Purposes, Concepts, Misfits, and a Redesign

Santiago Perez De Rosso

Computer Science and Atrtificial Intelligence Lab
Massachusetts Institute of Technology
Cambridge, MA, USA
{sperezde, dnj} @csail.mit.edu

Abstract

Git is a widely used version control system that is powerful
but complicated. Its complexity may not be an inevitable
consequence of its power but rather evidence of flaws in its
design. To explore this hypothesis, we analyzed the design
of Git using a theory that identifies concepts, purposes, and
misfits. Some well-known difficulties with Git are described,
and explained as misfits in which underlying concepts fail
to meet their intended purpose. Based on this analysis, we
designed a reworking of Git (called Gitless) that attempts to
remedy these flaws.

To correlate misfits with issues reported by users, we
conducted a study of Stack Overflow questions. And to
determine whether users experienced fewer complications
using Gitless in place of Git, we conducted a small user study.
Results suggest our approach can be profitable in identifying,
analyzing, and fixing design problems.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques; D.2.7 [Software
Engineering]: Distribution, Maintenance and Enhancement—
Version Control

Keywords concepts; concept design; design; software de-
sign; usability; version control; Git.

1.

Experiment This paper describes an experiment in software
design. We took a popular software product that is both highly
regarded for its functionality, flexibility and performance, and
yet is also frequently criticized for its apparent complexity,
especially by less expert users.

Introduction

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2-4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4444-9/16/11...
http://dx.doi.org/10.1145/2983990.2984018

292

of Git

Daniel Jackson

First, we did an analysis of the product, in which we ap-
plied some new design principles [16] in an attempt to iden-
tify problematic aspects of the design, suggesting respects in
which the design might be improved. Since any such analysis
is likely to be influenced by subjective factors (not least our
own experiences using the product, and the particular con-
texts in which we used it), we corroborated the analysis by
examining a large number of posts in a popular Q&A forum,
to determine whether the issues we identified were in fact
aligned with those that troubled other users.

Second, we reworked the design to repair the deficiencies
identified by our analysis, and implemented the new design.
To evaluate the redesign, we conducted a user study in which
users with a range of levels of expertise were asked to
complete a variety of tasks using the existing and new product.
We measured the time they took, and obtained feedback on
their subjective perceptions.

In some respects, this project has been a fool’s errand.
We picked a product that was popular and widely used so as
not to be investing effort in analyzing a strawman design;
we thought that its popularity would mean that a larger
audience would be interested in our experiment. In sharing
our research with colleagues, however, we have discovered
a significant polarization. Experts, who are deeply familiar
with the product, have learned its many intricacies, developed
complex, customized workflows, and regularly exploit its
most elaborate features, are often defensive and resistant to
the suggestion that the design has flaws. In contrast, less
intensive users, who have given up on understanding the
product, and rely on only a handful of memorized commands,
are so frustrated by their experience that an analysis like ours
seems to them belaboring the obvious.

Nevertheless, we hope that the reader will approach our
analysis with an open mind. Although our analysis and
experiment are far from perfect, we believe they contribute
new ideas to an area that is important and much discussed by
practitioners, but rarely studied by the research community.

Subject Git, according to its webpage, is a free and open
source distributed version control system that is easy to learn,
has a tiny footprint, lightning fast performance, and features

that include cheap local branching, convenient staging areas
and multiple workflows.! None of these claims have been
disputed but one: that it is easy to learn [3, 25].

One might argue that the difficulties experienced by some
users come from Git’s greater power and flexibility compared
to conventional, centralized version control systems. But Git,
much like the Unix shell a generation ago [12], seems to elicit
negative reactions from some users, who complain that Git is
hard to learn and use, even for experienced programmers, and
who have resorted to memorizing a short list of commands
that they apply repeatedly, without fully understanding their
meaning [10].

Now it is possible that these critics are to a person mis-
taken: that the perceived complexities of Git are inevitable
consequences of its power, or are readily overcome with the
right education and mindset. But it seemed to us more likely
that there was something interesting going on here worth in-
vestigating, and that if we could understand what was wrong
with Git—for at least a subset of its users—we might be able
to extract larger lessons about software design.

