
Software Architecture
Martin Kellogg

Reading quiz: software architecture

Reading quiz: software architecture

Q1: Kästner’s article used different maps of a city as a metaphor for
different levels of abstraction. The maps were of which city?
A. Copenhagen C. Pittsburgh
B. New York City D. Tokyo

Q2: TRUE or FALSE: A weakness of architecture diagrams that the
author of “How architecture diagrams enable better conversations”
identified is that architecture diagrams are too hard to explain to new
team members.

Reading quiz: software architecture

Q1: Kästner’s article used different maps of a city as a metaphor for
different levels of abstraction. The maps were of which city?
A. Copenhagen C. Pittsburgh
B. New York City D. Tokyo

Q2: TRUE or FALSE: A weakness of architecture diagrams that the
author of “How architecture diagrams enable better conversations”
identified is that architecture diagrams are too hard to explain to new
team members.

Reading quiz: software architecture

Q1: Kästner’s article used different maps of a city as a metaphor for
different levels of abstraction. The maps were of which city?
A. Copenhagen C. Pittsburgh
B. New York City D. Tokyo

Q2: TRUE or FALSE: A weakness benefit of architecture diagrams that
the author of “How architecture diagrams enable better conversations”
identified is that architecture diagrams are too hard useful for
explaining the system to new team members.

Software Architecture

Today’s agenda:

● Architecture vs Design
● Architecture diagrams
● What makes an architecture good
● Architectural styles (with examples)

Software Architecture: motivation

Software Architecture: motivation

“There are two ways of constructing a software design:

Software Architecture: motivation

“There are two ways of constructing a software design:
● one way is to make it so simple that there are obviously no

deficiencies

Software Architecture: motivation

“There are two ways of constructing a software design:
● one way is to make it so simple that there are obviously no

deficiencies
● the other is to make it so complicated that there are no obvious

deficiencies.”
- Tony Hoare

Software Architecture: motivation

“There are two ways of constructing a software design:
● one way is to make it so simple that there are obviously no

deficiencies
● the other is to make it so complicated that there are no obvious

deficiencies.”
- Tony Hoare

Our goals: separation of concerns and modularity

“Architecture” vs “Design”

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

D
ev

el
o

p
m

en
t

p
ro

ce
ss

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

Levels of abstraction

● Recall that an abstraction ignores some details to present a
simplified representation of reality

Levels of abstraction

● Recall that an abstraction ignores some details to present a
simplified representation of reality

● Different levels of abstraction are characterized by the amount of
details ignored

Levels of abstraction

● Recall that an abstraction ignores some details to present a
simplified representation of reality

● Different levels of abstraction are characterized by the amount of
details ignored
○ more abstract = ignore more details

Levels of abstraction

● Recall that an abstraction ignores some details to present a
simplified representation of reality

● Different levels of abstraction are characterized by the amount of
details ignored
○ more abstract = ignore more details
○ which details to ignore depends on your purpose (analogy:

what abstract values to choose in dataflow analysis?)

Levels of abstraction

● Recall that an abstraction ignores some details to present a
simplified representation of reality

● Different levels of abstraction are characterized by the amount of
details ignored
○ more abstract = ignore more details
○ which details to ignore depends on your purpose (analogy:

what abstract values to choose in dataflow analysis?)
● Implication: requirements have fewer details than code.

Architecture and design are somewhere in the middle. But where?

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

Architecture and
design are the “glue”
between the code you
actually write and
what your software is
supposed to do

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

Definition: “the software
architecture of a program or
computing system is the
structure or structures of the
system, which comprise
software components, the
externally visible properties
of those components, and the
relationships among them”
[L. Bass, P. Clements and R. Kazman. Software Architecture in
Practice. Addison Wesley, 1999, ISBN 0- 201-19930-0.]

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

Architecture = high-level
view of the system

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

Definition: “the software
architecture of a program or
computing system is the
structure or structures of the
system, which comprise
software components, the
externally visible properties
of those components, and the
relationships among them”
[L. Bass, P. Clements and R. Kazman. Software Architecture in
Practice. Addison Wesley, 1999, ISBN 0- 201-19930-0.]

