’s author) suggest
as the best way to mitigate human error during ops?
A. having multiple people watch or confirm the operation
B. having ops people standing by in case of disaster
C. having a human perform manual error checking
D. none of these

Q2: On Wednesday, 11/27, what room will this class held in?

Reading quiz: DevOps

Q1: Which of the following does Luu (second article’s author) suggest
as the best way to mitigate human error during ops?
A. having multiple people watch or confirm the operation
B. having ops people standing by in case of disaster
C. having a human perform manual error checking
D. none of these

Q2: On Wednesday, 11/27, what room will this class held in?

GITC 1100 (this room!)

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

our focus
today

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working
● you want to be aware of problems before your users notice them

Monitoring

Definition: monitoring is collecting, processing, aggregating, and
displaying real-time quantitative data about a system, such as query
counts and types, error counts and types, processing times, and server
lifetimes

● essentially, monitoring is responsible for collecting your metrics
● without monitoring, you have no way to tell whether the service is

even working
● you want to be aware of problems before your users notice them

Monitoring is why logging is so
important in practice: if your
monitoring depends on your logging
framework, it is a very important
component of your service!

Monitoring: alerting

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

● email alert = alert sent to an email alias for a human to respond to
during their next work day

Monitoring: alerting

Definition: an alert is a notification intended to be read by a human
and that is pushed to a system such as a bug or ticket queue, an email
alias, or a pager

● tickets = alert to a bug or ticket queue, which a human will
hopefully get to eventually

● email alert = alert sent to an email alias for a human to respond to
during their next work day

● page = alert send directly to a human (via a pager)

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

■ (less ideal but still good: you get paged if and only if there is
an emergency)

Monitoring: being on-call

● A major part of modern DevOps is being “on-call”
● When you are the on-call for a service, any pages about that

service go to you
○ even in the middle of the night!

● Getting paged should be an event
○ ideally, pages correspond 1:1 with emergencies

■ (less ideal but still good: you get paged if and only if there is
an emergency)

● Example from earlier: “cleaning up a service’s alerting config” =
fixing what corresponds to pages vs email alerts vs tickets

Monitoring: being on-call

● Being on-call is a major source of toil in most services

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

● The person on-call typically assumes all operational burden (i.e.,
toil) for the service for the duration of their on-call shift

Monitoring: being on-call

● Being on-call is a major source of toil in most services
○ a page about a non-emergency is one of the worst forms of toil,

because it forces you to react
● For this reason, most teams rotate who is on-call

○ e.g., daily, weekly, whatever
○ everyone working on the service should be in this rotation!

● The person on-call typically assumes all operational burden (i.e.,
toil) for the service for the duration of their on-call shift
○ but can (and should) page other team members in an

emergency

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Service Reliability Hierarchy:
Incident/Emergency Response

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Emergency Response

● So you’re the on-call, and you get a page. What happens next?

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

● What constitutes an emergency?

Emergency Response

● So you’re the on-call, and you get a page. What happens next?
○ “emergency response”
○ as the on-call, you are in charge in an emergency by default

● What constitutes an emergency?
○ depends on your service, but typically these qualify:

■ big % of user requests aren’t getting responses
■ big % of user requests have really high latency
■ lots of your servers are unavailable/down (even if users

aren’t yet impacted)

Emergency Response: causes of emergencies

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

■ less likely to have tests for failure cases!

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

■ less likely to have tests for failure cases!

[Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. Yuan et al. OSDI 2014.]

[Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. Yuan et al. OSDI 2014.]

Emergency Response: causes of emergencies

● error handling: code that is only called when something is wrong
○ why is this likely to cause an emergency?

■ less likely to have tests for failure cases!

vast majority would be easy to catch!

Emergency Response: causes of emergencies

● configuration changes:
○ especially for services, how the servers that run the system are

configured is often as important as the code itself

Emergency Response: causes of emergencies

● configuration changes:
○ especially for services, how the servers that run the system are

configured is often as important as the code itself
○ changes to the infrastructure (e.g., adding or removing servers)

are just as risky as changes to the code
■ but testing them is harder!

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years
○ law of large numbers: suppose you have 10,000 hard disks.

What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
■ get out a piece of paper and do the math

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years
○ law of large numbers: suppose you have 10,000 hard disks.

What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
■ get out a piece of paper and do the math

○ almost 100%!
■ each disk lasts 365*5 = 1825 days. 10k disks = ~5 fail/day

Emergency Response: causes of emergencies

● hardware:
○ pop quiz: how long does an average hard disk last?

■ answer: 3-5 years
○ law of large numbers: suppose you have 10,000 hard disks.

