
Code Review
Martin Kellogg

Code Review

Today’s agenda:

● Finish slides on interviewing
● Reading Quiz
● What is code review (and why we do it)
● How to do a code review (with empirical evidence)
● Good and bad examples of code review comments

Interview format

● “For about 45 minutes you meet with a single technical
interviewer, who will present a programming problem and ask
you to work out one or more solutions to it.”
○ some variations of this, such as “tell me about a technical

problem you’ve solved” and “design (but don’t implement) a
solution to this problem”

● Interviewer perspective: “you know in the first ten minutes”

Example interview problem

“The Two-Sum Problem”:

● You are given an array of n integers and a number k. Determine if
there is a pair of elements in the array that sums to exactly k.

● For example, given the array [1, 3, 7] and k = 8, the answer is
“yes,” but given k = 6 the answer is “no.”

Example interview problem

“The Two-Sum Problem”:

● You are given an array of n integers and a number k. Determine if
there is a pair of elements in the array that sums to exactly k.

● For example, given the array [1, 3, 7] and k = 8, the answer is
“yes,” but given k = 6 the answer is “no.”

What do you do first?
(Hint: it’s not trying to
solve the problem!)

Example interview problem: ask questions!

Example interview problem: ask questions!

● Can you modify the array? Yes.
● Do we know something about the range of the numbers in the array? No, they

can be arbitrary integers.
● Are the array elements necessarily positive? No, they can be positive, negative,

or zero.
● Do we know anything about the value of k relative to n or the numbers in the

array? No, it can be arbitrary.
● Can we consider pairs of an element and itself? No, the pair should consist of

two different array elements.
● Can the array contain duplicates? Sure, that's a possibility.
● What about integer overflow? Don't worry about it.

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works
● e.g., for the two-sum problem, you could write:

boolean sumsToTarget (int[]arr, int k) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] + arr[j] == k) {
 return true;
 } } }
 return false;
}

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works
● e.g., for the two-sum problem, you could write:

boolean sumsToTarget (int[]arr, int k) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] + arr[j] == k) {
 return true;
 } } }
 return false;
}

Usually at this point the
interviewer will ask you
about how good this
solution is.

Example interview problem: brute force

● don’t prematurely optimize your solution: write something that works
● e.g., for the two-sum problem, you could write:

boolean sumsToTarget (int[]arr, int k) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] + arr[j] == k) {
 return true;
 } } }
 return false;
}

Usually at this point the
interviewer will ask you
about how good this
solution is. O(n^2) time!

Example interview problem: be clever

● once you have something that works, try to come up with a clever solution

Example interview problem: be clever

● once you have something that works, try to come up with a clever solution
● e.g., for the two-sum problem, you might come up with:

boolean sumsToTarget (int[]arr, int k) {
 HashSet < Integer > values = new HashSet < Integer > ();
 for (int i = 0; i < arr.length; i++) {
 if (values.contains (k – A[i])) return true;
 values.add (A[i]);
 }
 return false;
}

Example interview problem: be clever

● once you have something that works, try to come up with a clever solution
● e.g., for the two-sum problem, you might come up with:

boolean sumsToTarget (int[]arr, int k) {
 HashSet < Integer > values = new HashSet < Integer > ();
 for (int i = 0; i < arr.length; i++) {
 if (values.contains (k – A[i])) return true;
 values.add (A[i]);
 }
 return false;
}

Why is this better?

Example interview problem

● there are lots of possible solutions to the problem
● part of your goal while you’re interviewing is showing that you

understand the trade-offs between them
● think of interviewing as a microcosm of software engineering:

○ if you don’t show them you know it, they’ll assume you don’t

Example interview problem

● there are lots of possible solutions to the problem
● part of your goal while you’re interviewing is showing that you

understand the trade-offs between them
● think of interviewing as a microcosm of software engineering:

○ if you don’t show them you know it, they’ll assume you don’t
○ implication: even though the interview problem is small and

simple, you show try to show all the steps of the software
engineering process

Do Not Forget!