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

Definition: software design is
the structure or organization of
a particular component of your
system

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

Definition: software design is
the structure or organization of
a particular component of your
system
● the phrase “software

design” often refers to the
process of producing a
software design

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

Definition: software design is
the structure or organization of
a particular component of your
system
● the phrase “software

design” often refers to the
process of producing a
software design

● both “design” and
“architecture” are flexible
terms, used differently by
different people

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

“Architecture” vs “Design”: summary

● Architecture (what is developed?)
○ High-level view of the overall system:

■ What components do exist?
■ What are the protocols between components?
■ What type of storage etc.?

● Design (how are the components developed?)
○ Considers individual components:

■ Data representation
■ Interfaces, Class hierarchy
■ …

“Architecture” vs “Design”: analogy: offices

[Office design, New York Times][UW Gates Center, LMN]

“Design”“Architecture”

Software Architecture

Today’s agenda:

● Architecture vs Design
● Architecture diagrams
● What makes an architecture good
● Architectural styles (with examples)

Architecture: diagrams

Architecture: diagrams

[https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif]

[https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100]

https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif
https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100

Architecture: diagrams

[https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif]

[https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100]

● The traditional way to show
a software architecture is
via a diagram.

● Diagrams are common and
helpful.

● But, what does a box
represent? an arrow? a
layer? adjacent boxes? etc.

https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif
https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100

Architecture: diagrams

[https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif]

[https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100]

● The traditional way to show
a software architecture is
via a diagram.

● Diagrams are common and
helpful.

● But, what does a box
represent? an arrow? a
layer? adjacent boxes? etc.

https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif
https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100

Architecture: diagrams

[https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif]

[https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100]

● The traditional way to show
a software architecture is
via a diagram.

● Diagrams are common and
helpful.

● But, what does a box
represent? an arrow? a
layer? adjacent boxes? etc.

https://docs.oracle.com/cd/E19118-01/n1.sprovsys52/819-6519/images/osp-arch-diagram.gif
https://www.alibabacloud.com/blog/how-to-create-an-effective-technical-architectural-diagram_596100

Architecture: components and connectors

Architecture: components and connectors

Definition: Components define the basic computations comprising
the system and their behaviors
● e.g., abstract data types, filters, etc.

Architecture: components and connectors

Definition: Components define the basic computations comprising
the system and their behaviors
● e.g., abstract data types, filters, etc.

Definition: Connectors define the interconnections between
components
● e.g., procedure calls, event announcements, asynchronous

message sends, etc.

Architecture: components and connectors

Definition: Components define the basic computations comprising
the system and their behaviors
● e.g., abstract data types, filters, etc.

Definition: Connectors define the interconnections between
components
● e.g., procedure calls, event announcements, asynchronous

message sends, etc.

Note: the line between them
may be fuzzy. For example, a
connector might (de)serialize
data, but can it perform other,
richer computations?

Aside: UML diagrams

● You might have heard the terms “components” and “connectors”
before in the context of a UML diagram

Aside: UML diagrams

● You might have heard the terms “components” and “connectors”
before in the context of a UML diagram

● UML diagrams are just one of many modeling languages that you
can use to visualize an architecture or design

Aside: UML diagrams

● You might have heard the terms “components” and “connectors”
before in the context of a UML diagram

● UML diagrams are just one of many modeling languages that you
can use to visualize an architecture or design
○ UML is relatively popular, but I don’t see much value in

making you memorize it

Aside: UML diagrams

● You might have heard the terms “components” and “connectors”
before in the context of a UML diagram

● UML diagrams are just one of many modeling languages that you
can use to visualize an architecture or design
○ UML is relatively popular, but I don’t see much value in

making you memorize it
○ so, it’s not going to be the topic of this lecture

Aside: UML diagrams

● You might have heard the terms “components” and “connectors”
before in the context of a UML diagram

● UML diagrams are just one of many modeling languages that you
can use to visualize an architecture or design
○ UML is relatively popular, but I don’t see much value in

making you memorize it
○ so, it’s not going to be the topic of this lecture
○ if and when you do encounter UML, look up the symbols and

map them back to the concepts we’re discussing today

Software Architecture

Today’s agenda:

● Architecture vs Design
● Architecture diagrams
● What makes an architecture good
● Architectural styles (with examples)

Properties of a good architecture

Properties of a good architecture

● Satisfies functional and performance requirements
● Manages complexity
● Accommodates future change
● Is concerned with reliability, safety, understandability,

compatibility, robustness, etc.
○ but, the emphasis on these may more larger or smaller

depending on the domain

Properties of a good architecture

A good architecture helps with all (or at least many) of the following:

Properties of a good architecture

A good architecture helps with all (or at least many) of the following:
● System understanding: interactions between modules

Properties of a good architecture

A good architecture helps with all (or at least many) of the following:
● System understanding: interactions between modules
● Reuse: high-level view shows opportunity for reuse

Properties of a good architecture

A good architecture helps with all (or at least many) of the following:
● System understanding: interactions between modules
● Reuse: high-level view shows opportunity for reuse
● Construction: breaks development down into work items and

provides a path from requirements to code

Properties of a good architecture

A good architecture helps with all (or at least many) of the following:
● System understanding: interactions between modules
● Reuse: high-level view shows opportunity for reuse
● Construction: breaks development down into work items and

provides a path from requirements to code
● Evolution: high-level view shows evolution path

Properties of a good architecture

A good architecture helps with all (or at least many) of the following:
● System understanding: interactions between modules
● Reuse: high-level view shows opportunity for reuse
● Construction: breaks development down into work items and

provides a path from requirements to code
● Evolution: high-level view shows evolution path
● Management: helps understand work items and track progress

Properties of a good architecture

A good architecture helps with all (or at least many) of the following:
● System understanding: interactions between modules
● Reuse: high-level view shows opportunity for reuse
● Construction: breaks development down into work items and

provides a path from requirements to code
● Evolution: high-level view shows evolution path
● Management: helps understand work items and track progress
● Communication: provides vocabulary; a picture says 1000 words

Properties of a good architecture: modularity

Properties of a good architecture: modularity

Definition: modularity is the degree to which a system's components
may be separated and recombined, often with the benefit of
flexibility and variety in use

Properties of a good architecture: modularity

Definition: modularity is the degree to which a system's components
may be separated and recombined, often with the benefit of
flexibility and variety in use
● modularity is the key to good architecture

○ use of abstraction leads to modularity
○ choice of abstractions is extremely important!

Properties of a good architecture: modularity

Definition: modularity is the degree to which a system's components
may be separated and recombined, often with the benefit of
flexibility and variety in use
● modularity is the key to good architecture

○ use of abstraction leads to modularity
○ choice of abstractions is extremely important!

● to achieve modularity, you need:

Properties of a good architecture: modularity

Definition: modularity is the degree to which a system's components
may be separated and recombined, often with the benefit of
flexibility and variety in use
● modularity is the key to good architecture

○ use of abstraction leads to modularity
○ choice of abstractions is extremely important!

● to achieve modularity, you need:
○ strong cohesion within a component
○ loose coupling between components

Properties of a good architecture: modularity

Definition: modularity is the degree to which a system's components
may be separated and recombined, often with the benefit of
flexibility and variety in use
● modularity is the key to good architecture

○ use of abstraction leads to modularity
○ choice of abstractions is extremely important!

● to achieve modularity, you need:
○ strong cohesion within a component
○ loose coupling between components
○ and these properties should be true at each level

Properties of a good architecture: modularity

Definition: modularity is the degree to which a system's components
may be separated and recombined, often with the benefit of
flexibility and variety in use
● modularity is the key to good architecture

○ use of abstraction leads to modularity
○ choice of abstractions is extremely important!

● to achieve modularity, you need:
○ strong cohesion within a component
○ loose coupling between components
○ and these properties should be true at each level

Modularity also enables
decomposition, which:
● decreases size of tasks
● supports independent

testing and analysis
● enables separate work

assignments
● eases understanding

Modularity: cohesion

Definition: cohesion is how closely the operations in a module are
related

Modularity: cohesion

Definition: cohesion is how closely the operations in a module are
related
● Scale is usually “strong” vs “weak”

Modularity: cohesion

Definition: cohesion is how closely the operations in a module are
related
● Scale is usually “strong” vs “weak”
● Tight relationships improve clarity and understanding

Modularity: cohesion

Definition: cohesion is how closely the operations in a module are
related
● Scale is usually “strong” vs “weak”
● Tight relationships improve clarity and understanding
● A class with good abstraction usually has strong internal

cohesion

Modularity: cohesion

Definition: cohesion is how closely the operations in a module are
related
● Scale is usually “strong” vs “weak”
● Tight relationships improve clarity and understanding
● A class with good abstraction usually has strong internal

cohesion
● Avoid classes that have multiple, independent jobs

Modularity: cohesion

Definition: cohesion is how closely the operations in a module are
related
● Scale is usually “strong” vs “weak”
● Tight relationships improve clarity and understanding
● A class with good abstraction usually has strong internal

cohesion
● Avoid classes that have multiple, independent jobs

○ and especially avoid “god” classes that control the entire
application!