What are the odds that one of them fails today (assuming each
has a 5 year average lifespan?)
■ get out a piece of paper and do the math

○ almost 100%!
■ each disk lasts 365*5 = 1825 days. 10k disks = ~5 fail/day

Implication: in large systems, you
must plan for hardware failures,
because they will occur

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?
■ of course you have! we all make mistakes sometimes!

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?
■ of course you have! we all make mistakes sometimes!

○ it is a mistake for a human to repeatedly perform a task that
could lead to catastrophic failure if it is not done perfectly

Emergency Response: causes of emergencies

● human/process error:
○ pop quiz: as a human, have you ever made a mistake at

something you’re usually good at?
■ of course you have! we all make mistakes sometimes!

○ it is a mistake for a human to repeatedly perform a task that
could lead to catastrophic failure if it is not done perfectly
■ computers are good at this!
■ analogy: just like hardware components sometimes fail, any

step carried out by humans should be assumed to have a
non-zero failure rate

Emergency Response: have a plan

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)
○ often, playbooks have specific guidance for particular alerts

Emergency Response: have a plan

● An unmanaged emergency occurs when the team hasn’t put a plan
in place beforehand about what to do in that situation
○ unmanaged emergencies are typically hard to recover from
○ “plans are useless, but planning is indispensable”

● Best practice: teams should have playbooks (or runbooks) that list
the steps to take in an emergency
○ playbooks are built up over a service’s lifetime (i.e., they record

how previous incidents might have been avoided or mitigated)
○ often, playbooks have specific guidance for particular alerts
○ playbooks also have a psychological function: prevent panic

Emergency Response: best practices

Emergency Response: best practices

● Know your priorities:

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

○ preserve evidence: save logs, etc., for post-mortem analysis

Emergency Response: best practices

● Know your priorities:
○ damage control: take proactive steps to prevent the incident

from becoming worse (e.g., remove unnecessary traffic)
○ restore service: get the service back to a healthy state, even if

you aren’t sure about the cause (e.g., by rolling back recent
changes)

○ preserve evidence: save logs, etc., for post-mortem analysis
● Practice makes perfect

○ don’t wait for an actual emergency to find out if your playbook
works: simulate one instead!

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

■ make sure to commit things that might cause incidents if
they change to version control, e.g., your config files

Emergency Response: rolling back

● One of the most important techniques in emergency response is
rolling back to the last known working state
○ key idea: most emergencies are caused by some change
○ so, to fix the incident, we should undo the change

● The need to roll back has important implications:
○ avoid changes that cannot be undone (“two-way doors”)
○ your version control system is your friend here!

■ make sure to commit things that might cause incidents if
they change to version control, e.g., your config files

Easy rollbacks are one motivation for
“infrastructure-as-code”: if your
infrastructure configuration is in
version control, it’s easy to go back to
the last working one!

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all
○ we can use many of the techniques that we discussed in this

class to help prevent emergencies!

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all
○ we can use many of the techniques that we discussed in this

class to help prevent emergencies!
● however, there are some DevOps-specific testing and

deployment strategies that can help:

Preventing Problems

● while it’s important to have a plan for responding to emergencies,
it’s better if they never happen at all
○ we can use many of the techniques that we discussed in this

class to help prevent emergencies!
● however, there are some DevOps-specific testing and

deployment strategies that can help:
○ integrating testing and monitoring
○ stress testing services
○ canaries and “baking the binary”

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!
● If we view our monitoring system this way, we can apply many of

the techniques that we have learned in this class to monitoring

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!
● If we view our monitoring system this way, we can apply many of

the techniques that we have learned in this class to monitoring
○ for example, should there be a relationship between a pair of

metrics that we’re collecting?

Integrating Testing and Monitoring

● We can view monitoring as a form of black-box testing
○ that is, our monitoring systems are constantly “testing” the

real, production system!
● If we view our monitoring system this way, we can apply many of

the techniques that we have learned in this class to monitoring
○ for example, should there be a relationship between a pair of

metrics that we’re collecting?
■ if so, we can define an alert that goes off if that

relationship is ever violated

Stress Testing

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”
○ “How many queries a second can be sent to an application

server before it becomes overloaded, causing requests to fail?”

