Debugging (1/2)

Martin Kellogg

Debugging (Part 1/2)

Today’s agenda:

Finish static analysis slides

Reading Quiz

What is a bug, anyway?

Bug reports, triage, and the defect lifecycle
Debugging

o printf debugging and logging

o deltadebugging

o debuggers

Debugging (Part 1/2) / \

Announcements:

Today’s agenda: e thereisamidtermin this
e Finish static analysis slides f:lass SIS BIEE KO LEE)

. . e if youwant metohold a
* Reading Quiz review session, fill out the
e Whatis a bug, anyway? form | posted yesterday on
e Bugreports, triage, and the def Discord
e Debugging \ /

o printf debugging and logging
o deltadebugging
o debuggers

Static analysis in practice

You're likely to encounter:
e static type systems (sound)
e linters or other style checkers (= not dataflow)
e ‘“heuristic” bug-finding tools backed by dataflow analyses
o built into modern IDEs
o aim for low false positive rates
o widely used in industry:
m ErrorProne at Google, Infer at Meta, SpotBugs at many
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

Static analysis in practice

Less common, but useful to know about:

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java
o most common sound analysis (used by Google, Uber, others)

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java
o most common sound analysis (used by Google, Uber, others)
e formal verification

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java
o most common sound analysis (used by Google, Uber, others)
e formal verification
o you write a specification

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems

o these are extensions to a type system that lets it prove more

properties, e.g., adding nullness-checking to Java

o most common sound analysis (used by Google, Uber, others)
e formal verification

o you write a specification

o tool verifies that code matches that specification

Static analysis in practice

Less common, but useful to know about:
e pluggable type systems
o these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

o most common sound analysis (used by Google, Uber, others)
e formal verification

o you write a specification
o tool verifies that code matches that specification

o very high effort, but enables sound reasoning about complex
properties (= worth it for very high value systems)

Static analysis in practice: soundiness

e all “sound” static analyses have a trusted computing base (TCB)

Static analysis in practice: soundiness

e all “sound” static analyses have a trusted computing base (TCB)
o the TCBis the code whose correctness must be assumed for
the analysis to actually be sound

Static analysis in practice: soundiness

e all “sound” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses

Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)
o TCB for some formal verifiers is very small (a few kLoC)
m butthesetools (e.g., Coq) are much harder to use

Static analysis in practice: soundiness

o all” ” static analyses have a trusted computing base (TCB)
o the TCB isthe code whose correctness must be assumed for
the analysis to actually be sound
e TCBsizeis animportant differentiator between “sound” analyses
o e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)
o TCB for some formal verifiers is very small (a few kLoC)
m butthesetools (e.g., Coq) are much harder to use
e soundness theorems also usually make some about
the code being analyzed (e.g., no calls to native code, no reflection)

Static analysis: summary

static analysis is very good at enforcing simple rules
o much better than humans at this
all interesting semantic properties of programs are undecidable, so
all static analyses must
o goalin analysisdesignisto
but keep important details
o dataflow analysis is one technique for static analysis
o trade-offs between false positives, false negatives, analysis time
soundness & completeness are possible, but rare
o all soundness guarantees come with caveats about the TCB

Debugging (Part 1/2)

Today’s agenda:

Finish static analysis slides

Reading Quiz

What is a bug, anyway?

Bug reports, triage, and the defect lifecycle
Debugging

o printf debugging and logging

o deltadebugging

o debuggers

Reading quiz: debugging (1)

Q1: What was wrong with the student email in the first reading?
A. thestudent assumed their guesses were correct
B. thestudent misused the debugger

C. thestudent didn’t explain what they expected to happen
D. theemail was too vague

Q2: TRUE or FALSE: the author of the second article argues that a

debugger should be the first tool you reach for when debugging only
in certain specific circumstances.

Reading quiz: debugging (1)

Q1: What was wrong with the student email in the first reading?
the student assumed their guesses were correct

B. thestudent misused the debugger
C. thestudent didn’t explain what they expected to happen

D. theemail was too vague

Q2: TRUE or FALSE: the author of the second article argues that a
debugger should be the first tool you reach for when debugging only

in certain specific circumstances.

Reading quiz: debugging (1)

Q1: What was wrong with the student email in the first reading?
the student assumed their guesses were correct

B. thestudent misused the debugger
C. thestudent didn’t explain what they expected to happen

D. theemail was too vague

Q2: TRUE or FALSE: the author of the second article argues that a
debugger should be the first tool you reach for when debugging only

in certain specific circumstances.

