
Code-Level Design
Martin Kellogg

Code-level Design

Today’s agenda:

● Why does code-level design matter?
● Some general principles, with examples
● Break
● Automation and linting
● Our course style guide

Reading quiz: code-level design

Q1: The Joel Test has:
A. 12 yes/no questions
B. 6 multiple choice questions
C. one yes/no question
D. 30 true/false questions

Q2: TRUE or FALSE: Prettier is an opinionated JavaScript formatter
with few options, because each option is a possible point about which
engineers might disagree.

Reading quiz: code-level design

Q1: The Joel Test has:
A. 12 yes/no questions
B. 6 multiple choice questions
C. one yes/no question
D. 30 true/false questions

Q2: TRUE or FALSE: Prettier is an opinionated JavaScript formatter
with few options, because each option is a possible point about which
engineers might disagree.

Reading quiz: code-level design

Q1: The Joel Test has:
A. 12 yes/no questions
B. 6 multiple choice questions
C. one yes/no question
D. 30 true/false questions

Q2: TRUE or FALSE: Prettier is an opinionated JavaScript formatter
with few options, because each option is a possible point about which
engineers might disagree.

Code-level Design

Today’s agenda:

● Why does code-level design matter?
● Some general principles, with examples
● In-class exercise
● Automation and linting
● Our course style guide

Why does code-level design matter?

Why does code-level design matter?

● Software systems need to be understandable to humans

Why does code-level design matter?

● Software systems need to be understandable to humans
○ Maintenance is the largest part of the software lifecycle -

estimated to be 50-80% of total development cost
○ Reading code is one of the most time-consuming tasks that

software engineers engage in regularly

Coupling makes code hard to understand

Definition: Two pieces of code are coupled if a change to one requires
a change to the other. (Alternative term: connascence)

Coupling makes code hard to understand

Definition: Two pieces of code are coupled if a change to one requires
a change to the other. (Alternative term: connascence)

Two pieces of code might be coupled for many reasons:

Coupling makes code hard to understand

Definition: Two pieces of code are coupled if a change to one requires
a change to the other. (Alternative term: connascence)

Two pieces of code might be coupled for many reasons:
● names
● order of arguments
● algorithms
● meaning of data
● types

Coupling makes code hard to understand

Definition: Two pieces of code are coupled if a change to one requires
a change to the other. (Alternative term: connascence)

Two pieces of code might be coupled for many reasons:
● names
● order of arguments
● algorithms
● meaning of data
● types

If two pieces of code are coupled,
one must understand both to
modify either. Therefore, more
coupling = harder to understand.

Surprises make code hard to understand

Surprises make code hard to understand

● follow established conventions, especially for naming
○ varies by language and by codebase
○ do as others do
○ this includes bad conventions that otherwise violate the rules

I’m about to show you!

Surprises make code hard to understand

● follow established conventions, especially for naming
○ varies by language and by codebase
○ do as others do
○ this includes bad conventions that otherwise violate the rules

I’m about to show you!
● avoid “clever” implementations unless you really need them

○ also avoid premature optimization

Surprises make code hard to understand

● follow established conventions, especially for naming
○ varies by language and by codebase
○ do as others do
○ this includes bad conventions that otherwise violate the rules

I’m about to show you!
● avoid “clever” implementations unless you really need them

○ also avoid premature optimization
● try to make code as “greppable” as you can

○ ask yourself if someone using this code in the future will be
able to find the location you’re editing

Greppability

Suppose you have two database tables named shipping_addresses and
billing_addresses. You could get them this way:

const getTableName = (addressType: 'shipping' | 'billing') => {
 return ̀ ${addressType}_addresses`
}

Greppability

Suppose you have two database tables named shipping_addresses and
billing_addresses. You could get them this way:

const getTableName = (addressType: 'shipping' | 'billing') => {
 return ̀ ${addressType}_addresses`
}

Now suppose further that I’m
debugging something to do with the
shipping_addresses table, so I search the
codebase for “shipping_addresses”.
Will I find this code?

