
12

begin

XRDS • w i n t e r 2 0 1 3 • V o l . 2 0 • n o . 2

m ost successful students
would not consider taking a
final exam without prepara-
tion. For students—under-

graduate and graduate—about to head
into industry, job interviews benefit
from the same level of consideration.
There are many books and articles on
interview skills, and most academic
career centers offer additional train-
ing. What this article covers is more
specific: A high level view of Google’s
engineering interviews.

The interview process at Google
has been designed (and redesigned!)
from the ground up to avoid false posi-
tives. We want to avoid making offers
to candidates who would not be suc-
cessful at Google. (The cost of this un-
fortunately includes more false nega-
tives, which are times when we turn
down somebody who would have done
well.) The recruiters and engineers you
will speak with want to see where you
shine, whether you can do the job, and
make sure you’re someone they want
to work with. This article is designed
to help both you and Google achieve
those goals—and help the interview be
an interesting, even pleasant, experi-
ence, too.

You will meet at least two types of
Googlers (Google employees) in the
interview process. The first are our
recruiters. Recruiters are nontechni-
cal employees who are experts at both
finding candidates and helping them
through the interview process. The
second are our technical interviewers;
they are full time engineers who volun-
teer to help with the hiring process by
interviewing candidates like you. All
of our Googlers come from academic
backgrounds and from industry, and

away may start with phone interviews
before proceeding to an on site inter-
view. The types of interviewers and
which questions they ask are the same
in both cases.

Let’s break down a typical inter-
view, piece by piece.

The programming problems are
not “trick” questions, but they will al-
ways have aspects that require care
and attention. First, make sure you
understand the problem properly. It
helps to clarify assumptions before
diving in too deeply, and if you are con-
fused about the question, do ask for
examples, or for the question to be re-
worded. The interviewer will often not
offer information until you ask for it.
“How big could the input be?” “What
happens with bad inputs?” and “How
often will we run this?” are three
common clarifications. If you’re
stuck, one thing to do is recheck your
assumptions.

After you have the clarifications that
you need, dive into solving the prob-
lem. There are usually several paths to
a good solution. Much like math home-
work, it is essential to show your work;
the way to do this is to talk to the inter-
viewer, and explain what you are think-
ing. This is easy for some of us, but re-
ally hard for others, so it is important
to practice this skill. If narrating your
entire thought process will significant-
ly reduce your ability to think on your
feet, it is OK to be quiet for a minute
or two—but then tell the interviewer
what you considered, and why you
chose what you chose. The more you
can communicate your thought pro-
cess, the better. If this might be hard
for you to do, it is definitely worth prac-
ticing with a friend.

The Google Technical Interview
How to Get Your Dream Job

Careers

can answer most (if not all) of the ques-
tions you might have, including wheth-
er Google is likely to be a good fit for
you. So please ask away!

There is a standard format for most
technical interviews. (Ph.D. students
and more experienced candidates may
be given one additional interview with
a slightly different format, but similar
advice applies.) For about 45 minutes
you meet with a single technical inter-
viewer, who will present a program-
ming problem and ask you to work out
one or more solutions to it. In some in-
terviews, you will be asked to code up
one of your solutions on a whiteboard.
All of our questions have multiple so-
lutions, and some of our questions do
not have a single best answer, so if you
have more than one solution, explain
the tradeoffs or the benefits of your
preferred solution.

Each interview day will have up to
five of these 45-minute interviews, de-
pending on your schedule, proximity
to the nearest office, and interviewer
availability. Candidates living farther

the pebble smartwatch raised
more than 100 times its
funding goal on kickstarter.

$10 m

overall, the
interviewers are
simply trying to
decide one thing:
Would you be a
good fit for google?

13XRDS • w i n t e r 2 0 1 3 • V o l . 2 0 • n o . 2

Feel free to give answers you know
are imperfect; explain briefly why they
are not the best answer, and keep go-
ing. The first solution is rarely the best,
and a sequence of answers very clearly
shows your thought process toward
solving the problem. It is also fine to
start with a brute-force approach, as
it gives an initial benchmark for the
answers that follow. One trap to avoid
is getting stuck thinking about incre-
mental improvements to the worst al-
gorithm; sometimes you will need to
leap to another approach.

One of the most important things
you should know is Big O notation
and the analysis it represents. It is the
common language for discussing algo-
rithmic performance. While Big O is
normally used to discuss how well an
algorithm will scale, it is also good to
consider disk, memory, network, and
other needs for each solution.

At any point in an interview it is fine
to ask if you can move to the white-
board to take notes, draw diagrams, or
explain what you are thinking. You are
also welcome to use pen and paper if it
will better help you keep your thoughts
organized. In many interviews, the in-
terviewer will ask you to move to the
whiteboard, and then it is usually time
to write some code.

For our engineering positions, you
will need to know a language like Java,
C++, or Python. Knowing more than
one is a nice touch, but you must know
one well. For each interview with a cod-
ing component, you will usually write
between 10 and 50 lines of code.

