
Debugging (1/2)
Martin Kellogg

Debugging (Part 1/2)

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ delta debugging
○ debuggers

Debugging (Part 1/2)

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ delta debugging
○ debuggers

Announcements:
● there is a midterm in this

class one week from today
● if you want me to hold a

review session, fill out the
form I posted yesterday on
Discord

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates
○ widely used in industry:

■ ErrorProne at Google, Infer at Meta, SpotBugs at many
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

Static analysis in practice

Less common, but useful to know about:

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

○ you write a specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

○ you write a specification
○ tool verifies that code matches that specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification

○ you write a specification
○ tool verifies that code matches that specification
○ very high effort, but enables sound reasoning about complex

properties (= worth it for very high value systems)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (a few kLoC)
■ but these tools (e.g., Coq) are much harder to use

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (a few kLoC)
■ but these tools (e.g., Coq) are much harder to use

● soundness theorems also usually make some assumptions about
the code being analyzed (e.g., no calls to native code, no reflection)

Static analysis: summary

● static analysis is very good at enforcing simple rules
○ much better than humans at this

● all interesting semantic properties of programs are undecidable, so
all static analyses must approximate
○ goal in analysis design is to abstract away unimportant details,

but keep important details
○ dataflow analysis is one technique for static analysis
○ trade-offs between false positives, false negatives, analysis time

● soundness & completeness are possible, but rare
○ all soundness guarantees come with caveats about the TCB

Debugging (Part 1/2)

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ delta debugging
○ debuggers

Reading quiz: debugging (1)

Q1: What was wrong with the student email in the first reading?
A. the student assumed their guesses were correct
B. the student misused the debugger
C. the student didn’t explain what they expected to happen
D. the email was too vague

Q2: TRUE or FALSE: the author of the second article argues that a
debugger should be the first tool you reach for when debugging only
in certain specific circumstances.

Reading quiz: debugging (1)

Q1: What was wrong with the student email in the first reading?
A. the student assumed their guesses were correct
B. the student misused the debugger
C. the student didn’t explain what they expected to happen
D. the email was too vague

Q2: TRUE or FALSE: the author of the second article argues that a
debugger should be the first tool you reach for when debugging only
in certain specific circumstances.

Reading quiz: debugging (1)

Q1: What was wrong with the student email in the first reading?
A. the student assumed their guesses were correct
B. the student misused the debugger
C. the student didn’t explain what they expected to happen
D. the email was too vague

Q2: TRUE or FALSE: the author of the second article argues that a
debugger should be the first tool you reach for when debugging only
in certain specific circumstances.

Debugging (Part 1/2)

Today’s agenda:

● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ delta debugging
○ debuggers

Review: finding bugs

● Quality assurance is critical to software engineering

Review: finding bugs

● Quality assurance is critical to software engineering
● We’ve discussed static (code review, dataflow analysis) and

dynamic (testing) approaches to finding bugs

Review: finding bugs

● Quality assurance is critical to software engineering
● We’ve discussed static (code review, dataflow analysis) and

dynamic (testing) approaches to finding bugs
● Key question for today: what happens to all of the bugs those

find?

Terminology: what is a bug?

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
● when you’re running a program and something goes wrong, a

fault has occurred

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
● when you’re running a program and something goes wrong, a

fault has occurred

Definition: a defect is any characteristic of a product which hinders
its usability for its intended purpose

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
● when you’re running a program and something goes wrong, a

fault has occurred

Definition: a defect is any characteristic of a product which hinders
its usability for its intended purpose
● cf. “design defect”. I’ll use “bug” to mean “a defect in source code”

Terminology: bug reports

Terminology: bug reports

Definition: a bug report provides information about a defect

Terminology: bug reports

Definition: a bug report provides information about a defect
● Created by testers, users, tools, etc.
● Often contains multiple types of information
● Often tracked in a database

Terminology: bug reports

Definition: a bug report provides information about a defect
● Created by testers, users, tools, etc.
● Often contains multiple types of information
● Often tracked in a database

Definition: A feature request is a potential change to the intended
purpose (requirements) of software

Terminology: bug reports

Definition: a bug report provides information about a defect
● Created by testers, users, tools, etc.
● Often contains multiple types of information
● Often tracked in a database

Definition: A feature request is a potential change to the intended
purpose (requirements) of software
● In CS: an issue is either a bug report or a feature request (cf.