Even though the problem is small, you should:
● perform requirements elicitation (ask questions!)
● ask about both functional and non-functional properties
● talk about process considerations

○ e.g., mention maintainability when relevant
● write good quality code, including e.g., documentation, tests, etc.

○ mention things you’d be thinking about if this was part of a
real system

Interviewing mistakes

#1 Practicing on a computer
#2 Not rehearsing behavioral questions
#3 Not doing a mock interview
#4 Trying to memorize solutions
#5 Not solving problems out loud
#6 Rushing
#7 Sloppy coding (bad style)
#8 Not testing
#9 Fixing mistakes carelessly
#10 Giving up [Gayle McDowell, Cracking the Coding Interview]

Interviewing mistakes

#1 Practicing on a computer
#2 Not rehearsing behavioral questions
#3 Not doing a mock interview
#4 Trying to memorize solutions
#5 Not solving problems out loud
#6 Rushing
#7 Sloppy coding (bad style)
#8 Not testing
#9 Fixing mistakes carelessly
#10 Giving up [Gayle McDowell, Cracking the Coding Interview]

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.
It’s easy to sound unimpressive
if you haven’t thought about
your answers ahead of time.

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.

How can they tell
if you are nice?
lunch!

Behavioral questions

Remember, they want to know if you can communicate well and
whether you are nice
● implication: they will ask questions to try to find out!

○ What is your greatest weakness?
○ Tell me about a time you missed a deadline.
○ Tell me about a time you experienced a conflict with a

teammate.

How can they tell
if you are nice?

lunch!

Interviewing: the other side

Interviewing: the other side

● Choose the technical problem you ask carefully
○ Common solution: use the “best” interview question you’ve

ever been asked
○ Alternative: base the problem on something you personally

had to deal with at work
● Think through all the possible solutions to the problem
● Remember that it’s stressful for the person being interviewed!

Interviewing: does it work?

● The answer is that we don’t really know
● Technical interviews haven’t been studied in depth
● But they’re the industry standard, so we have to deal with them
● Open area of research!

Teams/Interviewing Takeaways

● How you organize your team can have a big impact on your
productivity

● Communication is key
● For the group project, especially, make sure you decide on how

you’ll make decisions (no one is the manager!)
● Interviewing is a microcosm of software engineering

○ Show the interviewer what you know, even if it seems like too
much for the problem at hand

Code Review

Today’s agenda:

● Finish slides on interviewing
● Reading Quiz
● What is code review (and why we do it)
● How to do a code review (with empirical evidence)
● Good and bad examples of code review comments

Reading Quiz: Code Review

Q1: TRUE or FALSE: Because aspects of software design are usually
a pure style issue or just a personal preference, the Google style
guide says that it is okay to ignore reviewer feedback that you
disagree with, as long as you are polite.

Q2: If you ask a developer to explain a piece of code that you don’t
understand while reviewing, that should usually result in:
A. a comment in the code review tool that explains the code
B. rewriting the code to make it more clear
C. a code comment explaining the code

Reading Quiz: Code Review

Q1: TRUE or FALSE: Because aspects of software design are usually
a pure style issue or just a personal preference, the Google style
guide says that it is okay to ignore reviewer feedback that you
disagree with, as long as you are polite.

Q2: If you ask a developer to explain a piece of code that you don’t
understand while reviewing, that should usually result in:
A. a comment in the code review tool that explains the code
B. rewriting the code to make it more clear
C. a code comment explaining the code

Reading Quiz: Code Review

Q1: TRUE or FALSE: Because aspects of software design are usually
a pure style issue or just a personal preference, the Google style
guide says that it is okay to ignore reviewer feedback that you
disagree with, as long as you are polite.

Q2: If you ask a developer to explain a piece of code that you don’t
understand while reviewing, that should usually result in:
A. a comment in the code review tool that explains the code
B. rewriting the code to make it more clear
C. a code comment explaining the code

Code Review

Today’s agenda:

● Finish slides on interviewing
● Reading Quiz
● What is code review (and why we do it)
● How to do a code review (with empirical evidence)
● Good and bad examples of code review comments

What is code review?

