
Debugging (2/2)
Martin Kellogg

Reading Quiz: debugging 2

Q1: What is the inspiration for the name of the “wynot” tool?
A. The “wynot” tool helps answer the question “why not?”
B. It is named after the Pokémon “Wynaut”
C. “wynot” is an abbreviation for “Worked Yesterday, NOt Today”
D. None of these are the inspiration for the tool’s name

Q2: Which web browser was an experimental subject in the article?
A. Mozilla/Netscape
B. Chromium/Google Chrome
C. Internet Explorer

Reading Quiz: debugging 2

Q1: What is the inspiration for the name of the “wynot” tool?
A. The “wynot” tool helps answer the question “why not?”
B. It is named after the Pokémon “Wynaut”
C. “wynot” is an abbreviation for “Worked Yesterday, NOt Today”
D. None of these are the inspiration for the tool’s name

Q2: Which web browser was an experimental subject in the article?
A. Mozilla/Netscape
B. Chromium/Google Chrome
C. Internet Explorer

Reading Quiz: debugging 2

Q1: What is the inspiration for the name of the “wynot” tool?
A. The “wynot” tool helps answer the question “why not?”
B. It is named after the Pokémon “Wynaut”
C. “wynot” is an abbreviation for “Worked Yesterday, NOt Today”
D. None of these are the inspiration for the tool’s name

Q2: Which web browser was an experimental subject in the article?
A. Mozilla/Netscape
B. Chromium/Google Chrome
C. Internet Explorer

Debugging strategies

Debugging strategies

● “printf” debugging: using print statements to find a bug
○ and its larger-scale cousin: logging

Debugging strategies

● “printf” debugging: using print statements to find a bug
○ and its larger-scale cousin: logging

● delta debugging
○ a formalization of the scientific approach to debugging

Debugging strategies

● “printf” debugging: using print statements to find a bug
○ and its larger-scale cousin: logging

● delta debugging
○ a formalization of the scientific approach to debugging

● debuggers: inspecting program state while it is running
○ we’ll talk a little about how they work

Debugging (Part 2/2)

Today’s agenda:

● Debugging
○ printf debugging and logging
○ delta debugging
○ debuggers

“printf” debugging

● probably your most common debugging strategy already!

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point
● advantages:

○ easy and natural

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point
● advantages:

○ easy and natural
● disadvantages:

○ must recompile, rerun program each time you want to test
something else

○ sometimes considered “unprofessional”

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point
● advantages:

○ easy and natural
● disadvantages:

○ must recompile, rerun program each time you want to test
something else

○ sometimes considered “unprofessional”

This is a misconception: professional
engineers commonly use printf
debugging. But printf debugging
should be just one tool in your toolbox
of debugging strategies!

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

● logging is a key technology for monitoring modern systems
○ e.g., via tools like Log4j, slf4j, etc.

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

● logging is a key technology for monitoring modern systems
○ e.g., via tools like Log4j, slf4j, etc.

● logs also play a major role in debugging large-scale failures of
important distributed systems

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

● logging is a key technology for monitoring modern systems
○ e.g., via tools like Log4j, slf4j, etc.

● logs also play a major role in debugging large-scale failures of
important distributed systems
○ we’ll discuss this more when we talk about post-mortems in

our DevOps lectures, near the end of the semester

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

the log itself is usually a static
field; the logging framework
instantiates it, etc.

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

“debug” means if debug-level
logging isn’t enabled in the
framework, this becomes a
no-op

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

“debug” means if debug-level
logging isn’t enabled in the
framework, this becomes a
no-op

levels:
error ⊆ warning ⊆ info ⊆ debug

developer chooses one level, all
lower level messages are also logged

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

printf-like syntax isn’t just for show: goal
here is lazy evaluation, so that if debug
logging isn’t enabled, this string is never
constructed

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

arguments to printf passed by reference, so
if debug-level logging is off, this argument’s
toString() method is never called

Logging: advice

Logging: advice

● Do log lots of information at debug or info level, so that if
something is wrong with your service you can quickly get lots of
information that you can use to debug it.

Logging: advice

● Do log lots of information at debug or info level, so that if
something is wrong with your service you can quickly get lots of
information that you can use to debug it.