○ such classes almost always have weak cohesion

Modularity: cohesion: strong or weak?
class Employee {

public:
…
FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;
…
bool IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);
…
SqlQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;
…

}

Modularity: cohesion: strong or weak?
class Employee {

public:
…
FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;
…
bool IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);
…
SqlQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;
…

}

No problem for
cohesion here

Modularity: cohesion: strong or weak?
class Employee {

public:
…
FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;
…
bool IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);
…
SqlQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;
…

}

Probably a cohesion
problem here (what
does “valid” mean? is
it a property of being
an Employee?)

Modularity: cohesion: strong or weak?
class Employee {

public:
…
FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;
…
bool IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);
…
SqlQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;
…

}

Definitely a cohesion
problem here!
(SQL query
generation != model
of employee)

Modularity: coupling

Definition: the coupling of a software project is the kind and quantity
of interconnections among its modules

Modularity: coupling

Definition: the coupling of a software project is the kind and quantity
of interconnections among its modules
● scale: “loose” vs “tight”

Modularity: coupling

Definition: the coupling of a software project is the kind and quantity
of interconnections among its modules
● scale: “loose” vs “tight”
● modules that are loosely coupled (or uncoupled) are better than

those that are tightly coupled
○ the more tightly coupled two modules are, the harder it is to

work with them separately

Modularity: coupling: loose or tight?

Modularity: coupling: loose or tight?

Modularity: coupling: loose or tight?

This variant of the architecture
is much more loosely coupled.
For that reason, all other things
being equal, we’d prefer this
architecture over the one on
the previous slide.

Modularity: implementation

● How do you actually achieve modularity?

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

public interface: data and behavior of the object that can be seen
and executed externally by "client" code

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

public interface: data and behavior of the object that can be seen
and executed externally by "client" code
private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be directly
accessed

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

public interface: data and behavior of the object that can be seen
and executed externally by "client" code
private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be directly
accessed
client: code that uses your class/subsystem

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

public interface: data and behavior of the object that can be seen
and executed externally by "client" code
private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be directly
accessed
client: code that uses your class/subsystem

Example: a radio
● public interface is the speaker,

volume buttons, station dial
● private implementation is the

guts of the radio; the transistors,
capacitors, voltage readings,
frequencies, etc. that user should
not see

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

public interface: data and behavior of the object that can be seen
and executed externally by "client" code
private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be directly
accessed
client: code that uses your class/subsystem

Example: a radio
● public interface is the speaker,

volume buttons, station dial
● private implementation is the

guts of the radio; the transistors,
capacitors, voltage readings,
frequencies, etc. that user should
not see

Modularity: implementation

● How do you actually achieve modularity?
○ Implementation techniques: information hiding, interfaces

public interface: data and behavior of the object that can be seen
and executed externally by "client" code
private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be directly
accessed
client: code that uses your class/subsystem

Example: a radio
● public interface is the speaker,

volume buttons, station dial
● private implementation is the

guts of the radio: the transistors,
capacitors, voltage readings,
frequencies, etc. that a user
should not see

Software Architecture

Today’s agenda:

● Architecture vs Design
● Architecture diagrams
● What makes an architecture good
● Architectural styles (with examples)

Architecture: styles

Architecture: styles

Definition: an architectural style is a class of architectures sharing
common features

Architecture: styles

Definition: an architectural style is a class of architectures sharing
common features

An architectural style defines:

Architecture: styles

Definition: an architectural style is a class of architectures sharing
common features

An architectural style defines:
● the vocabulary of components and connectors

Architecture: styles

Definition: an architectural style is a class of architectures sharing
common features

An architectural style defines:
● the vocabulary of components and connectors
● constraints on the elements and their combination

Architecture: styles

Definition: an architectural style is a class of architectures sharing
common features

An architectural style defines:
● the vocabulary of components and connectors
● constraints on the elements and their combination

○ topological constraints (no cycles, etc.)
○ execution constraints (timing, etc.)