Definition: In a code review, another developer examines your
proposed change and explanation, offers feedback, and decides
whether to accept it.

What is code review?

Definition: In a code review, another developer examines your
proposed change and explanation, offers feedback, and decides
whether to accept it.

● There is significant tool support for “modern” code review
○ We’ll talk about this in more depth later in this lecture

Analogy: writing

Compare the effectiveness of:

● spell checking your own writing
● reading and editing your own writing
● having your writing be edited by someone else

Analogy: writing

Compare the effectiveness of:

● spell checking your own writing
● reading and editing your own writing
● having your writing be edited by someone else

Professional writers have editors; professional
software engineers have code reviewers

What is(n’t) “modern” code review?

● Historically, “code review” used to refer to what we now call code
inspection or holistic code review.

What is(n’t) “modern” code review?

● Historically, “code review” used to refer to what we now call code
inspection or holistic code review.

Definition: a holistic code review is a code review of an entire
component of a software system as a whole.

What is(n’t) “modern” code review?

● Historically, “code review” used to refer to what we now call code
inspection or holistic code review.

Definition: a holistic code review is a code review of an entire
component of a software system as a whole.

● Typically, “code inspection” suggests that a team of reviewers
is involved, while “holistic code review” suggests a single
reviewer (but these are connotations, not rules)

What is(n’t) “modern” code review?

● Historically, “code review” used to refer to what we now call code
inspection or holistic code review.

Definition: a holistic code review is a code review of an entire
component of a software system as a whole.

● Typically, “code inspection” suggests that a team of reviewers
is involved, while “holistic code review” suggests a single
reviewer (but these are connotations, not rules)

History fact: there was a
lot of interest (and
research) into code
inspection in the 80s/90s
(at the same time that
Waterfall was the
dominant methodology)

So then what is modern code review?

So then what is modern code review?

● Unlike code inspections or holistic reviews, modern code reviews
are performed at the changeset granularity

So then what is modern code review?

● Unlike code inspections or holistic reviews, modern code reviews
are performed at the changeset granularity

Definition: a modern code review is a review of a set of proposed
changes to a codebase, typically performed by another developer
who is already familiar with the code being changed

So then what is modern code review?

● Unlike code inspections or holistic reviews, modern code reviews
are performed at the changeset granularity

Definition: a modern code review is a review of a set of proposed
changes to a codebase, typically performed by another developer
who is already familiar with the code being changed

● Inductive argument for code quality:
○ if v(n) is good, and the diff between v(n) and v(n+1) is

good, then v(n+1) is good

So then what is modern code review?

● Unlike code inspections or holistic reviews, modern code reviews
are performed at the changeset granularity

Definition: a modern code review is a review of a set of proposed
changes to a codebase, typically performed by another developer
who is already familiar with the code being changed

● Inductive argument for code quality:
○ if v(n) is good, and the diff between v(n) and v(n+1) is

good, then v(n+1) is good

One reason you should care
about this lecture: you are
required to do modern code
reviews on all code that you
write for your group project

Modern code review: intuition

● “Given enough eyeballs, all bugs are shallow.” – Linus's Law

Modern code review: intuition

● “Given enough eyeballs, all bugs are shallow.” – Linus's Law
● Reviewer has:

○ different background, different experience
○ no preconceived idea of correctness
○ no bias because of “what was intended”

Modern code review: intuition

“Breadth of experience in an individual is essential to creativity and
hence to good engineering. … Collective diversity, or diversity of the
group - the kind of diversity that people usually talk about - is just as
essential to good engineering as individual diversity. … Those
differences in experience are the "gene pool" from which creativity
springs.”

– Bill Wulf, National Academy of Engineering President

Modern code review: the most common analysis

● Modern code review is considered a best practice almost
everywhere in industry

Modern code review: the most common analysis

"All code that gets submitted needs to be reviewed by at least one
other person, and either the code writer or the reviewer needs to
have readability in that language. Most people use Mondrian to do
code reviews, and obviously, we spend a good chunk of our time
reviewing code."