Greppability

Suppose you have two database tables named shipping_addresses and
billing_addresses. You could get them this way:

const getTableName = (addressType: 'shipping' | 'billing') => {
 return ̀ ${addressType}_addresses`
}

Now suppose further that I’m
debugging something to do with the
shipping_addresses table, so I search the
codebase for “shipping_addresses”.
Will I find this code? NO

Code-level Design

Today’s agenda:

● Why does code-level design matter?
● Some general principles, with examples
● In-class exercise
● Automation and linting
● Our course style guide

Some general code-level design principles

● use good names
● make your data meaningful
● one job per method
● don’t repeat yourself (DRY)
● avoid magic numbers/strings (don’t hardcode)

Some general code-level design principles

● use good names
● make your data meaningful
● one job per method
● don’t repeat yourself (DRY)
● avoid magic numbers/strings (don’t hardcode)

Use good names

● names are the only part of the documentation that’s actually
required :)

● follow naming conventions (avoid surprises)
● applies to everything that you name, including:

○ methods
○ variables
○ types/classes
○ files
○ constants

Use good names: example 1

var t : number

var l : number

Use good names: example 1

var temp : number

var loc : number

Use good names: example 1

var temp : Temperature

var loc : SensorLocation

Use good names: example 1

var temperature : Temperature

var location : SensorLocation

Use good names: example 2

function checkLine (line : string) : boolean

Use good names: example 2

function lineIsTooLong (line : string) : boolean

Naming principles

● use noun-like names for functions/methods that return a value

Naming principles

● use noun-like names for functions/methods that return a value

function diameter (c : Circle) : number

vs.

function calculateDiameter (c : Circle) : number

Naming principles

● use noun-like names for functions/methods that return a value

function diameter (c : Circle) : number

vs.

function calculateDiameter (c : Circle) : number

● use verb-like names only for methods that have side-effects

Naming principles

● use noun-like names for functions/methods that return a value

function diameter (c : Circle) : number

vs.

function calculateDiameter (c : Circle) : number

● use verb-like names only for methods that have side-effects

function printDiameter (c : Circle) : void

Some general code-level design principles

● use good names
● make your data meaningful
● one job per method
● don’t repeat yourself (DRY)
● avoid magic numbers/strings (don’t hardcode)

Make your data meaningful

Three decisions:

● Decide what part of the information in the "real world" needs to
be represented as data

● Decide how that information needs to be represented as data
● Document how to interpret the data in your computer as

information about the real world

Make your data meaningful: shirt example

● Suppose that I am wearing a red shirt, and I've decided I need to
represent that fact in my program.

● How should I represent that in my program?
● We need to decide:

Make your data meaningful: shirt example

● Suppose that I am wearing a red shirt, and I've decided I need to
represent that fact in my program.

● How should I represent that in my program?
● We need to decide:

○ how to represent shirts (including their color)
○ how to represent colors
○ how to represent my shirt

type Shirt = {
 /** the color of the shirt */
 color: Color
}

type Color = { ... }

/** My shirt */
const myShirt: Shirt

myShirt.color = red

Make your data meaningful: shirt example

Make your data meaningful: shirt example

type Shirt = {
 /** the color of the
shirt */
 color: Color
}
type Color = { ... }

/** My shirt */
const myShirt: Shirt
myShirt.color = red

my shirt is red

representation

interpretation

Make your data meaningful: shirt example

type Shirt = {
 /** the color of the
shirt */
 color: Color
}
type Color = { ... }

/** My shirt */
const myShirt: Shirt
myShirt.color = red

my shirt is red

representation

interpretation

How do we know these are connected?

Make your data meaningful: shirt example

type Shirt = {
 /** the color of the
shirt */
 color: Color
}
type Color = { ... }

/** My shirt */
const myShirt: Shirt
myShirt.color = red

my shirt is red

representation

interpretation

How do we know these are connected?

We have to write it down!

Make your data meaningful: xy example

interface BoundingBox {
 x: number;
 y: number;
 width: number;
 height: number;
};

???
representation

interpretation

Make your data meaningful: xy example

interface BoundingBox {
 x: number;
 y: number;
 width: number;
 height: number;
};

???
representation

interpretation

● What point do x and y represent?
● What units are these values in (pixels? feet?)
● Does y grow moving up or down?
● What is this “bounding”? How close is the box to the “bound” thing?

Make your data meaningful

Three decisions:

● Decide what part of the information in the "real world" needs to
be represented as data

● Decide how that information needs to be represented as data
● Document how to interpret the data in your computer as

information about the real world

Make your data meaningful

Three decisions:

● Decide what part of the information in the "real world" needs to
be represented as data

● Decide how that information needs to be represented as data
● Document how to interpret the data in your computer as

information about the real world

Make sure you write all of this down!
This is what comments are for.

Some general code-level design principles

● use good names
● make your data meaningful
● one job per method
● don’t repeat yourself (DRY)
● avoid magic numbers/strings (don’t hardcode)

One job per method

● Each class, and each method of that class, should have one job,
and only one job

One job per method

● Each class, and each method of that class, should have one job,
and only one job

● If your method has more than one job, split it into 2 methods.
Why?