Contribution The contribution of this paper is a systematic
application of a theory of conceptual design to Git, which
includes:

o A list of “misfit” scenarios in which Git behaves badly
and flaws in concepts are to blame (§3).

e A crystallization of the purposes of version control (§4)
and their connection to Git’s concepts (§5).

e An application of criteria to understand why these misfits
arise (§6).

e A conceptual redesign of Git (called Gitless) which at-
tempts to fix some of these misfits (§7).

¢ An evaluation (§8) in two parts: a study of Stack Overflow
questions (to correlate the misfit scenarios with issues
reported by users); and a user study (to compare the
usability and subjective perceptions of Gitless to those
of Git).

This paper builds on and supersedes [22]. Compared to [22],
which proposes a design for a Git reworking and includes
an analysis that applies principles based on those in [8], this
paper: reports on a full implementation of such a reworking;
provides a much fuller analysis using the theory in [16];
and includes an evaluation in the form of a study of Stack
Overflow questions and a user study.

2. Background
2.1 A Theory of Conceptual Design

The role of concepts in ensuring good design has long been
recognized by researchers [7, 8, 15]. Yet most of this work
focus on the design process and has little to say on concepts
themselves: how they are chosen and their impact in design.

' Git. http://git-scm.com

293

In [16], a theory of conceptual design is proposed, which
is the one we apply in this work. This section outlines the
elements of the theory that are relevant to our analysis. For a
detailed explanation of the theory, see [16].

The basic premise is that software design can profitably
be divided into two different kinds of design: conceptual
design, which is concerned with the selection and shaping of
the essential concepts, and representation design, which is
concerned with representing the concepts in code.

A concept is something you need to understand in order to
use an application (and also something a developer needs
to understand to work effectively with its code) and is
invented to solve a particular problem, which is called the
motivating purpose. For example, the concept of the trash
in the Macintosh has the motivating purpose of enabling
undoing a deletion.

A concept is defined by an operational principle, which
is a scenario that illustrates how the concept fulfills its
motivating purpose. The operational principle is thus a very
partial description of the behavior associated with the concept,
but focused on the particular aspect of behavior that motivated
the introduction of the concept in the first place. For example,
for the trash concept, the principle might state: “when a file
or folder is deleted, it is not removed permanently, but saved
in a special trash folder, from which it can be restored until
the trash is emptied.”

A concept may not be entirely fit for purpose. In that
case, one or more operational misfits are used to explain
why. The operational misfit usually does not contradict the
operational principle, but presents a different scenario in
which the prescribed behavior does not meet a desired goal.
This goal was likely not specified explicitly; in fact, the misfit
can be seen as a claim that the goals implicit in the motivating
purpose should be expanded.

One operational misfit for the trash concept in the Mac-
intosh is the following: “if the user deletes a file by mistake,
and cannot remember the file’s name, there is no easy way
to find the file, so it may not be possible to restore it.”?> An
operational misfit might be remedied by a small change in the
design of the concept (for example, in this case adding the
deletion date as sortable metadata), or might signal a deeper
issue that is not easily resolved.

In general, the misfits of a concept design might not be
found until the system is deployed and they are discovered
during usage. A good design process, however, should aim
to identify misfits as early as possible. One way this can be
achieved is by applying application-independent criteria in
the style of a heuristic evaluation [20].

The criteria we use in our analysis include:

e Motivation. Each concept should be motivated by at least
one purpose. Concepts that are not motivated by purposes,

2 This misfit was fixed in a recent release of OS X

but which arise, for example, from implementation con-
cerns, usually spell trouble for a design.

Coherence. Each concept should be motivated by at most
one purpose. When a concept is motivated by two or
more distinct purposes, it becomes hard to fulfill any one
purpose well.

Fulfillment. Each purpose should motivate at least one
concept. If not, a purpose representing a real need will not
be fulfilled.