- Amanda Camp, Software Engineer, Google

Modern code review: the most common analysis

“At Yelp we use review-board. An engineer works on a branch and
commits the code to their own branch. The reviewer then goes
through the diff, adds inline comments on review board and sends
them back. The reviews are meant to be a dialogue, so typically
comment threads result from the feedback. Once the reviewer's
questions and concerns are all addressed they'll click "Ship It!" and
the author will merge it with the main branch for deployment the
same day.”

- Alan Fineberg, Software Engineer, Yelp

Modern code review: the most common analysis

“At Wizards we use Perforce for SCM. I work with stuff that manages
rules and content, so we try to commit changes at the granularity of
one bug at a time or one card at a time. Our team is small enough that
you can designate one other person on team as a code reviewer.
Usually you look at code sometime that week, but it depends on
priority. It’s impossible to write sufficient test harnesses for the
bulk of our game code, so code reviews are absolutely critical.”

- Jake Englund, Software Engineer, MtGO

Modern code review: the most common analysis

"At Facebook, we have an internally-developed web-based tool to aid the code review process.
Once an engineer has prepared a change, she submits it to this tool, which will notify the
person or people she has asked to review the change, along with others that may be interested
in the change – such as people who have worked on a function that got changed. At this point,
the reviewers can make comments, ask questions, request changes, or accept the changes. If
changes are requested, the submitter must submit a new version of the change to be reviewed.
All versions submitted are retained, so reviewers can compare the change to the original, or
just changes from the last version they reviewed. Once a change has been submitted, the
engineer can merge her change into the main source tree for deployment to the site during the
next weekly push, or earlier if the change warrants quicker release."

 Ryan McElroy, Software Engineer, Facebook

Modern code review: the most common analysis

● Modern code review is considered a best practice almost
everywhere in industry

● While each place has their own way of doing reviews, the broad
strokes are common between companies

Modern code review: benefits

Modern code review: benefits

● > 1 person has seen every piece of code
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)

Modern code review: benefits

● > 1 person has seen every piece of code
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)

● Forcing function for documentation and code improvements
○ Authors must articulate their decisions
○ Prospect of a review raises your quality threshold

Modern code review: benefits

● > 1 person has seen every piece of code
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)

● Forcing function for documentation and code improvements
○ Authors must articulate their decisions
○ Prospect of a review raises your quality threshold

● Inexperienced personnel get experience without hurting quality
○ Pairing them up with experienced developers
○ Can learn by being a reviewer as well

● > 1 person has seen every piece of code
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)

● Forcing function for documentation and code improvements
○ Authors must articulate their decisions
○ Prospect of a review raises your quality threshold

● Inexperienced personnel get experience without hurting quality
○ Pairing them up with experienced developers
○ Can learn by being a reviewer as well

Modern code review: benefits

Non-goal: assessing whether
the author is good at their job
● managers/HR shouldn’t be

involved in code review

Modern code review: benefits by the numbers

Modern code review: benefits by the numbers

● Average defect detection rates higher than testing
● 11 programs developed by the same group of people

○ First 5 without reviews: average 4.5 errors / 100 LoC
○ Remaining 6 with reviews: average 0.82 errors / 100 LoC
○ Errors reduced by > 80%.

● IBM's Orbit project: 500,000 lines, 11 levels of inspections.
Delivered early with 1% of the predicted errors.

● After AT&T introduced reviews, 14% increase in productivity and
a 90% decrease in defects.

(From Steve McConnell’s Code Complete)

http://www.amazon.com/exec/obidos/ASIN/0735619670/codinghorror-20

Code Review

Today’s agenda:

● Finish slides on interviewing
● Reading Quiz
● What is code review (and why we do it)
● How to do a code review (with empirical evidence)
● Good and bad examples of code review comments

Author checklist before sending out a CL

Author checklist before sending out a CL

● Review it yourself

Author checklist before sending out a CL

● Review it yourself
● Make sure the diff is clean

Author checklist before sending out a CL

● Review it yourself
● Make sure the diff is clean

Avoid:
● extraneous whitespace changes
● debugging code
● commented-out code
● style guide violations
● undocumented code
● etc.