One job per method

● Each class, and each method of that class, should have one job,
and only one job

● If your method has more than one job, split it into 2 methods.
Why?
○ You might want one part but not the other
○ It's easier to test a method that has only one job

● You call both of them if you need to (or write a method that does)

One job per method

● Each class, and each method of that class, should have one job,
and only one job

● If your method has more than one job, split it into 2 methods.
Why?
○ You might want one part but not the other
○ It's easier to test a method that has only one job

● You call both of them if you need to (or write a method that does)
● Same principle applies for classes

Some general code-level design principles

● use good names
● make your data meaningful
● one job per method
● don’t repeat yourself (DRY)
● avoid magic numbers/strings (don’t hardcode)

Don’t repeat yourself (DRY)

● If you need something more than once, give it a name and use
that name everywhere

Don’t repeat yourself (DRY)

● If you need something more than once, give it a name and use
that name everywhere

● Applies to:
○ constants/variables
○ methods (turn any differences between almost-clones into

parameters!)
○ code blocks (turn them into methods)
○ classes (use a superclass)

Don’t be this person!

Don’t repeat yourself: example

function testequal (testname: string, actualVal: T, correctVal: T) {
 test(testname, function () {
 expect(actualVal).toBe(correctVal) })
}

describe('tests for countOfLocalMorks', function () {
 testequal('empty crew',countOfLocalMorks(ship1),0)
 testequal('just Mork',countOfLocalMorks(ship2),1)
 testequal('just Mindy',countOfLocalMorks(ship3),0)
 testequal('two Morks',countOfLocalMorks(ship4),2)
 testequal('drone has no Morks',countOfLocalMorks(drone1),0)
})

Don’t repeat yourself: example

function testequal (testname: string, actualVal: T, correctVal: T) {
 test(testname, function () {
 expect(actualVal).toBe(correctVal) })
}

describe('tests for countOfLocalMorks', function () {
 testequal('empty crew',countOfLocalMorks(ship1),0)
 testequal('just Mork',countOfLocalMorks(ship2),1)
 testequal('just Mindy',countOfLocalMorks(ship3),0)
 testequal('two Morks',countOfLocalMorks(ship4),2)
 testequal('drone has no Morks',countOfLocalMorks(drone1),0)
})

function testship (testname: string, ship : Ship, correctVal: number) {
 testequal(testname, countOfLocalMorks(ship), correctVal);
}

Some general code-level design principles

● use good names
● make your data meaningful
● one job per method
● don’t repeat yourself (DRY)
● avoid magic numbers/strings (don’t hardcode)

Avoid magic numbers

● integer and float literals should usually not appear in complex
expressions (exception: x = x + 1 is always okay)

● same applies to string literals

Avoid magic numbers

● integer and float literals should usually not appear in complex
expressions (exception: x = x + 1 is always okay)

● same applies to string literals

Give them names!

Avoid magic numbers: examples

let salesprice = netPrice * 1.06

Avoid magic numbers: examples

let salesprice = netPrice * 1.06

this is a magic number:

Avoid magic numbers: examples

let salesprice = netPrice * 1.06

this is a magic number:
● no documentation of what it is
● if it needs to change, is this the

only place it’s used?

Avoid magic numbers: examples

let salesprice = netPrice * 1.06

const salesTaxRate = 1.06
let salesprice = netPrice * salesTaxRate

this is a magic number:
● no documentation of what it is
● if it needs to change, is this the

only place it’s used?

Avoid magic numbers: another example

● Suppose we are computing income tax in a state with four rates:
○ No tax on incomes less than $10,000
○ 10% on incomes between $10,000 and $20,000
○ 20% on incomes between $20,000 and $50,000
○ 25% on incomes greater than $50,000

Avoid magic numbers: another example

function grossTax(income : number): number {
 if ((0 <= income) && (income <= 10000)) {
 return 0
 } else if ((10000 < income) && (income <= 20000)) {
 return 0.10 * (income - 10000)
 } else if ((20000 < income) && (income <= 50000)) {
 return 1000 + 0.20 * (income - 20000)
 } else {
 return 7000 + 0.25 * (income - 50000)
 }
}

Avoid magic numbers: another example

function grossTax(income : number): number {
 if ((0 <= income) && (income <= 10000)) {
 return 0
 } else if ((10000 < income) && (income <= 20000)) {
 return 0.10 * (income - 10000)
 } else if ((20000 < income) && (income <= 50000)) {
 return 1000 + 0.20 * (income - 20000)
 } else {
 return 7000 + 0.25 * (income - 50000)
 }
}