Debugging (Part 1/2)

Today’s agenda:

e What s a bug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o deltadebugging

o debuggers

Review: finding bugs

e Quality assurance is critical to software engineering

Review: finding bugs

e Quality assurance is critical to software engineering
e We've discussed static (code review, dataflow analysis) and
dynamic (testing) approaches to finding bugs

Review: finding bugs

e Quality assurance is critical to software engineering

e We've discussed static (code review, dataflow analysis) and
dynamic (testing) approaches to finding bugs

e Key question for today: what happens to all of the bugs those
find?

Terminology: what is a bug?

Terminology: what is a bug?

e “bug”is an ambiguous term in common usage - it can refer to
either static or dynamic problems

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
e whenyou’re running a program and something goes wrong, a
fault has occurred

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

e whenyou’re running a program and something goes wrong, a
fault has occurred

Definition: a is any characteristic of a product which hinders
its usability for its intended purpose

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

e whenyou’re running a program and something goes wrong, a
fault has occurred

Definition: a is any characteristic of a product which hinders
its usability for its intended purpose
o cf. “design defect”. I'll use “bug” to mean “a defect in source code”

Terminology: bug reports

Terminology: bug reports

Definition: a bug report provides information about a defect

Terminology: bug reports

Definition: a bug report provides information about a defect
e Created by testers, users, tools, etc.

e Often contains multiple types of information

e Often trackedin adatabase

Terminology: bug reports

Definition: a bug report provides information about a defect
e Created by testers, users, tools, etc.

e Often contains multiple types of information

e Often trackedin adatabase

Definition: A is a potential change to the intended
purpose (requirements) of software

Terminology: bug reports

Definition: a bug report provides information about a defect
e Created by testers, users, tools, etc.

e Often contains multiple types of information

e Often trackedin adatabase

Definition: A is a potential change to the intended

purpose (requirements) of software

e InCS:anissueis either a bug report or a feature request (cf.
“issue tracking system?”)

Terminology: bug vs. features

Terminology: bug vs. features

e whatisabugandwhatisa
featureis

Terminology: bug vs. features

e whatisabugandwhatisa
featureis

BUG

Terminology: bug vs. features

e whatisabugandwhatisa
featureis

e good rule of thumb:in any
system with a large
number of users, someone
relies on every behavior of

(())

the system (intended * K
e system (intended or
not) as if it were a feature B U G FEATU RE

Terminology: bug vs. features

e good rule of thumb:in any
system with a large

‘ ’/’. l ‘ \\ y k
\\ / \
e whatisabugandwhatisa o (e
featureis i [
e

e ety
2

This is often why “old” systems \
number of users, someone (e.g., Linux, Windows, etc.) have

relies on every behavior of behaviors that are unintuitive or
the system (intended or difficult to learn:

not) as if it were a feature , S0 changing them
\would be consideredabug! /

Debugging (Part 1/2)

Today’s agenda:

e Whatis abug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o deltadebugging

o debuggers

Defect report lifecycle

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

e Not every defect report follows the same path

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

e Not every defect report follows the same path

e The overall process is not linear
o There are multiple entry points, some cycles, and multiple

exit points (and some never leave ...)

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
e Not every defect report follows the same path
e The overall process is not linear
o There are multiple entry points, some cycles, and multiple
exit points (and some never leave ...)
Definition: the status of a defect report tracks its position in the

N«

lifecycle (“new”, “resolved” etc.)

Defect report lifecycle

Defect report lifecycle

e For example, Bugzilla (a
widely-used open-source
issue tracker) uses this —»
flow for issues

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

(UNCONFIRMED

Bug is reopened,

Bug confirmed or
receives enough votes

Developer akes
NEW
Ownership
is changed Developer takes
possession
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio
Issue is
resolved
QA nat satisfied QA verifies
with solution solution worked

REOPEN

was never confirmed

Development is
finished with bug

Bug is closad

Bug is reopened

VERIFIED

Bug is reopened

Bug is closed

(CLOSED

New bug from a
usar with canconfirm
or a product without
UNCONFIRMED state (

UNCONFIRMED

Defect report lifecycle L e

e For example, Bugzilla (a
widely-used open-source _
issue tracker) uses this —» |G

WONTFIX
WORKSFORME
INVALID

flow for issues s
e GitHub's built-in issue

tracker is similar (less

structured)

ASSIGNED

Development is
finished with bug

RESOLVED

Developer akes

VERIFIED

=
=
=
=] <
c
m 35
c
=]
p
.
2
B
3
2 o
[
=1
-
o
S

(REOPEN

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle

e For example, Bugzilla (a
widely-used open-source
issue tracker) uses this —»
flow for issues

e GitHub's built-in issue
tracker is similar (less
structured)

o you should use anissue
tracker for the group
project (GitHub is okay)

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED
Bug is reopened,

was never confirmed

Ownership
is changed

Pessible resolutions:

Developer takes
possession

Development is
finished with bug

FIXED
DUPLICATE
WONTFIX
WORKSFORME

ASSIGNED

INVALID
REMIND
LATER

finished with bug

Development is
ini wi

Developer takes
possessio

RESOLVED

Issue is
resolved

A

REOPEN

Bug is reopened
Bug is closed

with solution

f QA net satisfied

QA verifies
solution worked

Bug is reopened

VERIFIED

(

CLOSED

user with canconfirm
or a product without

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: e

New bug from a . l

Bug is reopened,
was never confirmed

Developer akes
new bugs s
Ownership
is changed Developer takes Development is
e most new bugs enter the s A
Pessible resolutions:
t « ﬁ d » FIXED
DUPLICATE
system as “unconfirme oumcK ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved
QA nat satisfied QA verifies
with solution solution worked
REOPEN E’“g s reopened VERIFIED
Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle:

new bugs

e most new bugs enter the
system as “unconfirmed”
e two main sources:

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

—

Bug confirmed or

UNCONFIRMED

Bug is reopened,
was never confirmed

receives enough votes
Y Developer akes
possession
NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved A
QA nat satisfied QA verifies
with solution solution worked
B ed
REOPEN “9 IS reopen VERIFIED
Bug is reopened
Bug is closed

(CLOSED

user with canconfirm
or a product without

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: -
new bugs

New bug from a . l

Pessible resolutions:

e most new bugs enter the
system as “unconfirmed” e

WONTFIX
WORKSFORME

e two main sources: o
e bug reports, .
e.g., from testers/QA = AL

(REOPEN

Bug is reopened
Bug is closed

(CLOSED

VERIFIED

=
=5
2
c
m 35
c
=]
p
.
2
B
i
4
=1
-
o
S

New bug from a . l

user with canconfirm
or a product without
UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L e
new bugs =

e most new bugs enter the S

system as “unconfirmed” oupLcaTe Pem—
e two main sources: i lfm.&mh .
o bug reports, i ——

e.g., from testers/QA Sk
o external bug reports, (

e.g., from users

(CLOSED

VERIFIED

=
=5
2
c
m 35
c
=]
p
.
2
B
i
[o
=1
-
o
S

Defect report lifecycle:

new bugs

most new bugs enter the

system as “unconfirmed”

two main sources:

0 bug reports,
e.g., from testers/QA

o external bugreports,

e.g., from users

internal reports are usually
higher quality/more detailed

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

—

UNCONFIRMED

Bug is reopened,
was never confirmed

Ownership
is changed

Pessible resolutions:

DUPLICATE

WORKSFORME

Developer takes

possessio

NEW
Developer takes Development is
possession finished with bug
ASSIGNED
Development is
finished with bug
RESOLVED
resolve A
QA nat satisfied QA verifies
with solution solution worked

REOPEN

Bug is reopened
Bug is closed

(CLOSED

EUy & rengwned VERIFIED

user with canconfirm

New bug from a . l

orla pnladuct without (\

Defect report lifecycle: (. B
Modern view of end-user bug
new bugs reports: we cannot count on

end users to describe bugs in

e most new bugs enter the = a helpful manner l)
system as “unconfirmed” m&
e two main sources: :m —
o bug reports, o e
e.g., from testers/QA il
o external bugreports, ey e

Bug is reopened

REOPEN VERIFIED

e.g., from users

e internal reports are usually k—\ f—““““J

higher quality/more detailed (cLose

Defect report lifecycle:
new bugs
most new bugs enter the

system as “unconfirmed”
two main sources:

New bug from a
user with canconfirm

or a product without i

]

MCONFIRMED cate fi

Modern view of end-user bug
reports: we cannot count on
end users to describe bugs in

~

= ahelpful manner

REMIND

LATER

0 bug reports,

e.g., from testers/QA

o external bugreports,
e.g., from users

internal reports are usually

higher quality/more detailed

Deve

ApPened

eating a bean and cheese taco

Cancel OK

| p—

7

med

'\
/

Quick demo: GitHub issue tracker

example: https://github.com/typetools/checker-framework/issues

https://github.com/typetools/checker-framework/issues

Writing a good defect report

e clearly explain:

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem
o what the program did
m usually you should copy-paste output, but this could also
be screenshots, video, etc.