Author checklist before sending out a CL

● Review it yourself
● Make sure the diff is clean
● Choose the right reviewers

Author checklist before sending out a CL

● Review it yourself
● Make sure the diff is clean
● Choose the right reviewers

Factors to consider in a reviewer:
● availability (how many reviews

are they already working on?)
● code ownership
● code expertise
● readability

Author checklist before sending out a CL

● Review it yourself
● Make sure the diff is clean
● Choose the right reviewers

Factors to consider in a reviewer:
● availability (how many reviews

are they already working on?)
● code ownership
● code expertise
● readability

Aside: “readability”

How to do a code review: Google’s principles

How to do a code review: Google’s principles

● Technical facts and data overrule opinions and personal
preferences.

How to do a code review: Google’s principles

● Technical facts and data overrule opinions and personal
preferences.

● On matters of style, the style guide is the absolute authority

How to do a code review: Google’s principles

● Technical facts and data overrule opinions and personal
preferences.

● On matters of style, the style guide is the absolute authority
● Aspects of software design are almost never a pure style issue or

just a personal preference.

How to do a code review: Google’s principles

● Technical facts and data overrule opinions and personal
preferences.

● On matters of style, the style guide is the absolute authority
● Aspects of software design are almost never a pure style issue or

just a personal preference.
○ weigh options on principles, not simply by personal opinion

How to do a code review: Google’s principles

● Technical facts and data overrule opinions and personal
preferences.

● On matters of style, the style guide is the absolute authority
● Aspects of software design are almost never a pure style issue or

just a personal preference.
○ weigh options on principles, not simply by personal opinion

● If no other rule applies, then the reviewer may ask the author to
be consistent with what is in the current codebase

How to do a code review: Google’s principles

● Technical facts and data overrule opinions and personal
preferences.

● On matters of style, the style guide is the absolute authority
● Aspects of software design are almost never a pure style issue or

just a personal preference.
○ weigh options on principles, not simply by personal opinion

● If no other rule applies, then the reviewer may ask the author to
be consistent with what is in the current codebase

● reviewers should favor approving a CL once it is in a state where
it definitely improves the overall code health of the system

How to do a code review: Google’s principles

● I’ll add one more:
○ Don’t be a jerk

What to look for in a code review

● Design/complexity:

What to look for in a code review

● Design/complexity:
○ Does this change belong in this code, or somewhere else?

What to look for in a code review

● Design/complexity:
○ Does this change belong in this code, or somewhere else?
○ Are all the parts of the change related enough, or should this

really be two (or more) PRs

What to look for in a code review

● Design/complexity:
○ Does this change belong in this code, or somewhere else?
○ Are all the parts of the change related enough, or should this

really be two (or more) PRs
○ Is it easy to understand how the parts fit together?

What to look for in a code review

● Design/complexity:
○ Does this change belong in this code, or somewhere else?
○ Are all the parts of the change related enough, or should this

really be two (or more) PRs
○ Is it easy to understand how the parts fit together?
○ Does each unit of code (class, method, etc.) follow good

code-level design principles?

What to look for in a code review

● Design/complexity:
○ Does this change belong in this code, or somewhere else?
○ Are all the parts of the change related enough, or should this

really be two (or more) PRs
○ Is it easy to understand how the parts fit together?
○ Does each unit of code (class, method, etc.) follow good

code-level design principles?
○ Is it over-engineered?

Aside: over-engineering

Definition: a design is over-engineered if it anticipates problems for
which will never occur in practice

Aside: over-engineering

Definition: a design is over-engineered if it anticipates problems for
which will never occur in practice

● over-engineered code is harder to change, because it has
abstractions that aren’t necessary

Aside: over-engineering

Definition: a design is over-engineered if it anticipates problems for
which will never occur in practice

● over-engineered code is harder to change, because it has
abstractions that aren’t necessary

● defense against over-engineering: do not add an abstraction to
deal with a purely theoretical problem
○ demand to see evidence that a problem actually exists!