What might change?
● boundaries of the

tax brackets
● number of

brackets

In-class exercise: rewrite to avoid magic numbers

function grossTax(income : number): number {
 if ((0 <= income) && (income <= 10000)) {
 return 0
 } else if ((10000 < income) && (income <= 20000)) {
 return 0.10 * (income - 10000)
 } else if ((20000 < income) && (income <= 50000)) {
 return 1000 + 0.20 * (income - 20000)
 } else {
 return 7000 + 0.25 * (income - 50000)
 }
}

Code-level Design

Today’s agenda:

● Why does code-level design matter?
● Some general principles, with examples
● In-class exercise
● Automation and linting
● Our course style guide

In-class exercise: rewrite to avoid magic numbers

function grossTax(income : number): number {
 if ((0 <= income) && (income <= 10000)) {
 return 0
 } else if ((10000 < income) && (income <= 20000)) {
 return 0.10 * (income - 10000)
 } else if ((20000 < income) && (income <= 50000)) {
 return 1000 + 0.20 * (income - 20000)
 } else {
 return 7000 + 0.25 * (income - 50000)
 }
}

In-class exercise: my solution, part 1
// defines the tax bracket for income lower < income <= upper.
// if upper is null, then lower < income (no upper bound)
type TaxBracket = {
 lower: number,
 upper: number | null,
 base : number,
 rate : number
}
let brackets : TaxBracket[] = [
 {lower:0, upper:10000, base:0, rate:0},
 {lower:10000, upper:20000, base:0, rate:0.10},
 {lower:20000, upper:50000, base:1000, rate:0.20},
 {lower:50000, upper: null, base:7000, rate:0.25}]

In-class exercise: my solution, part 2
// defines the incomes covered by a bracket function
function isInBracket(income : number, bracket : TaxBracket) : boolean {
 return (bracket.upper == null) ?
 (bracket.lower <= income) :
 ((bracket.lower <= income) && (income < bracket.upper))
}
function income2bracket(income : number,
 brackets : TaxBracket[]) : TaxBracket {
 return brackets.find(b0 => isInBracket(income, b0))
}
function taxByBracket(income : number, bracket : TaxBracket) : number {
 return bracket.base + bracket.rate * (income - bracket.lower)
}
function grossTax(income:number, brackets: TaxBracket[]) : number {
 return taxByBracket(income, income2bracket(income, brackets))
}

Avoid magic numbers: another example

● Which of the two is simpler?

Avoid magic numbers: another example

● Which of the two is simpler?
● Answer depends on who you ask:

○ code writer: magic numbers version is simpler

Avoid magic numbers: another example

● Which of the two is simpler?
● Answer depends on who you ask:

○ code writer: magic numbers version is simpler
○ code reader: magic numbers version is shorter, but no magic

numbers version is better documented. Toss up.

Avoid magic numbers: another example

● Which of the two is simpler?
● Answer depends on who you ask:

○ code writer: magic numbers version is simpler
○ code reader: magic numbers version is shorter, but no magic

numbers version is better documented. Toss up.
○ code maintainer who needs to make a change: magic

number version is difficult to deal with, no magic numbers
makes the change trivial

Avoid magic numbers: another example

● Which of the two is simpler?
● Answer depends on who you ask:

○ code writer: magic numbers version is simpler
○ code reader: magic numbers version is shorter, but no magic

numbers version is better documented. Toss up.
○ code maintainer who needs to make a change: magic

number version is difficult to deal with, no magic numbers
makes the change trivial

Who to optimize for?

Who to optimize for?

● The code writer: only if you expect to throw the code away after
you use it once.

Who to optimize for?

● The code writer: only if you expect to throw the code away after
you use it once.

Example: simple bash script to accomplish a specific, one-off task

Who to optimize for?

● The code writer: only if you expect to throw the code away after
you use it once.

● The code reader: any code you expect to keep. A good heuristic
that I use: am I going to check this into source control?

Who to optimize for?

● The code writer: only if you expect to throw the code away after
you use it once.

● The code reader: any code you expect to keep. A good heuristic
that I use: am I going to check this into source control?

● The code maintainer: any code that is likely to change. This is
most code that you’re writing in the real world!

Who to optimize for?

● The code writer: only if you expect to throw the code away after
you use it once.

● The code reader: any code you expect to keep. A good heuristic
that I use: am I going to check this into source control?

● The code maintainer: any code that is likely to change. This is
most code that you’re writing in the real world!

DANGER: premature optimization via over-engineering
don’t sacrifice readability or usability for maintainability!