“issue tracking system”)

Terminology: bug vs. features

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

● good rule of thumb: in any
system with a large
number of users, someone
relies on every behavior of
the system (intended or
not) as if it were a feature

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

● good rule of thumb: in any
system with a large
number of users, someone
relies on every behavior of
the system (intended or
not) as if it were a feature

This is often why “old” systems
(e.g., Linux, Windows, etc.) have
behaviors that are unintuitive or
difficult to learn: someone relies
on them, so changing them
would be considered a bug!

Debugging (Part 1/2)

Today’s agenda:

● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ delta debugging
○ debuggers

Defect report lifecycle

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
● Not every defect report follows the same path

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
● Not every defect report follows the same path
● The overall process is not linear

○ There are multiple entry points, some cycles, and multiple
exit points (and some never leave …)

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
● Not every defect report follows the same path
● The overall process is not linear

○ There are multiple entry points, some cycles, and multiple
exit points (and some never leave …)

Definition: the status of a defect report tracks its position in the
lifecycle (“new”, “resolved”, etc.)

Defect report lifecycle

Defect report lifecycle

● For example, Bugzilla (a
widely-used open-source
issue tracker) uses this
flow for issues

Defect report lifecycle

● For example, Bugzilla (a
widely-used open-source
issue tracker) uses this
flow for issues

● GitHub's built-in issue
tracker is similar (less
structured)

Defect report lifecycle

● For example, Bugzilla (a
widely-used open-source
issue tracker) uses this
flow for issues

● GitHub's built-in issue
tracker is similar (less
structured)
○ you should use an issue

tracker for the group
project (GitHub is okay)

● most new bugs enter the
system as “unconfirmed”

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users
● internal reports are usually

higher quality/more detailed

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users
● internal reports are usually

higher quality/more detailed

Defect report lifecycle:
new bugs

Modern view of end-user bug
reports: we cannot count on
end users to describe bugs in
a helpful manner

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users
● internal reports are usually

higher quality/more detailed

Defect report lifecycle:
new bugs

Modern view of end-user bug
reports: we cannot count on
end users to describe bugs in
a helpful manner

Quick demo: GitHub issue tracker

example: https://github.com/typetools/checker-framework/issues

https://github.com/typetools/checker-framework/issues

Writing a good defect report

● clearly explain:

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

○ what the program did
■ usually you should copy-paste output, but this could also

be screenshots, video, etc.

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

○ what the program did
■ usually you should copy-paste output, but this could also

be screenshots, video, etc.
○ why you believe that what the program did is wrong

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

○ what the program did
■ usually you should copy-paste output, but this could also

be screenshots, video, etc.
○ why you believe that what the program did is wrong
○ what you expected the program to do instead

Defect reports: conversations

Defect reports: conversations

● Defect reports are not static

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

● The report is a log of all relevant activity

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

● The report is a log of all relevant activity
● e.g.:

○ https://github.com/typetools/checker-framework/issues/4838

https://github.com/typetools/checker-framework/issues/4838

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

● The report is a log of all relevant activity
● e.g.:

○ https://github.com/typetools/checker-framework/issues/4838
○ https://github.com/typetools/checker-framework/issues/3001

https://github.com/typetools/checker-framework/issues/4838
https://github.com/typetools/checker-framework/issues/3001

Defect report lifecycle:
triage

● Key question: which bugs
should we address first?

Defect report lifecycle:
triage

● Key question: which bugs
should we address first?

● “triage” is an analogy to
medicine: which emergency
room patient should you
help first?

Defect report lifecycle:
triage

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
● bug triage has the same definition, but with software defects

instead of wounds/illnesses

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
● bug triage has the same definition, but with software defects

instead of wounds/illnesses
● there are always more defect reports than resources available

to address them

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
● bug triage has the same definition, but with software defects

instead of wounds/illnesses
● there are always more defect reports than resources available

to address them
● we must do cost-benefit analysis:

○ How expensive is it to fix this bug?
○ How expensive is it to not fix this bug?