Aside: over-engineering

Definition: a design is over-engineered if it anticipates problems for
which will never occur in practice

● over-engineered code is harder to change, because it has
abstractions that aren’t necessary

● defense against over-engineering: do not add an abstraction to
deal with a purely theoretical problem
○ demand to see evidence that a problem actually exists!

Large danger of over-engineering in
code reviews: designing for changes
that you don’t know whether you
will need. Advice: err on the side of
not supporting such changes

What to look for in a code review

● Functionality/testing:

What to look for in a code review

● Functionality/testing:
○ Is it clear what the change is supposed to do?

What to look for in a code review

● Functionality/testing:
○ Is it clear what the change is supposed to do?
○ Are there tests? Are the tests testing the right thing?

What to look for in a code review

● Functionality/testing:
○ Is it clear what the change is supposed to do?
○ Are there tests? Are the tests testing the right thing?
○ Is it a change to a user interface? If so, has someone actually

looked at the new UI?

What to look for in a code review

● Functionality/testing:
○ Is it clear what the change is supposed to do?
○ Are there tests? Are the tests testing the right thing?
○ Is it a change to a user interface? If so, has someone actually

looked at the new UI?

Especially relevant for
course projects, since
Covey.Town is UI-heavy

What to look for in a code review

● Functionality/testing:
○ Is it clear what the change is supposed to do?
○ Are there tests? Are the tests testing the right thing?
○ Is it a change to a user interface? If so, has someone actually

looked at the new UI?
○ Is the code doing something difficult to understand (such as

concurrency)?

What to look for in a code review

● Functionality/testing:
○ Is it clear what the change is supposed to do?
○ Are there tests? Are the tests testing the right thing?
○ Is it a change to a user interface? If so, has someone actually

looked at the new UI?
○ Is the code doing something difficult to understand (such as

concurrency)?
■ If so, pay extra attention and prove to yourself that it is

correct.

How to write code review comments

How to write code review comments

● Be kind, courteous, and respectful.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.

“In general it is the developer’s
responsibility to fix a CL, not the
reviewer’s”

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.
● Insist developers simplify code or add code comments instead of

just explaining the complexity to you.

How to write code review comments

● Be kind, courteous, and respectful.
● Explain your reasoning.
● Balance giving explicit directions with just pointing out problems

and letting the developer decide.
● Insist developers simplify code or add code comments instead of

just explaining the complexity to you.

“Explanations written only in the
code review tool are not helpful
to future code readers”

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.

Usually authors treat comments
without a severity level as must fix

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.
○ Nit: This is a minor thing. Technically you should do it, but it

won’t hugely impact things.

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.
○ Nit: This is a minor thing. Technically you should do it, but it

won’t hugely impact things.
○ Optional: I think this may be a good idea, but it’s not strictly

required.

How to write code review comments: severity

● Label comments with their severity, to avoid misunderstandings:
○ Must Fix: I don’t think I can approve this CL until this problem

is fixed, even if everything else is perfect.
○ Nit: This is a minor thing. Technically you should do it, but it

won’t hugely impact things.
○ Optional: I think this may be a good idea, but it’s not strictly

required.
○ FYI: I don’t expect you to do this in this CL, but you may find

this interesting to think about for the future.

Common mistakes to avoid as a reviewer

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.

If you get pushback on a suggestion,
take the time to understand why

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.

Try to get back to the author within
“one business day”, whatever that
means for your team

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax

Common mistake: “LGTM” everything
for the sake of speed

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent

I’ve had reviewers ask for one thing, which I do,
and then ask for something completely different
a week later. Read your previous review!

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent
● Letting complexity through with a promise to clean up later

Common mistakes to avoid as a reviewer

● Being condescending, especially if you’re wrong.
● Taking too long to complete a review.
● Being too lax
● Being inconsistent
● Letting complexity through with a promise to clean up later

Doesn’t usually happen! If
the problem is serious,
insist on fixing it now!