Code-level Design

Today’s agenda:

● Why does code-level design matter?
● Some general principles, with examples
● In-class exercise
● Automation and linting
● Our course style guide

A surprise: non-standard formatting

What’s wrong with the following (Java) code?

public abstract class racecar {

private final int Number_of_gears = 6;

 public abstract void DRIVE();

 public int GetNumberOfGears(){return Number_of_gears;}

}

A surprise: non-standard formatting

What’s wrong with the following (Java) code?

public abstract class racecar {

private final int Number_of_gears = 6;

 public abstract void DRIVE();

 public int GetNumberOfGears(){return Number_of_gears;}

}

A surprise: non-standard formatting

What’s wrong with the following (Java) code?

public abstract class RaceCar {

 private final int NUMBER_OF_GEARS = 6;

 public abstract void drive();

 public int getNumberOfGears(){
 return NUMBER_OF_GEARS;
 }
}

A surprise: non-standard formatting

● Doing this ourselves is time-consuming and error-prone
● How do we decide which format is best?

A surprise: non-standard formatting

● Doing this ourselves is time-consuming and error-prone
● How do we decide which format is best?

Solution to both problems: use an automatic formatting tool

A surprise: non-standard formatting

● Doing this ourselves is time-consuming and error-prone
● How do we decide which format is best?

Solution to both problems: use an automatic formatting tool

● avoids flamewars about e.g., tabs vs spaces
● automatically enforced = we don’t have to think about it
● reduces surprises when reading code

Automated formatters

● There’s at least one for every language you are likely to be using

Automated formatters

● There’s at least one for every language you are likely to be using
● E.g.,:

○ Java has Spotless, GoogleJavaFormat, Checkstyle
○ Python has black, autopep8, yapf
○ Go has gofmt
○ JavaScript has prettier (which we’ll use in this class)

Automated formatters

● There’s at least one for every language you are likely to be using
● E.g.,:

○ Java has Spotless, GoogleJavaFormat, Checkstyle
○ Python has black, autopep8, yapf
○ Go has gofmt
○ JavaScript has prettier (which we’ll use in this class)

● Lesson: always use an automated formatter

Aside: “opinionated”

Definition: a tool is opinionated if it builds in assumptions about how
its target (e.g., your code for an automated formatter) should be

Aside: “opinionated”

Definition: a tool is opinionated if it builds in assumptions about how
its target (e.g., your code for an automated formatter) should be

A good automated formatter is opinionated: reduces intra-team
arguments about formatting.

Aside: “opinionated”

Definition: a tool is opinionated if it builds in assumptions about how
its target (e.g., your code for an automated formatter) should be

A good automated formatter is opinionated: reduces intra-team
arguments about formatting.

Automated formatters vs linters

Definition: a linter is a static code style checker

Automated formatters vs linters

Definition: a linter is a static code style checker

● Linters find style problems.
● Automated formatters fix style problems.

Automated formatters vs linters

Definition: a linter is a static code style checker

● Linters find style problems.
● Automated formatters fix style problems.

You’ll see both terms, and some linters also look for other mistakes.

We’ll use both prettier (an automated formatter) and ESLint (a
linter) in this course.

Code-level Design

Today’s agenda:

● Why does code-level design matter?
● Some general principles, with examples
● In-class exercise
● Automation and linting
● Our course style guide

Course style guide

https://web.njit.edu/~mjk76/teaching/cs490-au24/policies/style/

https://web.njit.edu/~mjk76/teaching/cs490-au24/policies/style/

Course style guide

https://web.njit.edu/~mjk76/teaching/cs490-au24/policies/style/

I expect you to follow this style guide for all assignments in this
course (including IP0!).

https://web.njit.edu/~mjk76/teaching/cs490-au24/policies/style/

Advertising

● I’m coaching the ICPC team this year, and I’d love to have any/all of
you participate
○ info session on Wednesday next week at 4pm, GITC 3600
○ ICPC is a team programming contest

■ excellent prep for LeetCode-style technical interviews!
○ we’ll run weekly practices until the real contest in November (?)

Advertising

● I’m coaching the ICPC team this year, and I’d love to have any/all of
you participate
○ info session on Wednesday next week at 4pm, GITC 3600
○ ICPC is a team programming contest

■ excellent prep for LeetCode-style technical interviews!
○ we’ll run weekly practices until the real contest in November (?)

● YWCC advising asked me to advertise their senior day
○ starts at 11:30am today in the GITC lobby
○ stop by if you plan to graduate in Spring 2025

Action items before next class

● Finish Individual Project 0 by Monday AoE
● Mandatory readings for next class (see course calendar)
● Remaining OH for IP0 questions:

○ Lauren: today 4-5pm, Monday 6-7pm (GITC 4324)
○ Peter: Monday 10-11am (GITC 4403)
○ or ask your questions on Discord