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”
○ “How many queries a second can be sent to an application

server before it becomes overloaded, causing requests to fail?”
● Chaos Monkey is one example of a stress testing technique

Aside: Chaos Monkey

● Chaos Monkey was invented in 2011 by Netflix to test the
resilience of its IT infrastructure

Aside: Chaos Monkey

● Chaos Monkey was invented in 2011 by Netflix to test the
resilience of its IT infrastructure

● “Imagine a monkey entering a "data center", these "farms" of servers
that host all the critical functions of our online activities. The monkey
randomly rips cables, destroys devices and returns everything that
passes by the hand. The challenge for IT managers is to design the
information system they are responsible for so that it can work
despite these monkeys, which no one ever knows when they arrive
and what they will destroy

– Antonio Martinez, Chaos Monkey

Aside: Chaos Monkey

● Chaos Monkey was invented in 2011 by Netflix to test the
resilience of its IT infrastructure

● “Imagine a monkey entering a "data center", these "farms" of servers
that host all the critical functions of our online activities. The monkey
randomly rips cables, destroys devices and returns everything that
passes by the hand. The challenge for IT managers is to design the
information system they are responsible for so that it can work
despite these monkeys, which no one ever knows when they arrive
and what they will destroy.”

– Antonio Martinez, Chaos Monkey

Aside: Chaos Monkey

● “We have created Chaos Monkey, a program that randomly chooses a
server and disables it during its usual hours of activity. Some will find
that crazy, but we could not depend on the random occurrence of an
event to test our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has created a
strong alignment among engineers to build redundancy and process
automation to survive such incidents, without impacting the millions
of Netflix users. Chaos Monkey is one of our most effective tools to
improve the quality of our services.

- Greg Orzell, Netflix Chaos Monkey Upgraded

Aside: Chaos Monkey

● “We have created Chaos Monkey, a program that randomly chooses a
server and disables it during its usual hours of activity. Some will find
that crazy, but we could not depend on the random occurrence of an
event to test our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has created a
strong alignment among engineers to build redundancy and process
automation to survive such incidents, without impacting the millions
of Netflix users. Chaos Monkey is one of our most effective tools to
improve the quality of our services.

- Greg Orzell, Netflix Chaos Monkey Upgraded

Aside: Chaos Monkey

● “We have created Chaos Monkey, a program that randomly chooses a
server and disables it during its usual hours of activity. Some will find
that crazy, but we could not depend on the random occurrence of an
event to test our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has created a
strong alignment among engineers to build redundancy and process
automation to survive such incidents, without impacting the millions
of Netflix users. Chaos Monkey is one of our most effective tools to
improve the quality of our services.”

- Greg Orzell, Netflix Chaos Monkey Upgraded

Aside: Chaos Monkey: why?

Aside: Chaos Monkey: why?

● A common cause of failures in a microservice-based system is
cascading failures: one service fails (for any reason), which causes
other services that depend on it to fail, which causes other
services to fail, etc.

Aside: Chaos Monkey: why?

● A common cause of failures in a microservice-based system is
cascading failures: one service fails (for any reason), which causes
other services that depend on it to fail, which causes other
services to fail, etc.
○ cascading failures are typically much harder to recover from

■ many parts of the system have failed, not just one!

Aside: Chaos Monkey: why?

● A common cause of failures in a microservice-based system is
cascading failures: one service fails (for any reason), which causes
other services that depend on it to fail, which causes other
services to fail, etc.
○ cascading failures are typically much harder to recover from

■ many parts of the system have failed, not just one!
○ one important goal of Chaos Monkey is to detect such

cascading failures before they actually happen in production

Stress Testing

Definition: a stress test is any test designed to find the limits of the
external conditions under which a service can safely operate
● Stress tests answer questions like:

○ “How full can a database get before writes start to fail?”
○ “How many queries a second can be sent to an application

server before it becomes overloaded, causing requests to fail?”
● Chaos Monkey is one example of a stress testing technique
● Others include intentionally scaling up another service

○ i.e., simulate a spike in demand with artificial traffic

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
○ in a staged deployment of a change, at first only a small

percentage of the active fleet is modified

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
○ in a staged deployment of a change, at first only a small

percentage of the active fleet is modified
■ this part of the fleet is monitored for failures, and if none

occur then more and more of the fleet is updated

Canaries and Staged Deployments

● Another important consideration is limiting the blast radius of a
failure, if one does occur
○ the blast radius is how many users/requests are impacted

● An important technique for limiting blast radius is staged
deployment, which is also sometimes called canary testing
○ in a staged deployment of a change, at first only a small

percentage of the active fleet is modified
■ this part of the fleet is monitored for failures, and if none

occur then more and more of the fleet is updated

This incubation period while the fleet
is partially upgraded is sometimes
called “baking the binary”.