● Don’t log sensitive data (e.g., credit card numbers in plaintext!)
○ this is a surprisingly common and important problem -

developers have a tendency to log anything that might be
useful when debugging a failure later!

Debugging (Part 2/2)

Today’s agenda:

● Debugging
○ printf debugging and logging
○ delta debugging
○ debuggers

Delta debugging: summary

Delta debugging: summary

● Delta debugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

Delta debugging: summary

● Delta debugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

● Delta debugging is based on divide-and-conquer and relies heavily
on critical assumptions (monotonicity, unambiguity, and
consistency).

Delta debugging: summary

● Delta debugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

● Delta debugging is based on divide-and-conquer and relies heavily
on critical assumptions (monotonicity, unambiguity, and
consistency).

● It can be used to find which code changes cause a bug, to minimize
failure-inducing inputs, and even to find harmful thread schedules.

Delta debugging: motivation

● Three Problems: One Common Approach
○ Simplifying Failure-Inducing Input
○ Isolating Failure-Inducing Thread Schedules
○ Identifying Failure-Inducing Code Changes

Delta debugging: motivation: inputs

● Having a test input may not be enough

Delta debugging: motivation: inputs

● Having a test input may not be enough
○ Even if you know the suspicious code, the input may be too

large to step through

Delta debugging: motivation: inputs

● Having a test input may not be enough
○ Even if you know the suspicious code, the input may be too

large to step through
● This HTML input makes a version of Mozilla crash. Which portion is

relevant?

Delta debugging: motivation: inputs

● Having a test input may not be enough
○ Even if you know the suspicious code, the input may be too

large to step through
● This HTML input makes a version of Mozilla crash. Which portion is

relevant?

Implication: delta debugging
will be useful for test input
minimization

Delta debugging: motivation: thread schedules

Delta debugging: motivation: thread schedules

● Multithreaded programs can be nondeterministic

Delta debugging: motivation: thread schedules

● Multithreaded programs can be nondeterministic
○ Can we find simple, bug-inducing thread schedules?

Delta debugging: motivation: code changes

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

● 178,000 lines of code have been modified between the two
versions

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

● 178,000 lines of code have been modified between the two
versions
○ Where is the bug?

■ … and which commit is responsible for introducing it?

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

● 178,000 lines of code have been modified between the two
versions
○ Where is the bug?

■ … and which commit is responsible for introducing it?
○ These days: continuous integration testing helps

■ … but does not totally solve this. Why?

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

● Difference in thread schedule: difference in the time before a
given thread preemption is performed

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

● Difference in thread schedule: difference in the time before a
given thread preemption is performed

● Difference in code: different statements or expressions in two
versions of a program

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

● Difference in thread schedule: difference in the time before a
given thread preemption is performed

● Difference in code: different statements or expressions in two
versions of a program

● Difference in program state: different values of internal variables

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

● Abstract solution: divide-and-conquer

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

● Abstract solution: divide-and-conquer
○ key idea: split up the set into two subsets, check which of the

two is still “interesting”

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

● Abstract solution: divide-and-conquer
○ key idea: split up the set into two subsets, check which of the

two is still “interesting”
○ can be applied to working and failing inputs, code versions,

thread schedules, program states, etc.

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:
○ hypothesize that a small subset is interesting

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:
○ hypothesize that a small subset is interesting

■ e.g., the subset of changes {1, 3, 8} causes the bug

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:
○ hypothesize that a small subset is interesting

■ e.g., the subset of changes {1, 3, 8} causes the bug
○ run tests to falsify our hypothesis

Delta debugging: algorithm

Delta debugging: algorithm

● Given:

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)
● The delta debugging algorithm returns a minimal Interesting

subset M of C:

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)
● The delta debugging algorithm returns a minimal Interesting

subset M of C:
○ Interesting(M) = Yes

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)
● The delta debugging algorithm returns a minimal Interesting

subset M of C:
○ Interesting(M) = Yes
○ Forall m ⊂ M, Interesting(M - m) = No

Delta debugging: example

● C =
● Interesting(X) =

Delta debugging: example

● C = set of n changes
● Interesting(X) =

Delta debugging: example

● C = set of n changes
● Interesting(X) = apply the changes in in X to Yesterday’s version

and compile. Run the tests on the result.