Non-division. Each purpose should motivate at most one
concept. When the same purpose motivates different
concepts in different contexts, confusions tend to arise
about why distinct concepts are needed for the same
purpose.

Decoupling. Concepts should not interfere with one an-
other’s fulfillment of purpose.

2.2 Git

This section introduces the key features of Git, highlighting
the more subtle ones. For a more thorough explanation, see
[9, 18].

Distributed 1In a centralized version control system (CVCS),
such as Subversion [24], there is just one repository. In a
distributed version control system (DVCS), such as Git, each
user has a local repository (to which work can be committed
even when the user is offline). A common practice is for users
to commit frequently, and only later share these changes with
the rest of the team (either via “pull requests”—a request
for the owner(s) of the target repository to pull the changes
in—or by doing a push to the target repository).

It is common to designate a repository as a shared “remote
repository that acts as a hub for synchronizations between
the “local” repositories of individual users. Typically this
repository is hosted on a server and is not the local repository
of any user, and is configured as a “bare” repository that has
no associated working directory.

Even in this arrangement, a DVCS offers advantages over
a CVCS—in particular that a user can work offline and make
commits to the local repository that are pushed to the shared
remote later. But Git allows more complex arrangements too,
with correspondingly more complex workflows: for example,
it allows a subteam to collaborate on a shared repository and
then push from that repository to the repository of the larger
team. This flexibility has made Git especially attractive for
the development of open source projects [26].

99

Recording Changes
and the local repository, Git interposes a “staging area.’
All commits are made via this intermediate area. Thus the
standard workflow is first to make copies of files to the staging
area (with add), and then to commit them to the repository
(with commit). Explanations of Git use the term “tracked
files” to refer to files that have been added to the staging
area. Such files are tracked only in the sense that the status

Between the user’s working directory

>

294

command will report that changes to them have not been

committed. If a tracked file is updated, a subsequent commit—
at least one without special arguments—will save the older

version of the file (representing its state the last time add was

called), and not the latest one.

Files that are currently not under version control are
“untracked.” Alternatively, a set of files (given implicitly
by a path-specifier in a special file) may be designated as
“ignored.” This feature enables the user to prevent files from
being committed by naming them before they even exist, and
is used, for example, to prevent committing non-source files.
But tracked files cannot be ignored; to ignore a tracked file
one has to mark it as “assume unchanged.”® This “assume
unchanged” file will not be recognized by add; to make it
tracked again this marking has to be removed.

A commit in Git is a complete snapshot of the repository,
which is linked to its parent commits in a graph structure
usually referred to as the “commit graph.”

Branching A branch is a named pointer to a commit in the
commit graph. Git provides the illusion that at any one time
the user is working on some branch, by always updating the
pointer on commit to point to the newly created commit. It
is possible, however, to be doing work that belongs to no
branch at all. Some operations can put the user in a “detached
HEAD” state: HEAD, a reference that tracks where the user is
working on, can “detach” from a branch and point directly to
a commit, instead of pointing to one through a branch. New
commits created in this state will not belong to any branch.

Branches are a very popular resource for keeping devel-
opment tasks separate, and it is common for a repository to
have many of them [2]. Switching from one branch to another
enables the user to put aside one development task and work
on a different one (e.g., to pursue the implementation of a
feature, or fix a bug [23]). But switching branches can be a
complex matter, because, although branches are maintained
separately in the repository, there is only one working direc-
tory and one staging area. As a result, when a user switches
branches, files may be unexpectedly overwritten. Git fails
with an error if there are any conflicting changes, effectively
preventing the user from switching in this case. To mitigate
this problem, Git provides a way to save versions of files
to another storage area, called the “stash,” using a special
command issued prior to the branch switch.

Tagging A tag is a named pointer to a commit. Unlike a
branch, however, a tag does not get spontaneously updated
on commit. Tags are used to note that a certain commit is
special (for example, that it corresponds to a new release).