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem
o what the program did
m usually you should copy-paste output, but this could also
be screenshots, video, etc.
0 you believe that what the program did is wrong

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem
o what the program did
m usually you should copy-paste output, but this could also
be screenshots, video, etc.
0 you believe that what the program did is wrong
o what you expected the program to do instead

Defect reports: conversations

Defect reports: conversations

e Defectreports are not static

Defect reports: conversations

e Defectreports are not static

e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions

Defect reports: conversations

e Defectreports are not static
e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions
e Thereportisa of all relevant activity

Defect reports: conversations

e Defectreports are not static
e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions
e Thereportisalogof all relevant activity
o e.g.
o https://github.com/typetools/checker-framework/issues/4838

https://github.com/typetools/checker-framework/issues/4838

Defect reports: conversations

e Defectreports are not static
e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions
e Thereportisalog of all relevant activity
o e.g.
o https://github.com/typetools/checker-framework/issues/4838
o https://github.com/typetools/checker-framework/issues/3001

https://github.com/typetools/checker-framework/issues/4838
https://github.com/typetools/checker-framework/issues/3001

New bug from a
usar with canconfirm
or a product without

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: T i

Bug is reopened,
was never confirmed

t ° Developer akes
riage e
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio Bug is closad
Issue is
= _A
QA nct satisfied QA verifies
with solution solution worked

REOPEN E’“g is reopened VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: e

Bug is reopened,
was never confirmed

t ° Developer akes
riage e
Ownership
° ° is changed Developer takes Development is
. i finished with bi
e Key question: which bugs psston i W g
Pessible resolutions:
hould we address first? |
DUPLICATE
snould we adadress 1rst: Dk ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved
QA nat satisfied QA verifies
with solution solution worked
REOPEN E’“g s reopened VERIFIED
Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L e
triage ==

e Key question: which bugs

should we address first? oupLcaTe P—
e “triage” is an analogy to i lfmr;mh .
medicine: which emergency __
pacajom RESOLVED

possessio

Issue is
= A
7 QA nat satisfied QA verifies
e p rst : with solution solution worked
(REOPEN)M VERIFIED

Bug is reopened
Bugisc

(CLOSED

room patient should you

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of

patients or casualties

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of

patients or casualties
e bug triage has the same definition, but with software defects

instead of wounds/illnesses

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of

patients or casualties
e bug triage has the same definition, but with software defects

instead of wounds/illnesses
e there are always
to address them

available

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
e bug triage has the same definition, but with software defects
instead of wounds/illnesses
e there are always available
to address them
e we must do cost-benefit analysis:
o How expensive is it to fix this bug?
o How expensive is it to not fix this bug?

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system
e intuition: severity = “cost of not fixing the bug”

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system

e intuition: severity = “cost of not fixing the bug”

e BugZillaseverity levels (varies by company/tool, but these typical):

Severity Meaning
Blocker Blocks further development and/or testing work
Critical Crashes, loss of data (internally, not your edit preview!) in a widely used and important component
Major Maijor loss of function in an important area
Normal Default/average
Minor Minor loss of function, or other problem that does not affect many people or where an easy workaround is present
Trivial Cosmetic problem like misspelled words or misaligned text which does not really cause problems

Enhancement | Request for a new feature or change in functionality for an existing feature

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to
prioritize between them

B

Defect report lifecycle: pp— \
nﬂually, ¢ ’="3

Definition: priority indicates the i developer will work on this
defect soon” (e.g., in the next sprint).
e related to, but officially differer
o intuition: if you have lots of
prioritize between them

_ /

Defect report lifecycle: pp—

. e .Wﬁ:ually,“ ="“a
Definition: priority indicates the i

defect
e related to, but officially differer
o intuition: if you have lots of
prioritize between them

B

developer will work on this

Qmeptional times.”

soon” (e.g., in the next sprint).

“As a rule of thumb, limit High
priority task assignments for a
single person to three, five in

/

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a

defect

e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to

prioritize between them

e severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to
prioritize between them
e severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports
o note that thisis a bit of an oversimplification:
“severity + priority = triage” is like “supply + demand = price”

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: T i

Bug is reopened,
was never confirmed

° t Developer akes
assignmen NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
VONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Developer ke RESOLVED
possessio Bug is closad
Issue is
A A
QA nct satisfied QA verifies
with solution solution worked

Bug is reopened

REOPEN VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: e

Bug is reopened,
was never confirmed

° t Developer akes
assignmen s
Ownership
° is changed Developer takes Development is
. i finished with bui
e Key question: who should — e
Pessible resolutions:
ﬁ t h . b ? FIXED
DUPLICATE
X IS ug . WONTFIX ASSIGNED

WORKSFORME

INVALID

REMIND Development is

LATER finished with bug

Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved A
QA nat satisfied QA verifies
with solution solution worked
Bug is reopened

REOPEN VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state (UNCONFIRMED
Bug is reopened,