Delta debugging: example

● C = set of n changes
● Interesting(X) = apply the changes in in X to Yesterday’s version

and compile. Run the tests on the result.
○ If the tests fail, Interesting(X) = True.

Delta debugging: example

● C = set of n changes
● Interesting(X) = apply the changes in in X to Yesterday’s version

and compile. Run the tests on the result.
○ If the tests fail, Interesting(X) = True.
○ If the tests pass, Interesting(X) = False.

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting
○ Problem: if |C| = N, this takes 2N time

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting
○ Problem: if |C| = N, this takes 2N time
○ Recall: real-world software is unimaginably huge

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting
○ Problem: if |C| = N, this takes 2N time
○ Recall: real-world software is unimaginably huge

● We want a polynomial-time solution
○ Ideally one that is more like log(N)
○ Or we'll loop for what feels like forever

Delta debugging: algorithm candidate

Precondition: Interesting({c
1

 … c
n
 }) = True

DD({c, , …, c
n
 }) =

 if n = 1 then return {c
1

 }
 let P

1
 = {c

1
 , … c

n/2
}

 let P
2

 = {c
n/2+1

, …, c
n
 }

 if Interesting(P
1

) is True:
 then return DD(P

1
)

 else return DD(P
2

)

Delta debugging: algorithm candidate

Precondition: Interesting({c
1

 … c
n
 }) = True

DD({c, , …, c
n
 }) =

 if n = 1 then return {c
1

 }
 let P

1
 = {c

1
 , … c

n/2
}

 let P
2

 = {c
n/2+1

, …, c
n
 }

 if Interesting(P
1

) is True:
 then return DD(P

1
)

 else return DD(P
2

)

This is just binary search! It
won’t work if you need a big
subset to be Interesting

Delta debugging: algorithm: assumptions

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

● Interesting is Monotonic
○ Interesting(X)→ Interesting(X ∪ {c})

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

● Interesting is Monotonic
○ Interesting(X)→ Interesting(X ∪ {c})

● Interesting is Unambiguous
○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

● Interesting is Monotonic
○ Interesting(X)→ Interesting(X ∪ {c})

● Interesting is Unambiguous
○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)

● Interesting is Consistent
○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)

Unambiguous =
Interesting(X) & Interesting(Y) →
Interesting(X ∩ Y)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

Consistency =
Interesting(X) = True xor
Interesting(X) = False

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

○ (Interesting(P1) = False) and (Interesting(P2) = False)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

○ (Interesting(P1) = False) and (Interesting(P2) = False)
○ What happens in such a case?

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

Monotonicity =
Interesting(X)→
Interesting(X ∪ {c})

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

○ Then no subset of P
1

 alone or subset of P
2

 alone is Interesting

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

○ Then no subset of P
1

 alone or subset of P
2

 alone is Interesting
● So the Interesting subset must use a combination of elements from

P
1

 and P
2

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

○ Then no subset of P
1

 alone or subset of P
2

 alone is Interesting
● So the Interesting subset must use a combination of elements from

P
1

 and P
2

● In Delta Debugging, this is called interference

Delta debugging: algorithm: interference

● Why is this true?

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True
○ Consider P

2

■ Find a minimal subset D
1

 of P
1

■ Such that Interesting(P
2

 ∪ D
1

) = True

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True
○ Consider P

2

■ Find a minimal subset D
1

 of P
1

■ Such that Interesting(P
2

 ∪ D
1

) = True
○ Then by Unambiguous

■ Interesting((P
1

 ∪ D
2

) ∩ (P
2

 ∪ D
1

)) = Interesting(D
1

 ∪ D
2

) is
also minimal

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True
○ Consider P

2

■ Find a minimal subset D
1

 of P
1

■ Such that Interesting(P
2

 ∪ D
1

) = True
○ Then by Unambiguous

■ Interesting((P
1

 ∪ D
2

) ∩ (P
2

 ∪ D
1

)) = Interesting(D
1

 ∪ D
2

) is
also minimal

Key point:
combination of
elements from both

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4

5 6 7 8

First step: partition C = {1, …, 8}
into P

1
 = {1, …, 4} and P

2
 = {5, …, 8}

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = ???