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system
● intuition: severity = “cost of not fixing the bug”

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system
● intuition: severity = “cost of not fixing the bug”
● BugZilla severity levels (varies by company/tool, but these typical):

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

Usually, “high priority” = “a
developer will work on this
soon” (e.g., in the next sprint).

“As a rule of thumb, limit High
priority task assignments for a
single person to three, five in
exceptional times.”

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

Usually, “high priority” = “a
developer will work on this
soon” (e.g., in the next sprint).

“As a rule of thumb, limit High
priority task assignments for a
single person to three, five in
exceptional times.”

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

● severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

● severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports
○ note that this is a bit of an oversimplification:

“severity + priority = triage” is like “supply + demand = price”

Defect report lifecycle:
assignment

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Definition: an assignment
associates a developer with the
responsibility of addressing a
defect report

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Definition: an assignment
associates a developer with the
responsibility of addressing a
defect report
● state of the art is “manual”

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Definition: an assignment
associates a developer with the
responsibility of addressing a
defect report
● state of the art is “manual”
● usually based on who “owns” the

relevant code

Defect report lifecycle:
resolution

● Key question: did we fix it?

Defect report lifecycle:
resolution

● Key question: did we fix it?

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it

Defect report lifecycle:
resolution

● Key question: did we fix it?

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it
● Important: resolved need

not mean “fixed”

Defect report lifecycle:
resolution

Defect report lifecycle: possible resolutions

BugZilla resolution options:
● FIXED (give commit #)

Defect report lifecycle: possible resolutions

BugZilla resolution options:
● FIXED (give commit #)
● INVALID (bug report is invalid)
● WONTFIX (we don't ever plan to fix it)
● DUPLICATE (link to other bug report #)
● WORKSFORME (cannot reproduce, a.k.a. “WFM”)
● MOVED (give link: filed with wrong project)
● NOTABUG (report describes expected behavior)
● NOTOURBUG (is a bug, but not with our software)
● INSUFFICIENTDATA (cannot triage/fix w/o more)

Defect report lifecycle: possible resolutions

BugZilla resolution options:
● FIXED (give commit #)
● INVALID (bug report is invalid)
● WONTFIX (we don't ever plan to fix it)
● DUPLICATE (link to other bug report #)
● WORKSFORME (cannot reproduce, a.k.a. “WFM”)
● MOVED (give link: filed with wrong project)
● NOTABUG (report describes expected behavior)
● NOTOURBUG (is a bug, but not with our software)
● INSUFFICIENTDATA (cannot triage/fix w/o more)

Thought question:
what fraction of bug
reports end up with
each resolution?

Defect report lifecycle: possible resolutions

[Jalbert et al. Automated Duplicate Detection for Bug Tracking Systems. DSN 2008.]

Defect report lifecycle:
reopening

● A defect report that was
previously resolved (e.g.
“FIXED”) may be reopened if
later evidence suggests the
old resolution is no longer
adequate

Defect report lifecycle:
reopening

● A defect report that was
previously resolved (e.g.
“FIXED”) may be reopened if
later evidence suggests the
old resolution is no longer
adequate

● Surely this only happens
rarely?

Defect report lifecycle:
reopening

Defect report lifecycle: reopening

● Many fixes are wrong,
even on mature, critical
software!

[Yin et al. How Do Fixes Become Bugs?
ESEC/FSE 2011.]

Defect report lifecycle: reopening

● Many fixes are wrong,
even on mature, critical
software!

● Implication: reopening
bugs is common

[Yin et al. How Do Fixes Become Bugs?
ESEC/FSE 2011.]

Defect report lifecycle: reopening

● Many fixes are wrong,
even on mature, critical
software!

● Implication: reopening
bugs is common
○ Importance of

regression testing!

[Yin et al. How Do Fixes Become Bugs?
ESEC/FSE 2011.]

Defect report lifecycle:
fixing

● Key question: once we have
a good defect report, how
do we figure out how to
resolve the defect?