If you are rusty at coding, you should
practice. If you code every day, you
should still prepare by solving a few
interview -like questions. Candidates

those in the Quantified self movement
collect data about themselves with sensors,with
the goal of making better life decisions.

who prepare do better. You should also
practice writing code on a whiteboard,
and explaining what you are doing while
you do it. A whiteboard is significantly
different than using your favorite edi-
tor or IDE. It also helps to have a friend
or mentor review your practice code. As
you know, code that works perfectly but
is very hard for others to read is usually
not a good idea in team -based software
development. We are not worried about
handwriting, but we do actively look for
clean, maintainable code.

Testing code is important when
working as an engineer, and it helps
in interviews, too. After writing code,
you should test it. Run a normal in-
put, try the edge cases, and see if what
you wrote behaves properly. This helps
many candidates bump a mediocre an-

swer into a significantly above -the- bar
performance. When I interviewed for
my position at Google, this was the dif-
ference between code that worked and
a likely failure

If you are unsure about something,
you should be open about your uncer-
tainty. That will help you, not hurt you.
We value honest communication. Like-
wise, if you are stuck, it is OK to ask for
help if you need it—but fishing for an-
swers is a bad tactic. If the interviewer
gives you a hint, it’s always a good idea
to listen to it, and consider what they
said: Their comments aren’t random,
and they are trying to help you. If you
are working on an idea, and the inter-
viewer is silent (or just taking notes),
do not worry that something is going
wrong. They are waiting for you, and

14

begin

XRDS • w i n t e r 2 0 1 3 • V o l . 2 0 • n o . 2

most importantly, they are finding it
worth the wait.

Data structures and algorithms
are the most important classes in the
undergraduate curriculum. (Really!)
If your school offers higher -level algo-
rithms classes, take those as well. The
majority of successful applicants took
these courses, enjoyed them, and stud-
ied the material recently. Steve Yegge
wrote about this a few years back in
his blog post, “Get That Job At Google.”
I owe my job to reading his post; you
should read it too.

Overall, the interviewers are simply
trying to decide one thing: Would you
be a good fit for Google? Determining
that involves answering several other
questions. Are you someone they want
to work with? Are you someone who
would make their team better? Are you
someone they want writing code they
will use and depend on? Can you think

on your feet? Can you explain your
ideas to coworkers? Can you write and
test code? And are you friendly enough
to chat with every day?

At the end of each interview, there
will usually be a few minutes for you
to ask questions. Have a few ready!
The interviewers can tell you what
it is like to work here, what we love,
what we hate, how often we travel (or
don’t!), and are open to answering
pretty much anything you remember
to ask. (With one exception: We can’t
tell you how you did.) This is a great
time to make sure that Google is the
right place for you.

A typical 45-minute interview will
consist of 35 minutes of program-
ming problems, five minutes of ques-
tions, which leaves only five minutes
for everything else, including an in-
troduction, discussing your resume,
and asking questions about your prior
work experience. That said, your re-
sume and work experience do matter;
that and any references are what get
you into an interview, so please make
sure to polish your resume. Every in-
terviewer you will meet will have been
given your resume several days in
advance, which is part of what helps
them choose their questions.

Each interviewer has a limited
amount of time to convince them-
selves that you will be a great hire, and
they want to spend that time in the
most efficient way. Therefore once you
are in a technical interview, our inter-
viewers will mostly focus on program-
ming problems, not the resume, which
we find to be the best use of your time.

Although it’s unlikely to be the fo-
cus of an interview slot, be prepared
to discuss what is on your resume.
You should be able to talk about your
experiences (especially the technical
bits), explain your areas of focus and
why they interest you, and be able to
describe your contributions to the

projects you list. The typical inter-
view questions also apply: Why do you
want to work for Google, and which
types of projects are the most inter-
esting to you?

A question that comes up time
and again is: What should I wear?
For Google, the advice I hear repeat-
edly, and seems to hold true, is: “Wear
something that makes you feel com-
fortable.” The specifics are up to you.
That said, I feel it is still worth spend-
ing a bit of time on grooming. This will
be your first time meeting meeting
people you may work with for years,
and making a decent impression helps
convince the interviewer that they
want to work with you.

In summary: Refresh your knowl-
edge of data structures, algorithms,
and writing clean code on a white-
board. Come to the interview well
rested, and feel free to ask the recruit-
er questions ahead of time. Be able
to talk about your experience, and be
ready to spend most of your time on
the programming problems. Once in
the interview, feel free to ask ques-
tions about the problem you are work-
ing on. During the interview, make
sure to “talk out loud” enough. When
you make decisions on how to solve
something, make sure the interview-
er knows about it. And be sure to ask
questions that will help you find out if
Google is a good fit for you.

Finally, be who you are, and be the
best version of yourself. Our recruiters
liked you, and the odds are our engi-
neers will like you, too. Good luck!

(Parts of this have appeared in
“Anatomy of the Google Interview,” a
talk given at Google by Carl Evankov-
ich. Without his work there, this article
wouldn’t have happened; thank you!)

Biography
Dean Jackson’s a member of the ACM and an engineer
working at Google Pittsburgh, focused on Google Ads, and a
frequent contributor to Google’s recruiting programs.

a smart electricity grid
can adapt to prevent small
failures from producing
large blackouts.

P
ho

to
gr

ap
h

by
 A

hm
ad

 F
ai

za
l y

ah
ya