Staged Deployment: concrete example

Staged Deployment: concrete example

● Consider a given underlying fault that:

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)
○ R = the rate of reports

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)
○ R = the rate of reports
○ K = the period over which the traffic grows by a factor of e

Staged Deployment: concrete example

● Consider a given underlying fault that:
○ relatively rarely impacts user traffic
○ is deployed via a staged upgrade rollout that is exponential

● We would expect a growing cumulative number of reported
variances, governed by the equation CU = RK, where:
○ C = cumulative number of reports
○ U = order of the fault (see next slide)
○ R = the rate of reports
○ K = the period over which the traffic grows by a factor of e

Note that C, R, and K should all be
measurable by your monitoring system.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken
○ U=2: each request randomly damages data that a future request

may see.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken
○ U=2: each request randomly damages data that a future request

may see.
○ U=3: the randomly damaged data is also a valid identifier to a

previous request.

Staged Deployment: concrete example

● Ideally, we have automated monitoring and rollback that will
contain this bug. Let’s assume that’s the case.
○ our monitoring can tell us C and R, and we should already know

K (because we chose the deployment rate)
● from these, we can compute U, the order of the fault:

○ U=1: each request encountered code that is simply broken
○ U=2: each request randomly damages data that a future request

may see.
○ U=3: the randomly damaged data is also a valid identifier to a

previous request.

Observe that order here is like big-O notation:
● U=1 means that only the request itself is impacted
● U=2 means that a linear-ish number of other requests will

be impacted
● U=3 means exponentially more requests will be impacted
● etc.

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
○ if U=1, then we’re already okay: the rollback is sufficient,

because each failure only impacts the incoming request

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
○ if U=1, then we’re already okay: the rollback is sufficient,

because each failure only impacts the incoming request
○ if U > 1, we’ll need to do some operations work to rollback the

state of the system, in addition to rolling back the code
■ this might involve writing automation to trace all requests

that hit the bug, restoring from a backup, etc.

Staged Deployment: concrete example

● Once we have an estimate for U, we have a better idea of how much
work we’ll need to do to fully restore service
○ if U=1, then we’re already okay: the rollback is sufficient,

because each failure only impacts the incoming request
○ if U > 1, we’ll need to do some operations work to rollback the

state of the system, in addition to rolling back the code
■ this might involve writing automation to trace all requests

that hit the bug, restoring from a backup, etc.
● As we do all of this, it’s important to keep records

○ they’ll be useful later for writing the post-mortem (next topic!)

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Service Reliability Hierarchy:
Post-mortems

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

○ “blameless” = find the faults in the process, not the people

Post-mortems

Definition: a postmortem or post-mortem (from Latin for “after death”)
is a written record of an incident, its impact, the actions taken to
mitigate or resolve it, the root cause(s), and the follow-up actions to
prevent the incident from recurring
● writing the postmortem is a good way to fully understand what

caused an emergency (cf., “writing clarifies your thinking”)
● good postmortems are blameless and actionable:

○ “blameless” = find the faults in the process, not the people
○ “actionable” = give specific guidance for how to avoid the

problem in the future (these become tickets)

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Post-mortems: blameless

● Why not assign blame after an incident?
○ After all, someone should be responsible, right?

● Some reasons:
○ Gives people confidence to escalate issues without fear
○ Avoids creating a culture in which incidents and issues are

swept under the rug (which is worse long-term!)
○ Learning experience: engineers who have experienced an

incident won’t make the same mistakes again
○ You can’t "fix" people, but you can fix systems and processes

Historically, software engineering
adopted a lot of “blameless culture”
from aviation and medicine, where
mistakes can be fatal! We might not
have the same stakes, but all complex
systems are similar in a lot of ways.

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong

Post-mortems: peer review

● Post-mortems are most effective when they are peer-reviewed
○ My peers might be more senior professors, but yours will be

more senior engineers
● Peer review raises the bar: senior engineers on other teams will

expect you to explain and justify the changes you are proposing in
response to an incident
○ leads to more actionable takeaways and better understanding

of what went wrong
○ also enables engineers on different teams to learn from each

others’ mistakes

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]and 5 more…

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

https://sre.google/sre-book/example-postmortem/

Post-mortems: example

[source: https://sre.google/sre-book/example-postmortem/]

this goes on for several pages!
● shows importance of keeping records

https://sre.google/sre-book/example-postmortem/

DevOps: takeaways

● Many modern engineering organizations prefer to combine, rather
than separate, development and operations
○ this works best when most systems are services

● Major benefit of DevOps approach is elimination of toil
○ developers are best at building automation

● Planning for incidents/emergencies is critical
○ Monitoring allows on-call to quickly identify problems
○ Have a plan (ideally, in a playbook) for incidents
○ Use post-mortems to learn from prior emergencies

■ not to blame people for causing them!