Defect report lifecycle: 7 N
assignment

NEW

e Keyquestion:whoshould ™ lﬁ:i.i::i?“ o

ﬁX th'S bug? :DEE%&TE ASSIGNED
Definition: an assignment i lfm.&mh .
associates a developer with the iy

sk RESOLVED

responsibility of addressing a SN
defect report U e A=

REOPEN EUy & rengwned VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state (UNCONFIRMED
Bug is reopened,

Defect report lifecycle: 7 N
assignment

NEW

e Keyquestion:whoshould ™ lﬁ:i.i::i?“ o

ﬁX th'S bug? :DEE%&TE ASSIGNED
Definition: an assignment i lfm.&mh .
associates a developer with the iy

sk RESOLVED

responsibility of addressing a SN
defect report U e A=

REOPEN EUy & rengwned VERIFIED

Bug is reopened
Bug is closed

(CLOSED

e stateofthe artis “manual”

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state [UNCONFIRMED
Bug is reopened,

Defect report lifecycle: N
assignment

NEW

e Keyquestion:whoshould ™ l‘?f..:is”.?f“ o

ﬁX th'S bug? ‘EEE%&TE ASSIGNED
Definition: an assignment i lfm.ho;memh .
associates a developer with the N

gsisilon RESOLVED

responsibility of addressing a SN
defect report U e A=

REOPEN EUy & rengwned VERIFIED

e stateofthe artis “manual”

e usually based on who “owns” the L—\ (—WJ

relevant code (e

Defect report lifecycle:

resolution

New bug from a
usar with canconfirm
or a product without
UNCONFIRMED state

UNCONFIRMED

(

Bug confirmed or
receives enough votes

Bug is reopened,
was never confirmed

Developer akes
NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio Bug is closad
Issue is
A A
QA nct satisfied QA verifies
with solution solution worked

REOPEN Bug is reopened

Bug is reopened
Bug is closed

(CLOSED

VERIFIED

Defect report lifecycle:

resolution

e Key question: did we fix it?

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED

(

Bug confirmed or
receives enough votes

Bug is reopened,
was never confirmed

Developer akes
NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
VONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Developer ke RESOLVED A
possessio Bug is closad

Issue is

resolved

QA nct satisfied QA verifies

with solution solution worked

B ed
REOPEN ug s reopen VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: -
resolution

e Key question: did we fix it?

DUPLICATE
WONTFIX
WORKSFORME
INVALID
REMIND
LATER

ASSIGNED

Development is
finished with bug

RESOLVED

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it

Developer akes

VERIFIED

_,
=
=
=] <
c
m 35
c
=]
p
.
2
B
3
2 o
[
=1
-
o
S

(REOPEN

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle:

resolution

e Key question: did we fix it?

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it
Important: resolved need
not mean “fixed”

New bug from a
usar with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED

Y Developer takes
possession

Bug is reopened,
was never confirmed

NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio
ue 1s
) " A
QA nat satisfied QA verifies
with solution solution worked

REOPEN M VERIFIED

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle: possible resolutions

Bug/Zilla resolution options:
e FIXED (give commit #)

Defect report lifecycle: possible resolutions

Bug/Zilla resolution options:

FIXED (give commit #)

INVALID (bug report is invalid)

WONTFIX (we don't ever plan to fix it)
DUPLICATE (link to other bug report #)
WORKSFORME (cannot reproduce, a.k.a. “WFM”)
MOVED (give link: filed with wrong project)
NOTABUG (report describes expected behavior)
NOTOURBUG (is a bug, but not with our software)
INSUFFICIENTDATA (cannot triage/fix w/o more)

Defect report lifecycle: possible resolutions

BugZilla resolution options: (Thought question: A
FIXED (give commit #) what fraction of bug
INVALID (bug report is invalid) reports end up with
WONTFIX (we don't ever plan to fix i{ @achresolution?
DUPLICATE (link to other bug report #)

WORKSFORME (cannot reproduce, a.k.a. “WFM”)

MOVED (give link: filed with wrong project)

NOTABUG (report describes expected behavior)
NOTOURBUG (is a bug, but not with our software)
INSUFFICIENTDATA (cannot triage/fix w/o more)

Defect report lifecycle: possible resolutions

A significant fraction of submitted bug reports are spuri-

ous duplicates that describe already-rgported defects. Pre-
vious studies report that as many a§ 36% Jof bug reports
were duplicates or otherwise invalid [2}-O1 the 29,000 bug

reports used in the experiments in this paper, 25.9% were
identified as duplicates by the project developers.