Integrating Changes Git provides three ways of integrat-
ing changes: merge, rebase and cherry-pick. The merge of
two (or more) branches results in a new “merge” commit

3 Assume unchanged was intended to be used as a performance optimization
but has since been appropriated by users as a way to ignore tracked files. The
current advice is to use the “skip worktree” marking instead

with two (or more) parents. The rebase operation changes the
“base” of the current branch to the other branch: it looks for
the closest common ancestor (the point at which the branches
diverged), and applies all commits from the current branch
that follow the common ancestor placing them after the com-
mits of the other branch. The rebase command also has an
interactive feature that allows the user to customize how com-
mits should be applied; for example, it is possible to squash
multiple commits into one, or split a commit into multiple
commits. Finally, cherry-pick allows the user to specify an
arbitrary set of commits to be applied to the current branch.

If conflicts occur the user has to fix them and let Git know
by staging each conflicted file before being able to continue
the operation.

Syncing with Other Repositories Crucial to the understand-
ing of how syncing with other repositories work is the notion
of a “remote branch,” also called a “remote-tracking branch.”
This is a branch (pointer to a commit) that (asynchronously)
reflects the state of a branch in another repository. It is up-
dated whenever there is some network communication (e.g.,
a push or fetch).

The notion of a “remote branch” must not be confused
with that of an “upstream branch.” An upstream branch is a
convenience for users: after the user assigns it to some branch,
commands like pull and push default to use that branch for
fetching and pushing changes if no branch is given as input.

3. Operational Misfits

In this section, we outline the key “operational misfits” of Git:
scenarios in which Git behaves in a way that is unpredictable
or inconvenient. These misfits are focused on fundamental
aspects of the behavior, and not on quirks of the command
line interface, which are a different (and more readily ad-
dressed) concern. These misfits emerged from a number of
sources: critical mentions of Git in online forums and blogs,
discussions with colleagues, and our own experience. Their
identification preceded the analysis of Stack Overflow (§8.1)
that we conducted later.

We don’t expect every Git user reading this paper to
resonate with these misfits, since one’s perception of a misfit
is likely to depend on personal experience and context of use.
While the choice of misfits is inevitably subjective, what we
are trying to show is that there are at least objective ways to
structure and talk about design. We hope expert users will
put aside the cognitive bias that arises from the “curse of
knowledge” when reading this section.

Saving Changes Suppose you are in the middle of a long
task and want to save your changes, so that they can be later
retrieved in case of failure. How would you do that? You can
create a new commit, but if the changes don’t (yet) constitute
a logical group you’ll have to amend the commit afterwards.
Alternatively, you could copy the files out to some other
location and use that as a backup. But both of these options

295

demand extra work. Many users use a cloud storage service
such as Dropbox* for this purpose, but this comes with its
share of problems (such as corrupted repositories or loss of
data).

Switching Branches Suppose you are working on one
branch and want to switch to a different branch (e.g., to fix
a bug). Additionally suppose that the uncommitted changes
you’ve made so far in the current branch conflict with changes
in the destination branch. Switching branches is then a com-
plex task, because you can’t switch without overwriting your
changes. To work around this problem you can create a new
commit with unfinished work, but you’ll have to amend it
afterwards so that it reflects a logical group of changes. Alter-
natively, you can use stashing to save your changes, but when
using multiple branches it becomes difficult to remember and
apply the stash that corresponds to the branch you want. And
even if you overcome that problem, if you are in the middle
of a merge, rebase, or cherry-pick, stashing won’t help since
conflicting files cannot be stashed.

Detached Head Suppose you are working on some branch
and realize that the last few commits you did are wrong, so
you decide to go back to an old commit to start over again.
You checkout that old commit and keep working creating
commits. You might be surprised to discover that these new
commits you’ve been working on belong to no branch at all.
To avoid losing them you need to create a new branch or reset
an existing one to point to the last commit.

File Rename Suppose you rename a file and make some
changes to it. If you changed a significant portion of the file,
then, as far as Git is concerned, you didn’t rename the file,
but it is instead as if you deleted the old file and created a new
one (which means that the file history is now lost). To work
around this, you have to be diligent about creating a commit
with the rename only, and only then creating a new commit
with the modifications. This, however, likely creates a bogus
commit that doesn’t correspond to a logical group of changes.

