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Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers ( = not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs
o aim for low false positive rates
o widely used in industry:
m ErrorProne at Google, Infer at Meta, SpotBugs at many
places (including Amazon), Coverity, Fortify, etc.



https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
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Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

o most common sound analysis (used by Google, Uber, others)
e formal verification

o you write a specification
o tool verifies that code matches that specification

o very high effort, but enables sound reasoning about complex
properties (= worth it for very high value systems)
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Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)
o TCB for some formal verifiers is very small (a few kLoC)
m butthesetools (e.g., Coq) are much harder to use
e soundness theorems also usually make some about
the code being analyzed (e.g., no calls to native code, no reflection)



Static analysis: summary

static analysis is very good at enforcing simple rules
o much better than humans at this
all interesting semantic properties of programs are undecidable, so
all static analyses must
o goalin analysisdesignisto
but keep important details
o dataflow analysis is one technique for static analysis
o trade-offs between false positives, false negatives, analysis time
soundness & completeness are possible, but rare
o all soundness guarantees come with caveats about the TCB
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Reading quiz: debugging (1)

Q1: What was wrong with the student email in the first reading?
A. thestudent assumed their guesses were correct
B. thestudent misused the debugger

C. thestudent didn’t explain what they expected to happen
D. theemail was too vague

Q2: TRUE or FALSE: the author of the second article argues that a

debugger should be the first tool you reach for when debugging only
in certain specific circumstances.
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Review: finding bugs

e Quality assurance is critical to software engineering

e We've discussed static (code review, dataflow analysis) and
dynamic (testing) approaches to finding bugs

e Key question for today: what happens to all of the bugs those
find?
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Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

e whenyou’re running a program and something goes wrong, a
fault has occurred

Definition: a is any characteristic of a product which hinders
its usability for its intended purpose
o cf. “design defect”. I'll use “bug” to mean “a defect in source code”
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Terminology: bug reports

Definition: a bug report provides information about a defect
e Created by testers, users, tools, etc.

e Often contains multiple types of information

e Often trackedin adatabase

Definition: A is a potential change to the intended

purpose (requirements) of software

e InCS:anissueis either a bug report or a feature request (cf.
“issue tracking system?”)
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This is often why “old” systems \
number of users, someone (e.g., Linux, Windows, etc.) have

relies on every behavior of behaviors that are unintuitive or
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Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
e Not every defect report follows the same path
e The overall process is not linear
o There are multiple entry points, some cycles, and multiple
exit points (and some never leave ...)
Definition: the status of a defect report tracks its position in the

N«

lifecycle (“new”, “resolved” etc.)
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e For example, Bugzilla (a
widely-used open-source
issue tracker) uses this —»
flow for issues
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Defect report lifecycle

e For example, Bugzilla (a
widely-used open-source
issue tracker) uses this —»
flow for issues

e GitHub's built-in issue
tracker is similar (less
structured)

o you should use anissue
tracker for the group
project (GitHub is okay)
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e most new bugs enter the
system as “unconfirmed”
e two main sources:
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Defect report lifecycle:

new bugs

most new bugs enter the

system as “unconfirmed”

two main sources:

0 bug reports,
e.g., from testers/QA

o external bugreports,

e.g., from users

internal reports are usually
higher quality/more detailed
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Quick demo: GitHub issue tracker

example: https://github.com/typetools/checker-framework/issues
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Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem
o what the program did
m usually you should copy-paste output, but this could also
be screenshots, video, etc.
0 you believe that what the program did is wrong
o what you expected the program to do instead
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Defect reports: conversations

e Defectreports are not static
e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions
e Thereportisalog of all relevant activity
o e.g.
o https://github.com/typetools/checker-framework/issues/4838
o https://github.com/typetools/checker-framework/issues/3001



https://github.com/typetools/checker-framework/issues/4838
https://github.com/typetools/checker-framework/issues/3001
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Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
e bug triage has the same definition, but with software defects
instead of wounds/illnesses
e there are always available
to address them
e we must do cost-benefit analysis:
o How expensive is it to fix this bug?
o How expensive is it to not fix this bug?
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Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system

e intuition: severity = “cost of not fixing the bug”

e BugZillaseverity levels (varies by company/tool, but these typical):

Severity Meaning
Blocker Blocks further development and/or testing work
Critical Crashes, loss of data (internally, not your edit preview!) in a widely used and important component
Major Maijor loss of function in an important area
Normal Default/average
Minor Minor loss of function, or other problem that does not affect many people or where an easy workaround is present
Trivial Cosmetic problem like misspelled words or misaligned text which does not really cause problems

Enhancement | Request for a new feature or change in functionality for an existing feature
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Definition: priority indicates the importance or urgency of fixing a
defect
e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to
prioritize between them
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risk, etc.) to evaluate, prioritize and assign the resolution of
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Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to
prioritize between them
e severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports
o note that thisis a bit of an oversimplification:
“severity + priority = triage” is like “supply + demand = price”
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Defect report lifecycle: possible resolutions

A significant fraction of submitted bug reports are spuri-

ous duplicates that describe already-rgported defects. Pre-
vious studies report that as many a§ 36% Jof bug reports
were duplicates or otherwise invalid [2}-O1 the 29,000 bug

reports used in the experiments in this paper, 25.9% were
identified as duplicates by the project developers.