[Jalbert et al. Automated Duplicate Detection for Bug Tracking Systems. DSN 2008. |

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: T i

Bug is reopened,
was never confirmed

) Developer akes
reopening e
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
VONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND 1. Development is
LATER finished with bug
Developer ke RESOLVED
possessio Bug is closad
QA net satisfied QA verifies
with solution solution worked

Bug is reopened

VERIFIED

[REOPEN

Bug is reopened
Bug is closed

CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle:
reopening

Pessible resolutions:

e Adefectreportthat was
previously resolved (e.g. o

WONTFIX
WORKSFORME

“FIXED”) may be if | e
later evidence suggests the

old resolution is no longer
adequate

Developer takes

(CLOSED

Defect report lifecycle:
reopening

e Adefectreportthat was

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED

Bug is reopened,
was never confirmed

previously resolved (e.g.

“FIXED”) may be if

later evidence suggests the
old resolution is no longer
adequate

Surely this only happens
rarely?

Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Developer takes

RESOLVED

QA nat satisfied
with solution

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle: reopening

This paper presents a comprehensive characteristic study

on incorrect bug-fixes from large operating system code bases

including Linux, OpenSolaris, FreeBSD and also a mature e M any ﬁxes are wrong,
— commercial OS developed and evolved over the last 712 years, even on mature. critical

investigating not only the mistake patterns during bug-fixing ’

but also the possible human reasons in the development pro- SoftW a re!

cess when these incorrect bug-fixes were introduced. Our
major findings include: (1) at least 14.8%~24.4% of sam-
pled fixes for post-release bugs ' in these large OSes are
incorrect and have made impacts to end users. (2) Among
several common bug types, concurrency bugs are the most
difficult to fix correctly: 39% of concurrency bug fixes are
incorrect. (3) Developers and reviewers for incorrect fixes
—3usually do not have enough knowledge about the involved
code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software

Defect report lifecycle: reopening

This paper presents a comprehensive characteristic study

on incorrect bug-fixes from large operating system code bases

including Linux, OpenSolaris, FreeBSD and also a mature ¢ Many ﬁxes are wrong,
—P commercial OS developed and evolved over the last 12 years, even on matu re, Critical

investigating not only the mistake patterns during bug-fixing

but also the possible human reasons in the development pro- SoftW a re!

cess when these incorrect bug-fixes were introduced. Our

major findings include: (1) at least 14.8%~24.4% of sam- () Imp“cati(_)n: reopening

pled fixes for post-release bugs ' in these large OSes are .

incorrect and have made impacts to end users. (2) Among bugS IScCOmMmmon

several common bug types, concurrency bugs are the most
difficult to fix correctly: 39% of concurrency bug fixes are
incorrect. (3) Developers and reviewers for incorrect fixes
—pusually do not have enough knowledge about the involved
code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software

Defect report lifecycle: reopening

This paper presents a comprehensive characteristic study

on incorrect bug-fixes from large operating system code bases

including Linux, OpenSolaris, FreeBSD and also a mature ¢ Many ﬁxes are wrong,
— commercial OS developed and evolved over the last 12 years, iti

investigating not only the mistake patterns during bug-fixing even on matu re, Crltlcal

but also the possible human reasons in the development pro- Softwa re!

cess when these incorrect bug-fixes were introduced. Our

major findings include: (1) at least 14.8%~24.4% of sam- () Imp“cati(_)n: reopening

pled fixes for post-release bugs ' in these large OSes are .

incorrect and have made impacts to end users. (2) Among bugS IScommon

several common bug types, concurrency bugs are the most

difficult to fix correctly: 39% of concurrency bug fixes are O |mp0rta nce Of

incorrect. (3) Developers and reviewers for incorrect fixes . .
—pusually do not have enough knowledge about the involved regreSS|0n teStlng!

code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software

New bug from a
usar with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: T i
fixing

Bug is reopened,
was never confirmed

NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio Bug is closed
Issue is
e _A
QA nct satisfied QA verifies
with solution solution worked

REOPEN Bug is reopened

Bug is reopened
Bug is closed

(CLOSED

VERIFIED

New bug from a
user with canconfirm

or a product without
UNCONFIRMED state (UNCONFIRMED

Defect report lifecycle: L =
fixing =

e Key question: once we have
a good defect report, how |anes

WORKSFORME
INVALID

do we figure out how to oegmn o

LATER

resolve the defect? T

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L =
fixing .-

e Key question: once we have
a good defect report, how |anes

WORKSFORME
INVALID

do we figure out how to

LATER

resolve the defect? o ——
o Thisisdebugging

(CLOSED

New bug from a
user with canconfirm

or a product without
UNCONFIRMED state (UNCONFIRMED

Bug is reopened,

Defect report lifecycle: -
fixing s

vew
e Key question: once we have m@” li“iﬁ:i?“
a good defect report, how [siere assiGED
do we figure out how to V:KS lmm:?“
resolve the defect? . ——

o Thisisdebugging = AL
o Rest of today’s lecture + U e A=

all of Friday’s lecture on D G

debugging \—\ (—WJ

(CLOSED

was never confirmed

Development is
finished with bug

Debugging (Part 1/2)

Today’s agenda:

e Whatis abug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o deltadebugging

o debuggers

Debugging: what makes it difficult?