5 6 7 8 = ???

Next step: test P
1

 and P
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False

Interference! Sub-step: find
minimal subset D

1
 of P

1
 such that

Interesting(D
1

 + P
2

)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = ???

Interference! Sub-step: find
minimal subset D

1
 of P

1
 such that

Interesting(D
1

 + P
2

)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False

Interference! Sub-step: find
minimal subset D

1
 of P

1
 such that

Interesting(D
1

 + P
2

)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = ??? Interference! Sub-step: find

minimal subset D
1

 of P
1

 such that
Interesting(D

1
 + P

2
)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

D
1

= { 3 }

Now we need to find D
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 5 6 = True

D
1

= { 3 }

Now we need to find D
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 5 = False

D
1

= { 3 }

Now we need to find D
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 6 = True

D
1

= { 3 }

D
2

= { 6 }

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 6 = True

D
1

= { 3 }

D
2

= { 6 }

So, final answer =
D

1
 ∪ D

2
 = { 3, 6 }

Delta debugging: final algorithm

Precondition: Interesting({c
1

 … c
n
 }) = True

DD(P, {c, , …, c
n
 }) =

 if n = 1 then return {c
1

 }
 let P

1
 = {c

1
 , … c

n/2
}

 let P
2

 = {c
n/2+1

, …, c
n
 }

 if Interesting(P
1

 ∪ P) is True then return DD(P, P
1

)
 else if Interesting(P

2
 ∪ P) is True then return DD(P, P

2
)

 else return DD(P ∪ P
2

, P
1

) ∪ DD(P ∪ P
1

, P
2

)

Delta debugging: algorithmic complexity

Delta debugging: algorithmic complexity

● If a single change induces the failure:
○ DD is logarithmic: 2 * log |C|
○ Why?

Delta debugging: algorithmic complexity

● If a single change induces the failure:
○ DD is logarithmic: 2 * log |C|
○ Why?

● Otherwise, DD is linear
○ Assuming constant time per Interesting() check
○ Is this realistic?

Delta debugging: algorithmic complexity

● If a single change induces the failure:
○ DD is logarithmic: 2 * log |C|
○ Why?

● Otherwise, DD is linear
○ Assuming constant time per Interesting() check
○ Is this realistic?

● If Interesting can return “Unknown”
○ DD is quadratic: |C|2 + 3|C|
○ If all tests are Unknown except last one (unlikely)

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Monotonicity is rare in the real
world. But DD still finds an
interesting subset if Interesting is
not monotonic (might not be
minimal)

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Ambiguity will cause DD to fail. Hint:
try tracing DD on Interesting ({2, 8})
= True, but Interesting({2, 8}
intersect {3, 6}) = False

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

The world is often inconsistent.
Example: we are minimizing changes
to a program to find patches that
makes it crash. Some subsets may
not build or run!

Delta debugging: in the real world

● git bisect implements a DD-like algorithm (look it up!)
● for thread schedules: DejaVu tool by IBM, CHESS by Microsoft, etc.
● Eclipse plugins for code changes (“DDinput”, “DDchange”)
● you can also do delta debugging by hand (I do this often for

programs that cause compiler bugs!)

Debugging (Part 2/2)

Today’s agenda:

● Debugging
○ printf debugging and logging
○ delta debugging
○ debuggers

Debuggers

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

● Can operate on source code or assembly code

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

● Can operate on source code or assembly code
● Inspect the values of registers, memory

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

● Can operate on source code or assembly code
● Inspect the values of registers, memory
● Key Features (we’ll explain all of them): attach to process,

single-stepping, breakpoints, conditional breakpoints,
watchpoints

Debuggers: how do they work

Debuggers: how do they work: signals

Debuggers: how do they work: signals

● A signal is an asynchronous notification sent to a process about
an event:
○ User pressed Ctrl-C (or did kill %pid)

■ Or asked the Windows Task Manager to terminate it
○ Exceptions (divide by zero, null pointer)
○ From the OS (SIGPIPE)

Debuggers: how do they work: signals

● A signal is an asynchronous notification sent to a process about
an event:
○ User pressed Ctrl-C (or did kill %pid)

■ Or asked the Windows Task Manager to terminate it
○ Exceptions (divide by zero, null pointer)
○ From the OS (SIGPIPE)

● You can install a signal handler – a procedure that will be
executed when the signal occurs.