Architecture: styles

Definition: an architectural style is a class of architectures sharing
common features

An architectural style defines:
● the vocabulary of components and connectors
● constraints on the elements and their combination

○ topological constraints (no cycles, etc.)
○ execution constraints (timing, etc.)

By choosing a style, one gets all the
known properties of that style (for
any architecture in that style)
● for example: performance, lack of

deadlock, ease of making
particular classes of changes, etc.

Architecture: styles: pipe and filter

Architecture: styles: pipe and filter

Definition: a pipe-and-filter architecture consists of a series of
discrete stages (filters) connected end to end (by pipes)

Architecture: styles: pipe and filter

Definition: a pipe-and-filter architecture consists of a series of
discrete stages (filters) connected end to end (by pipes)
● e.g., a compiler:

Lexer Parser Optimizer Code Gen.

Architecture: styles: pipe and filter

Definition: a pipe-and-filter architecture consists of a series of
discrete stages (filters) connected end to end (by pipes)
● e.g., a compiler:

● Constraints:

Lexer Parser Optimizer Code Gen.

Architecture: styles: pipe and filter

Definition: a pipe-and-filter architecture consists of a series of
discrete stages (filters) connected end to end (by pipes)
● e.g., a compiler:

● Constraints:
○ pipes must compute local transformations
○ filters must not share state with other filters
○ there must be no cycles

Lexer Parser Optimizer Code Gen.

Architecture: styles: pipe and filter

Definition: a pipe-and-filter architecture consists of a series of
discrete stages (filters) connected end to end (by pipes)
● e.g., a compiler:

● Constraints:
○ pipes must compute local transformations
○ filters must not share state with other filters
○ there must be no cycles

Lexer Parser Optimizer Code Gen.

If these constraints are violated,
it’s not a pipe-and-filter
architecture anymore!
● you can’t necessarily tell this

from a picture, either

Architecture vs. reality

Architecture vs. reality

● Remember, the architecture is an abstraction of the real system

Architecture vs. reality

● Remember, the architecture is an abstraction of the real system
○ The code is often less clean than the architecture, with many

more little details

Architecture vs. reality

● Remember, the architecture is an abstraction of the real system
○ The code is often less clean than the architecture, with many

more little details
● The architecture is still useful (as long as the little details don’t

contradict it):

Architecture vs. reality

● Remember, the architecture is an abstraction of the real system
○ The code is often less clean than the architecture, with many

more little details
● The architecture is still useful (as long as the little details don’t

contradict it):
○ enables easy communication among team members

Architecture vs. reality

● Remember, the architecture is an abstraction of the real system
○ The code is often less clean than the architecture, with many

more little details
● The architecture is still useful (as long as the little details don’t

contradict it):
○ enables easy communication among team members
○ selected deviations can be explained more concisely and with

clearer reasoning

Architecture vs. reality: interfaces

● When looking at an architecture, small details do matter a lot at
the interface between components

Architecture vs. reality: interfaces

● When looking at an architecture, small details do matter a lot at
the interface between components
○ e.g., NASA lost a $125 million Mars orbiter because one

engineering team used metric units while another used
Imperial units

Architecture vs. reality: interfaces

● When looking at an architecture, small details do matter a lot at
the interface between components
○ e.g., NASA lost a $125 million Mars orbiter because one

engineering team used metric units while another used
Imperial units

● Architecture should warn about incompatibility between
components, which can be caused by (among other things):
○ mismatched interfaces
○ mismatched operating assumptions (e.g., one component

assumes Windows, the other assumes Linux)

Architecture: styles: other examples

Examples of architectural styles:
● pipe-and-filter
● client-server
● model-view-controller
● microservices

Architecture: styles: other examples

Examples of architectural styles:
● pipe-and-filter
● client-server
● model-view-controller
● microservices

Architecture: styles: client-server

Architecture: styles: client-server

Definition: a client-server architecture partitions tasks or workloads
between the providers of a resource or service (servers) and service
requesters (clients) [Wikipedia]

Architecture: styles: client-server

Definition: a client-server architecture partitions tasks or workloads
between the providers of a resource or service (servers) and service
requesters (clients) [Wikipedia]

● network doesn’t have to be the
internet (client and server can
even be on the same machine!)

Architecture: styles: client-server

Definition: a client-server architecture partitions tasks or workloads
between the providers of a resource or service (servers) and service
requesters (clients) [Wikipedia]

● network doesn’t have to be the
internet (client and server can
even be on the same machine!)