Debugging: what makes it difficult?

e modern software is unimaginably huge

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams
o you will be asked to fix bugs in very large software!

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams
o you will be asked to fix bugs in very large software!
e Techniques developed based on smaller code bases simply do not
apply or scale to larger code bases

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams
o you will be asked to fix bugs in very large software!
e Techniques developed based on smaller code bases simply do not
apply or scale to larger code bases
o Techniques from the 1980s or your habits from classes

How big are programs, really?

hundred
thousand

(@]
N
©
S
(¢}
[
~]
|

simple iPhone game app I 0.01

Unix v1.0 0.01
1971
Win32/Simile virus I 001
average iPhone app - 0.04 i
Pacemaker - 0.08

Photoshop v. 1.0
1990

web browser

©
4

Quake 3 engine GAME
3D Video game system
Space Shuttle MACHINE

a million lines of code

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

hundred
thousand

simple iPhone game app
Unix v 1.0

1971

Win32/Simile virus

average iPhone app
Pacemaker
Photoshop v. 1.0

1990

Camino
web browser

Quake 3 engine

3D Video game system
Space Shuttle

a million lines of code

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

0

) (

oo
B oo
I

\

0.08

2

3 4 5

IP1 starter code
~2,000 lines

APP

BROWSER

GAMI

MACHINE

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

thousand 0 1 ’ ’ ' ’ } i
simple iPhone game app I 0.01
Unixv1.0 0.0l
Win32/Simile vitl*?.:sl [M d I I Of
average iPhone app - 004 COVGY.tOWﬂ . APP
Pacemaker

~16,000 lines

||\ o
o
(o3]
o
.

Photoshop v. 1.0

1990
Camino | 2
web browser '
Quake 3 engine GAMI
3D Video game system
Space Shuttle MACHINE

a million lines of code

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

HD DVD Player on XBox
(just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

Linux kernel 2.6.0
2003

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windows NT 3.5
1993

Firefox
latest version

. 4.7
- 5

. e
K

-

! \

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

HD DVD Player on XBox

(just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

Linux kernel 2.6.0
2003

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windows NT 3.5
1993

Firefox
latest version

. 4.7

-] Chrome at ~7M LoC is ~400x
bigger than covey.town

—— up
est
- 6‘5
mel®
.

a~

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?
D D e Tre ploren . 47

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

25
Linux kernel 2.6.0 :

7000 [Windows 2000 ﬂ

Google Chrome Microsoft Office for Mac
latest 6.0 — “pt 2006 30

es’
World of WarCraft - Symbian
server only 0.0 mobile operating system 180%
Boeing 787 Windows 7 ’_138
avionics & online support systems only 6.5 2009 /
Windows NT 3.5 iy A1 < / 0
1993 <’ (
Firefox . Microsoft Office 2013 .
latest version 9.7

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

HD DVD Player on XBox
(just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

Linux kernel 2.6.0
2003

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windows NT 3.5
1993

Firefox
latest version

. 4.7

Chrome is small compared to

even old versions of Windows!

- 5 Microsoft Office 2001
Windows 2000
EEEEE -

Microsoft Office for Mac
6./ —uP 2006

| est
11 oo
5.5 mobile operating system
- Windows 7
6.5 2009
Windows XP
pEl® 2001

I=\

Microsoft Office 2013

! \

L 1V, Z ov

“4u

="\
TN T PR

/
-ll:\

10 20 0 a0

) |-

Dl |

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

Large riauroll vouder
total code

Windows Vista
2007

Microsoft Visual Studio 2012

Facebook

(including backend code)

US Army Future Combat System

fast battlefield network system (aborted)

Debian 5.0 codebase

free, open-source operating system

Mac OS X “Tiger”
v10.4

LTI T

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

Google Is 2 Billion Lines of Code—And It's All in One Place

SIARE GOOGLE IS 2 BILLION LINES OF
a CODE—ANDIT'S ALL IN ONE
- PIACE

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

Humans are poor at comprehending large scales

e covey.town 16 000
e google 2 000 000 000

Humans are poor at comprehending large scales

e covey.town 16 000
e google 2 000 000 000
e |magine that there is a bug somewhere, anywhere, in covey.town

Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o Imagine further that you can find that bug in one minute

Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o Imagine further that you can find that bug in one minute

e At thesamerate, it would take you more than a month to find it
in all of google

Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o Imagine further that you can find that bug in one minute

e At thesamerate, it would take you more than a month to find it
in all of google
o aone-hour bug on covey.town would take on google!

