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DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure



Operations

Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:



Operations

Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the 

software on them



Operations

Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the 

software on them
● conducting system/acceptance tests



Operations

Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the 

software on them
● conducting system/acceptance tests
● running the software and keeping it running



Operations

Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the 

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software



Operations

Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the 

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running



Operations

Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the 

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running
● deploying new versions of the software
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● traditionally, operations are mostly conducted by system 
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT undergrad degree program was (probably) 

originally intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media
○ other advantages: easy to staff for, off-the-shelf tooling, etc.
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○ services (i.e., the developing organization runs the software and 

sells access to customers)
■ service ops: need to set up the servers/machines on which 

the software will run, install the software + dependencies, 
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○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated 

operating environment(s),  set up servers providing those 
environments,  install the software + dependencies, etc.

Traditional approach to operations 
can work in either of these models!
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Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ similar to organizational motivation for microservices
● operational burden is shared by the developers who are building 

the system
○ better alignment of incentives between developers and 

operators, since same people perform both roles
● encourage operators to automate toil
● may still have some dedicated ops roles (e.g., SREs at Google)
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figure credit: Atlassian
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● manual: includes work such as manually running a script that 
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even 
the second time, this work is not toil

● automatable: if human judgment is essential for the task, there’s a 
good chance it’s not toil



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after 

you have finished a task, the task was probably toil



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after 

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up 

linearly with service size, traffic volume, or user count, that task is 
probably toil



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after 

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up 

linearly with service size, traffic volume, or user count, that task is 
probably toil

A task doesn’t need to have all of these 
attributes to be toil. But, the more closely 
work matches one or more of these 
descriptors, the more likely it is to be toil.
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Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your 
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

○ tasks like team meetings, setting and grading goals, and HR 
paperwork (that are not tied to operations) are overhead
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What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Despite all this, a little bit of toil is often 
okay. After all, engineers only have so 
many productive hours in every day, and 
sometimes a mental break is nice :)
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● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on 
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e., 
software engineering/development) teams, each of which works on 
one of the systems
○ SRE team manages ops for all of these systems

● SRE motto: “Hope is not a strategy”
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● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of 

their own services
○ teams are also small (“two-pizza”) and usually organized around 

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features 
and reducing operational burden
■ makes technical debt riskier to take on (why?)



DevOps

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
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○ the service reliability hierarchy + SLAs/targets
○ monitoring and reliability testing
○ incident/emergency response
○ preventing problems before they occur
○ post-mortems + learning from failure



Achieving reliability

● DevOps teams usually have a goal: make their service reliable



Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:



Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)



Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)



Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be 
correct



Achieving reliability

● DevOps teams usually have a goal: make their service reliable
● a reliable service is:

○ available (i.e., when a client calls it, it responds)
○ correct (i.e., client requests get the right results)

● these two properties are related: an unavailable service cannot be 
correct
○ so, availability is the first thing we need to worry about when 

trying to make a service reliable
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● To determine if your system is behaving reliably, you need metrics 
that approximate whether it does what your users expect
○ availability is often a good metric to start with
○ other metrics will depend on the meaning of “correct” in your 

service’s context. Possible metrics:
■ latency (time it takes to serve client requests)
■ throughput (how many requests can you serve per hour)
■ durability (how much of your data can you still retrieve 

after a fixed time has passed)
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Reliability: setting expectations

For a given service, here is a playbook for defining reliability:

1. decide what your users care about (call these “objectives”)
2. map those objectives to one or more metrics

a. it might not be possible to match each objective to 
easy-to-collect metrics. In that case, choose metrics that 
approximate the objective

3. define the levels of those metrics that your service should meet, in 
order to meet user expectations
a. optionally, publish these as a service level agreement (“SLA”)

Sometimes SLAs are written into 
contracts with your customers!
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● For simplicity and usability, we often aggregate raw 
measurements. This needs to be done carefully.

● e.g., consider “the number of requests per second served”
○ even this apparently straightforward measurement implicitly 

aggregates data over the measurement window
● We need to consider questions like “Is the measurement obtained 

once a second, or by averaging requests over a minute?”
○ The latter may hide much higher instantaneous request rates 

in bursts that last for only a few seconds

E.g., consider two systems:
● system A serves 200 

requests in every 
even-numbered second, and 
0 requests in every 
odd-numbered second

● system B serves 100 
requests every second
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● It is better to view metrics as distributions (as in statistics) rather 
than as averages
○ this avoids hiding details like the example on the last slide

blue is 
99th % 
latency
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Advice: choosing metrics

● don’t pick target metrics based on current system performance
○ this just enshrines the status quo
○ instead, focus on what your users need

● keep it simple
○ SLAs, especially, should avoid mentioning complex 

aggregations of metrics (which are hard to reason about)
● avoid absolutes

○ e.g., don’t promise “infinite scaling” or “100% availability”
● include as few metrics as possible while still covering what matters

○ avoid metrics that aren’t useful in arguing for priorities
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Reliability: meeting expectations

● Once we have defined an SLA (internally or externally), how do we 
meet it?
○ Easy way to demonstrate that we’re meeting an SLA: collect 

the metrics in the SLA!
○ Then, make sure that those metrics actually look good.

● How do we think about how to do this?
○ insight: there is a hierarchy of system components that need to 

be working well in order to meet an SLA



Service Reliability Hierarchy

● analogy to Maslow’s 
“Hierarchy of Needs” for 
humans
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