Defect report lifecycle:
fixing

● Key question: once we have
a good defect report, how
do we figure out how to
resolve the defect?
○ This is debugging

Defect report lifecycle:
fixing

● Key question: once we have
a good defect report, how
do we figure out how to
resolve the defect?
○ This is debugging
○ Rest of today’s lecture +

all of Friday’s lecture on
debugging

Defect report lifecycle:
fixing

Debugging (Part 1/2)

Today’s agenda:

● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ delta debugging
○ debuggers

Debugging: what makes it difficult?

Debugging: what makes it difficult?

● modern software is unimaginably huge

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

○ you will be asked to fix bugs in very large software!

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

○ you will be asked to fix bugs in very large software!
● Techniques developed based on smaller code bases simply do not

apply or scale to larger code bases

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

○ you will be asked to fix bugs in very large software!
● Techniques developed based on smaller code bases simply do not

apply or scale to larger code bases
○ Techniques from the 1980s or your habits from classes

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

IP1 starter code:
~2,000 lines

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

all of
covey.town:
~16,000 lines

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Chrome at ~7M LoC is ~400x
bigger than covey.town

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Chrome is small compared to
even old versions of Windows!

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

○ Imagine further that you can find that bug in one minute

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

○ Imagine further that you can find that bug in one minute
● At the same rate, it would take you more than a month to find it

in all of google

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

○ Imagine further that you can find that bug in one minute
● At the same rate, it would take you more than a month to find it

in all of google
○ a one-hour bug on covey.town would take years on google!

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one
○ confirm that your fix actually resolves the issue

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur
● lots of bugs are resolved at this stage:

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur
● lots of bugs are resolved at this stage:

○ WORKSFORME is the BugZilla resolution for this

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur
● lots of bugs are resolved at this stage:

○ WORKSFORME is the BugZilla resolution for this
○ especially bugs reported by users often do not get past this

stage: not enough information to reproduce the fault

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

● minimizing the reproduction helps the developer reason about
which part of the software might be responsible for the bug

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

● minimizing the reproduction helps the developer reason about
which part of the software might be responsible for the bug
○ also useful for assignment

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

● minimizing the reproduction helps the developer reason about
which part of the software might be responsible for the bug
○ also useful for assignment

Minimizing the reproduction
is sometimes unnecessary: a
small (but not minimal) input
is often good enough

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?
● While some tool support is available, state of the practice is manual

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?
● While some tool support is available, state of the practice is manual

○ automated tools rank parts of the program by “suspiciousness”

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?
● While some tool support is available, state of the practice is manual

○ automated tools rank parts of the program by “suspiciousness”
○ suspiciousness computed by how often each part of the

program is covered by passing vs. failing tests

Testing and confirming your fix

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

● another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

● another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)
○ easy mistake to make: write or modify a test in such a way that

you end up no longer reproducing the bug while “fixing” the bug

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

● another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)
○ easy mistake to make: write or modify a test in such a way that

you end up no longer reproducing the bug while “fixing” the bug
○ best practice: commit tests separately

Debugging (Part 2/2)

Two-lecture agenda:

● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ delta debugging
○ debuggers

Review: steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one
○ confirm that your fix actually resolves the issue

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

● all of these strategies have one key idea in common: treat
debugging as a series of hypothesis tests

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

● all of these strategies have one key idea in common: treat
debugging as a series of hypothesis tests
○ hypothesis testing is one of the key components of the

scientific method:

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

● all of these strategies have one key idea in common: treat
debugging as a series of hypothesis tests
○ hypothesis testing is one of the key components of the

scientific method:
1. guess why something happens, devise an experiment to

test if your guess is correct, then run the experiment
2. repeat step 1 until you’ve figured it out

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

● each time you make such a guess, you need to design an
experiment to check if the guess is correct

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

● each time you make such a guess, you need to design an
experiment to check if the guess is correct
○ most of the debugging strategies we’ll talk about are ways to

check if a particular guess is correct

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

● each time you make such a guess, you need to design an
experiment to check if the guess is correct
○ most of the debugging strategies we’ll talk about are ways to

check if a particular guess is correct

Big difference between you
(“computer scientist”) and
anyone who knows how to
program: the ability to apply the
scientific method to coding