● example of decomposition:
server has its own architecture
internally, but we don’t see it

Architecture: styles: model-view-controller

Architecture: styles: model-view-controller

Definition: a model-view-controller architecture splits the project into
three parts:

Architecture: styles: model-view-controller

Definition: a model-view-controller architecture splits the project into
three parts:

Architecture: styles: model-view-controller

Definition: a model-view-controller architecture splits the project into
three parts:
● a single model, which is the application's dynamic data structure,

independent of the user interface

Architecture: styles: model-view-controller

Definition: a model-view-controller architecture splits the project into
three parts:
● a single model, which is the application's dynamic data structure,

independent of the user interface
● one or more views, which are representations

of information (e.g., charts, tables, or UIs)

Architecture: styles: model-view-controller

Definition: a model-view-controller architecture splits the project into
three parts:
● a single model, which is the application's dynamic data structure,

independent of the user interface
● one or more views, which are representations

of information (e.g., charts, tables, or UIs)
● one or more controllers, which accept input and

convert it to commands for the model or view

Architecture: styles: model-view-controller

Definition: a model-view-controller architecture splits the project into
three parts:
● a single model, which is the application's dynamic data structure,

independent of the user interface
● one or more views, which are representations

of information (e.g., charts, diagrams or tables)
● one or more controllers, which accept input and

convert it to commands for the model or view

Key advantage of MVC:
separates data representation
(Model), visualization/user
interface (View), and client
interaction (Controller)

Architecture: styles: model-view-controller

Definition: a model-view-controller architecture splits the project into
three parts:
● a single model, which is the application's dynamic data structure,

independent of the user interface
● one or more views, which are representations

of information (e.g., charts, diagrams or tables)
● one or more controllers, which accept input and

convert it to commands for the model or view

Key advantage of MVC:
separates data representation
(Model), visualization/user
interface (View), and client
interaction (Controller)

Architecture: styles: microservices

Architecture: styles: microservices

[https://microservices.io/]

https://microservices.io/

Architecture: styles: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

https://microservices.io/

Architecture: styles: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

https://microservices.io/

Architecture: styles: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

https://microservices.io/

Architecture: styles: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

https://microservices.io/

Architecture: styles: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

● Owned by a small team

https://microservices.io/

Architecture: styles: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

● Owned by a small team

Microservice architectures are
very common in industry. Why?

https://microservices.io/

Architecture: styles: microservices

Definition: a microservice architecture structures an application as a
collection of services that are:

[https://microservices.io/]

● Independently deployable

● Loosely coupled

● Organized around

business capabilities

● Owned by a small team
(makes management easy)

Microservice architectures are
very common in industry. Why?

https://microservices.io/

Architecture: styles: others

● This has been a whirlwind tour of a series of examples of
common architectural styles

Architecture: styles: others

● This has been a whirlwind tour of a series of examples of
common architectural styles
○ There are many others!

Architecture: styles: others

● This has been a whirlwind tour of a series of examples of
common architectural styles
○ There are many others!

● Key skill: understand what an architecture diagram is and is not
communicating

Architecture: styles: others

● This has been a whirlwind tour of a series of examples of
common architectural styles
○ There are many others!

● Key skill: understand what an architecture diagram is and is not
communicating
○ does communicate overall structure of the system

Architecture: styles: others

● This has been a whirlwind tour of a series of examples of
common architectural styles
○ There are many others!

● Key skill: understand what an architecture diagram is and is not
communicating
○ does communicate overall structure of the system
○ does communicate how components are related

Architecture: styles: others

● This has been a whirlwind tour of a series of examples of
common architectural styles
○ There are many others!

● Key skill: understand what an architecture diagram is and is not
communicating
○ does communicate overall structure of the system
○ does communicate how components are related
○ does not communicate internal structure of components

■ definitely does not tell you how to implement them!

Takeaways: architecture

● An architecture is a high-level view of a software system
● Good architectures communicate how the pieces of the system

(the components) fit together
● Many architectural styles exist, and you should have a passing

familiarity with several
○ common interview question: “on the whiteboard, design a

[insert architectural style here] system to do X”
● Architectural styles are a guide, but are not prescriptive

○ real systems usually deviate from their “whiteboard
architecture”, but deviations can be explained