File Tracking Suppose you create a new file and then you
add the file to start tracking changes to it. You keep working
on the file making new modifications and then you make
a vanilla commit. You might be surprised to find out that
what actually got committed is the old version of the file
(representing its state the last time the file was staged), and
not the most recent one.

Untracking File Suppose there’s a database configuration
file committed in the repository and you now want to edit
this file to do some local testing. This new version of the
file should not be committed. You could always leave out
the file from the commit every time, but this is laborious and

4 Dropbox. http://dropbox. com

error-prone. You might think that you could make it ignored
by modifying the . gitignore file but this doesn’t work for
committed files. The way to ignore this file is to mark it as
“assume unchanged,” but this marking will be cleared when
you switch to another branch.

Empty Directory Suppose you are starting a new project and
have decided on a directory structure and now want to share
it with your team. Unfortunately, empty directories can’t be
committed. The workaround is to add a token file in each
directory, which will allow you to create a commit with your
directory structure, and then push it so that your collaborators
can see it. Only after there’s at least one file in each directory
can you remove the token file.

4. Purposes for Version Control

An analysis of any system or application’s fitness for purpose
must begin by articulating the purpose that it is intended
to fulfill. This turns out to be much harder than one might
imagine, even for systems that perform familiar tasks such
as version control. Partly this is due to the inherent difficulty
of precisely capturing an intuitive purpose: what exactly is
version control? And partly this is due to the power of tools
such as Git, which fulfill, at least in part, purposes (such as
backup) that are secondary to the primary purposes for which
they were designed.

In this section, we attempt to capture the key purposes that
are associated by users with modern VCSs in general. These
are developed in a top-down manner (based on requirements).
At this point, our concern is not to characterize Git (which
we attempt to do later in §5) but rather to establish a kind
of benchmark for a generic VCS against which Git can be
evaluated.

The purposes are classified into the following categories:
data management, change management, collaboration, par-
allel development, and disconnected operation.

Data Management Data management corresponds to the
idea of a “backup,” namely the ability to recover data if is lost
(either by corruption or accidental deletion). Most backup
systems also have a way of recovering old versions of the data
(and not just the last one saved). This is not “version control,”
but is a fundamental feature of backup, since it mitigates the
risk of changes that are both intended and integrity preserving,
but are regretted subsequently.

Purpose 1. Make a set of changes persistent
Save changes to data so that they can be later retrieved in
case of failure

Change Management Change management distinguishes
VCSs from backup systems. A VCS should provide not
only the means to save and restore versions of files (data
management), but also the means to manage change.

296

/Purpose 2. Group logically related changes)

Group a set of changes together, to make it possible to re-
turn to a set of versions of files that are in an appropriate
relationship to one another (for example, reflecting new func-
tionality that crosses multiple files), and to allow changes to

/many files to be handled in aggregate]

/Purpose 3. Record coherent points)

Amongst several groups of changes, mark some as signif-
icant, because they correspond to coherent points in the
Ldevelopment

J

What constitutes a coherent repository depends on the
team. It will typically include issuing a release, but may also
include points at which the code is in a suitable state for
subsequent development.

Collaboration To this point, all the purposes might apply in
the context of a single user. Collaboration needs arise when
multiple users work together on a single code base.

Purpose 4. Synchronize changes of collaborators
This involves identifying conflicts, and providing means for
their resolution

Parallel Development Parallel development corresponds to
the ability to maintain multiple parallel and independent lines
of development. Typical uses include: maintaining multiple
releases of the same software, keeping the development of
major features isolated, and trying out experimental changes
without affecting the main line [1, 23, 28].

Purpose 5. Support parallel development

Switch between, and synchronize changes of, different lines
of development—even when the work on a particular line is
incomplete

Disconnected Operation Disconnected operation refers not
only to the ability to work without an Internet connection but
also to the ability to disconnect from your collaborators: to
work while ignoring changes made by others until they prove
necessary. A crucial difference between CVCSs and DVCSs
is how well they fulfill this purpose. In a CVCS, you get a
(local) private working directory, thus you are able to modify
files without having to worry about changes being made
by other collaborators. But as soon as you want to make a
commit, you have to sync with the changes made by others.
On the other hand, in a DVCS you can delay connecting (to
the rest of your collaborators or to the Internet) until you want
to share your changes.