Debuggers: how do they work: signals

● A signal is an asynchronous notification sent to a process about
an event:
○ User pressed Ctrl-C (or did kill %pid)

■ Or asked the Windows Task Manager to terminate it
○ Exceptions (divide by zero, null pointer)
○ From the OS (SIGPIPE)

● You can install a signal handler – a procedure that will be
executed when the signal occurs.
○ Signal handlers are vulnerable to race conditions. Why?

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

● There is a special system call that allows one process to act as a
debugger for a target

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

● There is a special system call that allows one process to act as a
debugger for a target
○ What are the security concerns?

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

● There is a special system call that allows one process to act as a
debugger for a target
○ What are the security concerns?

● Once this is done, the debugger can basically “catch signals”
delivered to the target
○ this isn’t exactly what happens, but it’s a good explanation …

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:

A breakpoint is a user-specified
program statement on which
the debugger should stop the
program and begin an
interactive debugging session

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target
○ Set up signal handler

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target
○ Set up signal handler
○ Add in exception causing instructions at desired breakpoints

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target
○ Set up signal handler
○ Add in exception causing instructions at desired breakpoints
○ Inspect globals, do other debugger things, etc.

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

All code added
by the debugger
in purple

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

“BREAKPOINT”
macro is
guaranteed to
cause SIGSEGV

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

debugger registers
a SIGSEGV handler

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

debugger registers
a SIGSEGV handler

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

at the user-specified
breakpoint, the
debugger forces a
SIGSEGV (which its
handler will intercept)

Debuggers: advanced breakpoints

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt
○ If not, return to program immediately

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt
○ If not, return to program immediately
○ Is this fast or slow?

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt
○ If not, return to program immediately
○ Is this fast or slow?

Debuggers: single-stepping

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

● To implement this, put a breakpoint at the first instruction (= at
program start)

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

● To implement this, put a breakpoint at the first instruction (= at
program start)

● The “single step” or “next” interactive command is equal to:

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

● To implement this, put a breakpoint at the first instruction (= at
program start)

● The “single step” or “next” interactive command is equal to:
○ Put a breakpoint at the next instruction
○ Resume execution
○ (No, really.)

Debuggers: watchpoints

● You want to know when a variable changes

Debuggers: watchpoints

● You want to know when a variable changes
● A watchpoint is like a breakpoint, but it stops execution after any

instruction changes the value at location L

Debuggers: watchpoints

● You want to know when a variable changes
● A watchpoint is like a breakpoint, but it stops execution after any

instruction changes the value at location L
● How could we implement this?

Debuggers: watchpoints

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

Hardware Watchpoints:

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

Hardware Watchpoints:
● Special register holds L: if the value at address L ever changes,

the CPU raises an exception

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Related tool: profilers
Note: from here on, this is NOT

fair game for the midterm/final -
we did not get to these slides in

class!

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.

NOT FAIR GAME FOR EXAMS

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

NOT FAIR GAME FOR EXAMS

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

NOT FAIR GAME FOR EXAMS

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)

NOT FAIR GAME FOR EXAMS

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))

NOT FAIR GAME FOR EXAMS

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))
○ In the signal handler you determine the value of the target

program counter and append it to a growing list file

NOT FAIR GAME FOR EXAMS

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))
○ In the signal handler you determine the value of the target

program counter and append it to a growing list file

This explanation of sampling
leaves out some things:
● need to map PC values back

to procedure names
● need to sum up map results
● sampling is cheap but can

miss periodic behavior

NOT FAIR GAME FOR EXAMS

Debugging: takeaways

● Debugging is a lot easier when you treat it as a science, rather than
an art

● printf debugging and logging are good for determining what causes
failures after the fact

● delta debugging is a semi-automated approach to formalizing the
abstract debugging problem
○ useful way of thinking about how to debug anything
○ try git bisect

● debuggers are fantastic when you want to understand a program’s
internal state

