
DevOps
Martin Kellogg

Reading quiz: DevOps

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SRE teams operate under the
assumption that 100% is the wrong reliability target for basically
everything.

Q2: TRUE or FALSE: SRE tries to retain highly reliable, low overhead
backup communication systems that are fully separate from the rest
of Google’s infrastructure, but often cannot because Google services
are so pervasive.

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SRE teams operate under the
assumption that 100% is the wrong reliability target for basically
everything.

Q2: TRUE or FALSE: SRE tries to retain highly reliable, low overhead
backup communication systems that are fully separate from the rest
of Google’s infrastructure, but often cannot because Google services
are so pervasive.

Reading quiz: DevOps

Q1: TRUE or FALSE: Google SRE teams operate under the
assumption that 100% is the wrong reliability target for basically
everything.

Q2: TRUE or FALSE: SRE tries to retain highly reliable, low overhead
backup communication systems that are fully separate from the rest
of Google’s infrastructure, but often cannot because Google services
are so pervasive.

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running
● deploying new versions of the software

Operations: the traditional approach

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role
● this approach is best when systems change rarely

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably)

originally intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media
○ other advantages: easy to staff for, off-the-shelf tooling, etc.

Traditional ops in different business models

● two business models:

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated

operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated

operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

Traditional approach to operations
can work in either of these models!

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

These problems do not mean that the
traditional approach to operations is
bad in all circumstances!
● But, they are serious concerns for

modern systems with high release
cadences, especially those that are:
○ microservices
○ delivered via the web
○ use “continuous delivery”

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

These problems do not mean that the
traditional approach to operations is
bad in all circumstances!
● But, they are serious concerns for

modern systems with high release
cadences, especially those that are:
○ microservices
○ delivered via the web
○ use “continuous delivery”

Operations: the DevOps approach

Operations: the DevOps approach

Key idea: combine the development and operations teams

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles
● encourage operators to automate toil

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles
● encourage operators to automate toil
● may still have some dedicated ops roles (e.g., SREs at Google)

Operations: the DevOps approach

figure credit: Atlassian

Operations: toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

A key advantage of DevOps is that it
encourages removing toil
● if operators are separate from devs,

devs have no incentive to avoid toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even
the second time, this work is not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even
the second time, this work is not toil

● automatable: if human judgment is essential for the task, there’s a
good chance it’s not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up

linearly with service size, traffic volume, or user count, that task is
probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up

linearly with service size, traffic volume, or user count, that task is
probably toil

A task doesn’t need to have all of these
attributes to be toil. But, the more closely
work matches one or more of these
descriptors, the more likely it is to be toil.

Operations: toil

Things that aren’t toil:

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

○ tasks like team meetings, setting and grading goals, and HR
paperwork (that are not tied to operations) are overhead

Operations: toil

What’s so bad about toil?

Operations: toil

What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Operations: toil

What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Despite all this, a little bit of toil is often
okay. After all, engineers only have so
many productive hours in every day, and
sometimes a mental break is nice :)

DevOps example: Google SREs

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
○ SRE team manages ops for all of these systems

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
○ SRE team manages ops for all of these systems

● SRE motto: “Hope is not a strategy”

Another DevOps example: AWS

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features
and reducing operational burden

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features
and reducing operational burden
■ makes technical debt riskier to take on (why?)

DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure

Achieving reliability

● DevOps teams usually have a goal: make their service reliable

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be
correct

Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be
correct
○ so, availability is the first thing we need to worry about when

trying to make a service reliable

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)
■ throughput (how many requests can you serve per hour)

Reliability: setting expectations

● To determine if your system is behaving reliably, you need metrics
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)
■ throughput (how many requests can you serve per hour)
■ durability (how much of your data can you still retrieve

after a fixed time has passed)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations
a. optionally, publish these as a service level agreement (“SLA”)

Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to
easy-to-collect metrics. In that case, choose metrics that
approximate the objective

3. define the levels of those metrics that your service should meet, in
order to meet user expectations
a. optionally, publish these as a service level agreement (“SLA”)

Sometimes SLAs are written into
contracts with your customers!

Aside: subtleties in metrics

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”
○ The latter may hide much higher instantaneous request rates

in bursts that last for only a few seconds

Aside: subtleties in metrics

● For simplicity and usability, we often aggregate raw
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained

once a second, or by averaging requests over a minute?”
○ The latter may hide much higher instantaneous request rates

in bursts that last for only a few seconds

E.g., consider two systems:
● system A serves 200

requests in every
even-numbered second, and
0 requests in every
odd-numbered second

● system B serves 100
requests every second

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

purple is
50th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

green is
85th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

red is
95th %
latency

Aside: subtleties in metrics

● It is better to view metrics as distributions (as in statistics) rather
than as averages
○ this avoids hiding details like the example on the last slide

blue is
99th %
latency

Advice: choosing metrics

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)
● avoid absolutes

○ e.g., don’t promise “infinite scaling” or “100% availability”

Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex

aggregations of metrics (which are hard to reason about)
● avoid absolutes

○ e.g., don’t promise “infinite scaling” or “100% availability”
● include as few metrics as possible while still covering what matters

○ avoid metrics that aren’t useful in arguing for priorities

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

● How do we think about how to do this?

Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

● How do we think about how to do this?
○ insight: there is a hierarchy of system components that need to

be working well in order to meet an SLA

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Maslow’s Hierarchy of Needs

[Image credit: https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571]

https://www.thoughtco.com/maslows-hierarchy-of-needs-4582571

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

our focus in
the rest of
this course

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

our focus
today

https://sre.google/sre-book/part-III-practices/

Service Reliability Hierarchy

● analogy to Maslow’s
“Hierarchy of Needs” for
humans

● just like in Maslow’s
hierarchy, if there is a serious
deficiency in a lower level,
achieving the higher level
becomes a lot harder

[Image credit: https://sre.google/sre-book/part-III-practices/]

https://sre.google/sre-book/part-III-practices/