Purpose 6. Do work in disconnected mode

Obtain the benefits of version control (as described in the
other purposes) without requiring an Internet connection
and coordination with other collaborators

5. Purposes and Concepts of Git

In this section, we attempt to outline the concepts of Git,
and to identify the purposes that they address. This is an
essential step in evaluating Git, since it allows the elements
of the design to be evaluated independently of one another.
Without it, evaluating fitness for purpose would be a largely
unstructured activity.

A good concept should have a compelling purpose: that
purpose is what allows users to grasp the concept, and
allows developers to focus on designing the concept to fulfill
that purpose. In contrast, the conventional view is that the
concepts of an application fulfill one or more purposes only
in aggregate; there need be no rationale for the design of
any single concept except that it plays some role in the
larger whole. Our view is that this amorphous relationship
between concepts and purposes is what has hindered the
kind of design analysis we are attempting here, and that
the approach of assigning purposes to concepts not only
immediately highlights some discrepancies, but also provides
a decomposition that makes deeper analysis possible. In
particular, when concepts seem to have no direct mapping
to a given purpose, their motivation is questionable, and one
might wonder whether they are needed at all.

We therefore do not expect the designers and users of
Git to share exactly our classification of purposes. On the
other hand, the very lack of consensus found today makes
this a productive exercise. If the outcome of this work were a
more general agreement about which essential purposes Git
is intended to fulfill, and which are incidental and secondary,
that would, in our view, represent concrete progress.

Table 1 shows the motivating purposes for key concepts
of Git. We also relate each motivating purpose to the set of
purposes for generic version control (using the — symbol to
stand for “is a subpurpose of”’). The motivating purposes are
reverse engineered from our reading of popular Git references
[9, 18] and from our own experience with Git. Due to space
constraints we don’t include operational principles.

5.1 Stashing: An Example

We consider the motivating purpose of stashing not to be
a subpurpose of any of the high-level purposes for version
control (§4). This section elaborates on our rationale for this.

Take (what seem to be) the motivating use cases for stash-
ing [9, Chapter 7.3]: (1) to pull into a dirty working directory
and (2) to deal with an interruption in your workflow.

The first refers to the case where you have some uncom-
mitted changes that happen to conflict with the changes being
pulled. The workaround is to create a stash (which will clean
the uncommitted changes), do the pull (which will now suc-
ceed since there are no conflicting changes), reapply the stash
to your working directory, and fix conflicts.

The second refers to the case where your uncommitted
changes prevent you from being able to do some unrelated
work. You might be working on some feature on the main

297

branch and now need to work on some other feature instead
(and you want to put the changes made so far temporarily
aside), or maybe you have to switch to a different branch
but are unable to do so because your uncommitted changes
conflict with the changes in the destination branch.

In both cases, what makes stashing compelling is the fact
that it is a quick and easy way of cleaning the working
directory (thus leaving you in a state where it is possible
to do your next task) while saving the uncommitted changes.

Two candidate high-level purposes are to make a set of
changes persistent (P1) and support parallel development
(P5). But the connection to both of these is tenuous. For the
former, while stashing might be seen as a way to persist a
set of changes this doesn’t account for the cleaning of the
uncommitted changes, a crucial motivation for stashing. For
the latter, while one could argue that stashing is letting you
switch (and later synchronize) between two (implicit) lines
of development (one that has your uncommitted changes, and
the other one that consists of the new changes to be pulled or
developed), these are hardly genuine lines of development,
but are ad hoc states of branches.

This lack of connection doesn’t mean stashing isn’t useful
in Git. On the contrary, not having stashing would make
a lot of tasks in Git significantly harder. Stashing does
have a single, coherent motivating purpose. The problem
is the lack of connection between this purpose and the high-
level purposes for version control, which suggests that the
introduction of stashing might be to patch flaws in the design
of Git and not to satisfy a requirement of version control.