[ Jalbert et al. Automated Duplicate Detection for Bug Tracking Systems. DSN 2008. |
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on incorrect bug-fixes from large operating system code bases

including Linux, OpenSolaris, FreeBSD and also a mature e M any ﬁxes are wrong,
— commercial OS developed and evolved over the last 712 years, even on mature. critical

investigating not only the mistake patterns during bug-fixing ’

but also the possible human reasons in the development pro- SoftW a re!

cess when these incorrect bug-fixes were introduced. Our
major findings include: (1) at least 14.8%~24.4% of sam-
pled fixes for post-release bugs ' in these large OSes are
incorrect and have made impacts to end users. (2) Among
several common bug types, concurrency bugs are the most
difficult to fix correctly: 39% of concurrency bug fixes are
incorrect. (3) Developers and reviewers for incorrect fixes
—3usually do not have enough knowledge about the involved
code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software
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Debugging (Part 1/2)

Today’s agenda:

e Whatis abug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o deltadebugging

o debuggers
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Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams
o you will be asked to fix bugs in very large software!
e Techniques developed based on smaller code bases simply do not
apply or scale to larger code bases
o Techniques from the 1980s or your habits from classes
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How big are programs, really?

Google Is 2 Billion Lines of Code—And It's All in One Place

SIARE GOOGLE IS 2 BILLION LINES OF
a  CODE—ANDIT'S ALL IN ONE
- PIACE

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/



https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

Humans are poor at comprehending large scales

e covey.town 16 000
e google 2 000 000 000



Humans are poor at comprehending large scales

e covey.town 16 000
e google 2 000 000 000
e |magine that there is a bug somewhere, anywhere, in covey.town



Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o Imagine further that you can find that bug in one minute



Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o Imagine further that you can find that bug in one minute

e At thesamerate, it would take you more than a month to find it
in all of google



Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o Imagine further that you can find that bug in one minute

e At thesamerate, it would take you more than a month to find it
in all of google
o aone-hour bug on covey.town would take on google!
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Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program
o possible fixes to find the right one
o confirm that your fix actually resolves the issue
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Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur
e |ots of bugs are resolved at this stage:
o WORKSFORME is the BugZilla resolution for this
o especially bugs reported by users often do not get past this
stage: not enough information to reproduce the fault
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Minimizing the reproduction

~

Definition: a minimal reproduction of ' Minimizing the reproduction

elicits the bug’s reported symptoms | is ‘3

e defect reports containing minima| small (but not minimal) input
standard (but rare in practice) ~ \ is often good enough y

e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was

running
e minimizing the reproduction helps the developer reason about

which part of the software might be responsible for the bug
o also useful for
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Fault localization

Definition: fault localization is the task of identifying source code

regions implicated in a bug

e “Thisregression test is failing. Which lines should we change to fix

things?”

e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?

e While some tool support is available, state of the practice is manual
o automated tools rank parts of the program by “ ”
o suspiciousness computed by how often each part of the

program is by passing vs. failing tests
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Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

e another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

o easy mistake to make: write or modify a test in such a way that
you end up no longer reproducing the bug while “fixing” the bug

o best practice: commit tests separately



Debugging (Part 2/2)

Two-lecture agenda:

e Whatis abug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o deltadebugging

o debuggers



Review: steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program
o possible fixes to find the right one
o confirm that your fix actually resolves the issue
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Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging
e all of these strategies have one in common: treat
debugging as a series of hypothesis tests
o hypothesis testing is one of the key components of the
scientific method:
1. guess why something happens, devise an experiment to
test if your guess is correct, then run the experiment
2. repeat step 1 until you've figured it out
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Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a

partlculzj\r way (Bigdifference betweenyou )
o “falsifiable” = “can be true or ( ") and

o ideally, you'd also like your g| anyone who knows how to
e each time you make such a gues{ program: the ability to apply the
experiment to check if the guess scientific method to coding )
o most of the debugging strategies we'll talk about are ways to
check if a particular guess is correct