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically

e To effectively debug a problem, you should do the following:
o reproduce the issue yourself

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically

e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
reproduce the issue yourself
minimize the reproduction so that you can reason about it
the fault to a particular part of the program
possible fixes to find the right one

O
O
O
O

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program
o possible fixes to find the right one
o confirm that your fix actually resolves the issue

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the

reported symptoms themself

e “reported symptoms” = “the problem described in the defect
report”

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur
e |ots of bugs are resolved at this stage:

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur

e |ots of bugs are resolved at this stage:
o WORKSFORME is the BugZilla resolution for this

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur
e |ots of bugs are resolved at this stage:
o WORKSFORME is the BugZilla resolution for this
o especially bugs reported by users often do not get past this
stage: not enough information to reproduce the fault

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that

elicits the bug’s reported symptoms

e defect reports containing minimal failing examples are the gold
standard (but rare in practice)

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
e defect reports containing minimal failing examples are the gold
standard (but rare in practice)
e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was
running

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that

elicits the bug’s reported symptoms

e defect reports containing minimal failing examples are the gold
standard (but rare in practice)

e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was

running

e minimizing the reproduction helps the developer reason about

which part of the software might be responsible for the bug

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that

elicits the bug’s reported symptoms

e defect reports containing minimal failing examples are the gold
standard (but rare in practice)

e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was

running
e minimizing the reproduction helps the developer reason about

which part of the software might be responsible for the bug
o also useful for

Minimizing the reproduction

~

Definition: a minimal reproduction of ' Minimizing the reproduction

elicits the bug’s reported symptoms | is ‘3

e defect reports containing minima| small (but not minimal) input
standard (but rare in practice) ~ \ is often good enough y

e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was

running
e minimizing the reproduction helps the developer reason about

which part of the software might be responsible for the bug
o also useful for

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug

Fault localization

Definition: fault localization is the task of identifying source code

regions implicated in a bug

e “Thisregression test is failing. Which lines should we change to fix
things?”

Fault localization

Definition: fault localization is the task of identifying source code

regions implicated in a bug

e “Thisregression test is failing. Which lines should we change to fix
things?”

e Answer is not unique: there are often many places to fix a bug

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
e “Thisregression test is failing. Which lines should we change to fix
things?”
e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
e “Thisregression test is failing. Which lines should we change to fix
things?”
e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?
e While some tool support is available, state of the practice is manual

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
e “Thisregression test is failing. Which lines should we change to fix
things?”
e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?
e While some tool support is available, state of the practice is manual
o automated tools rank parts of the program by “ ”

Fault localization

Definition: fault localization is the task of identifying source code

regions implicated in a bug

e “Thisregression test is failing. Which lines should we change to fix

things?”

e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?

e While some tool support is available, state of the practice is manual
o automated tools rank parts of the program by “ ”
o suspiciousness computed by how often each part of the

program is by passing vs. failing tests

Testing and confirming your fix

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

e another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

e another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

o easy mistake to make: write or modify a test in such a way that
you end up no longer reproducing the bug while “fixing” the bug

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

e another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

o easy mistake to make: write or modify a test in such a way that
you end up no longer reproducing the bug while “fixing” the bug

o best practice: commit tests separately

Debugging (Part 2/2)

Two-lecture agenda:

e Whatis abug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o deltadebugging

o debuggers

Review: steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program
o possible fixes to find the right one
o confirm that your fix actually resolves the issue

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

e all of these strategies have one in common: treat
debugging as a series of hypothesis tests

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

e all of these strategies have one in common: treat
debugging as a series of hypothesis tests

o hypothesis testing is one of the key components of the
scientific method:

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging
e all of these strategies have one in common: treat
debugging as a series of hypothesis tests
o hypothesis testing is one of the key components of the
scientific method:
1. guess why something happens, devise an experiment to
test if your guess is correct, then run the experiment
2. repeat step 1 until you've figured it out

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”
o ideally, you'd also like your guesses to be easy to test

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”
o ideally, you'd also like your guesses to be easy to test

e each time you make such a guess, you need to design an
experiment to check if the guess is correct

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”
o ideally, you'd also like your guesses to be easy to test

e each time you make such a guess, you need to design an
experiment to check if the guess is correct

o most of the debugging strategies we'll talk about are ways to
check if a particular guess is correct

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a

partlculzj\r way (Bigdifference betweenyou)
o “falsifiable” = “can be true or (") and

o ideally, you'd also like your g| anyone who knows how to
e each time you make such a gues{ program: the ability to apply the
experiment to check if the guess scientific method to coding)
o most of the debugging strategies we'll talk about are ways to
check if a particular guess is correct