6. Analysis

Now we apply the design criteria (§2.1) to Git’s purposes and
concepts (§4, §5) in an attempt to understand why the misfits
(§3) arise. Table 2 summarizes our results.

Incoherent Commit The problem with commit is that it
constitutes a violation of the coherence criterion: the same
concept (commit) has more than one, unrelated, purpose:
make a set of changes persistent (P1) and group logically
related changes (P2).

These two purposes are not only unrelated, but in tension
with each other. On the one hand, you would like to save your
changes as often as possible, so that if something bad happens
you lose as little data as possible (thus encouraging early
committing). On the other hand, a logically related group of
changes usually involves multiple individual changes, which
means that you might be working for quite some time before
you have enough changes to group (thus encouraging late
committing).

As misfit “saving changes” illustrates, this forces users
to either commit often and then fix the commits so that they
constitute a logically related group of changes (say, using
the interactive features of rebase), or resort to doing some
out-of-band action to backup changes.

Concept Motivating Purpose

Repositories

Non-bare Repository
Bare Repository

Do work in disconnected mode (P6)

Serve as a hub for users to upload/download changes — synchronize changes of collaborators (P4)

Commit

Make set of changes persistent (P1) and group logically related changes (P2)

Working Directory

Create, read, update and delete files — make a set of changes persistent (P1)

Staging Area Select and review the changes that will go in the next commit — group logically related changes (P2)

Stash Clean up uncommitted changes, while saving them so that they can be later reapplied — no purpose (see §5.1)
References

Head Name the commit you are currently basing your work on +— make a set of changes persistent (P1)

Tag Record coherent points (P3)

Branch Support parallel development (P5)

Upstream Branch

Remote Branch Do work in disconnected mode (P6)

Set a default for sync operations — synchronize changes of collaborators (P4)

File Classifications

ally causing unexpected behavior such as the one illustrated
by misfit “file tracking.” This misfit is caused by the viola-
tion of the decoupling criterion by the staging area and file
classifications. Contrary to what a novice user might expect,
a tracked file is not automatically considered for commit; it

Tracked Group files that are currently under version control — group logically related changes (P2)
Untracked Group files that are currently not under version control or ignored > group logically related changes (P2)
Ignored Prevent committing file — group logically related changes (P2)
Assume Unchanged Prevent committing file — group logically related changes (P2)
In Conflict Mark files with conflicts that need to be resolved manually — synchronize changes of collaborators (P4)
Table 1: Key concepts and purposes of Git
Concept/Purpose Violates Criterion Causes Misfit
Commit Coherence Saving Changes
Branch Decoupling Switching Branches, De-
tached Head
Stash Motivation Switching Branches
File Classifications Decoupling File Tracking
Assume Unchanged, Ig- Non-division Untracking File

nored
Saving renames
Saving directories

Fulfillment
Fulfillment

File Rename
Empty Directory

Table 2: Analysis summary

Branch Coupling The misfit “switching branches” is
caused by the violation of the decoupling criterion by the
working directory, staging area and branch: the working di-
rectory and staging area interfere with the fulfillment of the
motivating purpose of the concept of a branch, i.e., to support
parallel development (P5).

In addition to this, there is the coupling that causes misfit
“detached head.” Since the head can detach (from a branch)
and point directly to a commit, the user can inadvertently
create a new line of development that is not referenced by
any branch. The problem here is that the head is interfering
with the purpose of branching due to having the potential of
creating a line that is hard to switch back to.

Unmotivated Stash The problem with the concept of stash
is that it’s unmotivated. In §5.1 we argued why its purpose
doesn’t map to any high-level purpose. We believe the reason
for this is that the motivating purpose for the inclusion of
stash results from other decisions in Git’s design (e.g., how
branching works), and not from the intrinsic complexity of
version control.

File Classifications Coupling The problem with the stag-
ing area is that it seems to be always in the middle, occasion-

298

needs to be staged first (either explicitly via add or implicitly
by passing some flag to commit).