Common mistakes to avoid as an author

Common mistakes to avoid as an author

● Respond to every comment

Making a code change
counts as a response!
Don’t write “fixed” or
similar on every comment.

Common mistakes to avoid as an author

● Respond to every comment
● If you fix something in one place, fix it everywhere

As a reviewer, it is very
tedious to point out every
place that an author has
made the same mistake.

Common mistakes to avoid as an author

● Respond to every comment
● If you fix something in one place, fix it everywhere
● Assume good faith

Common mistakes to avoid as an author

● Respond to every comment
● If you fix something in one place, fix it everywhere
● Assume good faith
● Address comments by changing the code, not by explaining in

the review tool

Empirical guidelines for code review

Empirical guidelines for code review

● Recommendation:
Do not exceed 60
minute session

● Reason: focus
fatigue

Empirical guidelines for code review

● Recommendation:
Don’t review more
than 400 LoC per
hour

● Reason: at faster
paces, reviews get
too shallow

[Code Review at Cisco Systems. In J A Cohen et al.'s Best Kept Secrets of Peer Code Review, 2013.]

Empirical guidelines for code review

● Recommendation:
Don’t review more
than 400 LoC per
hour

● Reason: at faster
paces, reviews get
too shallow

[Code Review at Cisco Systems. In J A Cohen et al.'s Best Kept Secrets of Peer Code Review, 2013.]

Overall recommendation:
keep review sessions:
● under 1 hour, and
● under 400 LoC

Empirical guidelines for code review

Important to
review your own
code before giving
it to others

Code Review

Today’s agenda:

● Finish slides on interviewing
● Reading Quiz
● What is code review (and why we do it)
● How to do a code review (with empirical evidence)
● Good and bad examples of code review comments

Example comment: good or bad?

[Many of the examples in the following slides borrowed from Sandya Sankarram’s
“Unlearning toxic behaviors in a code review culture”]

https://medium.com/@sandya.sankarram/unlearning-toxic-behaviors-in-a-code-review-culture-b7c295452a3c
https://medium.com/@sandya.sankarram/unlearning-toxic-behaviors-in-a-code-review-culture-b7c295452a3c

Example comment: good or bad?

Example comment: good or bad?

BAD! comes off as
nitpicking and
condescending

Example comment: good or bad?

BAD! comes off as
nitpicking and
condescending

Example comment: good or bad?

BAD! comes off as
nitpicking and
condescending

BETTER: consolidate
the comment in one
place rather than
repeating yourself

Example comment: good or bad?

Example comment: good or bad?

BAD! frankly, this
is just rude. Use
your words!

Example comment: good or bad?

Example comment: good or bad?

OK: emojis and similar
“casual” language should
only be used to praise,
never to criticize

Example comment: good or bad?

anon-reviewer

I don’t mean we’re mean-spirited. I just mean that we are merciless.
You’ll notice that I left the comment “Beep!” on the imports of every
file you touched. What I meant was, “Your imports violate our
standard convention — we order them by built-ins, then third party,
and then project level,” but that was too much to type on every file.

Example comment: good or bad?

anon-reviewer

I don’t mean we’re mean-spirited. I just mean that we are merciless.
You’ll notice that I left the comment “Beep!” on the imports of every
file you touched. What I meant was, “Your imports violate our
standard convention — we order them by built-ins, then third party,
and then project level,” but that was too much to type on every file.

VERY BAD!
rude, condescending, and sarcastic.
Be helpful, not antagonistic

Example comment: good or bad?

anon-reviewer

This breaks when you enter a negative number. Can you please
address this case?

Example comment: good or bad?

anon-reviewer

This breaks when you enter a negative number. Can you please
address this case?

GOOD: straight to the
point, politely points
out a technical problem

Takeaways

● Code review is one of the best ways to prevent defects
○ You must do it during the course project (I will check!)

● Be nice as both an author and a reviewer
○ Respect each other and each other’s time

● One thing I’ll look for when assessing your group project is the
quality of your code reviews
○ If you’re unsure, you can ask the course staff to review your

reviews (in office hours)