Divided Ignored and Assumed Unchanged The problem
with assume unchanged is that it violates the non-division
criteria: the same purpose “prevent committing file” motivates
both the concept of an ignored file and assume unchanged file.
So the user needs to learn another concept and separate set of
commands to do the same thing that the ignore mechanism
provides, causing misfit “untracking file.”

Unfulfilled Purposes Misfits “file rename” and “empty
directory” reflect a violation of the fulfillment criterion, since
they correspond to purposes that are subpurposes of “make a
set of changes persistent” (P1).

7. Gitless
7.1 Overview

Gitless has no staging area, and the only file classifications
are “tracked,” “untracked,” “ignored,” and “in conflict.” A
tracked file is a file whose changes will be detected by Gitless
(and automatically considered for commit); an untracked file
is one whose changes will not be detected by Gitless; ignored
and in conflict are the same as in Git. An important distinction
is that files can move freely between these classifications; it
does not matter whether the file has a version at the current
commit point (head) or not.

A branch in Gitless is a completely independent line of
development: each branch includes the working version of

files (i.e., it is as if there is a working directory per branch),
maintains the information about file classifications (i.e., a file
could be tracked in some branch but untracked in another),
and also maintains the information of any sync operation in
progress (i.e., even during merges with conflicts, the user is
still working on the original branch, and can switch to another
branch and then go back to fixing conflicts later). Also, there
is no possible way of getting in a detached head state; at
any time, the user is always working on some branch (the
“current” branch). Head is a per-branch reference to the last
commit of the branch.

Finally, as in Git, Gitless has bare and non-bare reposito-
ries, a working directory, and tags.

7.2 Purposes and Concepts of Gitless

The changes made to Git’s concept model are:

1. The redefinition of “tracked” and “untracked,’ and the
elimination of “assume unchanged” and the “staging
area.”

2. The redefinition of the concept of “branch,” and the
elimination of “‘stash.”

3. The creation of the notion of a “current branch,” and the
redefinition of “head.”

Change 1 prevents misfits “file tracking” and “untracking
file;” change 2 prevents misfit “switching branches;” and
change 3 prevents misfit “detached head.” The remaining
misfits are not addressed by Gitless.

7.2.1 Discussion

Our redefinition of the file classifications makes them easy
to control. As a result, there is no need for an “assume
unchanged” classification, since tracked files can be easily
ignored (or made untracked).

Gitless eliminates the concept of a file having a staged ver-
sion, and there is a single and direct path (in both directions)
between working and committed versions.

Common use cases for the staging area in Git are to select
files to commit, split up a large change into multiple commits,
and review the changes selected to be committed. We address
the first by providing a more flexible commit command that
lets the user easily customize the set of files to commit (with
only, include and exclude flags). For the second use case
we have a partial flag in commit that allows the user to
interactively select segments of files to commit (like Git’s
commit --patch). Finally, our diff command accepts the
same only, include and exclude flags to customize the set
of files to be diffed. There could be other use cases for the
staging area that Gitless doesn’t handle well but we expect
these to be fairly infrequent.

In regard to branching, to address situations in which the
user wants changes made in the current branch to be moved
onto the destination branch (e.g., the user realizes that she

299

has been working in the wrong branch), the Gitless branch
command has a move-over flag.

More importantly, if the user has any uncommitted
changes and attempts to do any synchronization operation
(that conflict with the uncommitted changes) the uncom-
mitted changes in the working directory are saved and later
reapplied after the operation finishes.

Our concept of branch (and the mechanics of the synchro-
nization operations) eliminate the need for stashing, a concept
that is not present in Gitless. The main uses cases for stashing
(pulling into a dirty working directory, and dealing with an
interrupted workflow) can be now easily fulfilled without it.

Details of Gitless commands are given on the website>.

8. Evaluation

For the evaluation, we sought to answer two questions: (1) To
what extent do the misfits identified illustrate real problems
Git users face? (§8.1) and (2) To what extent does Gitless
address the misfits identified in Git and what’s the resulting
impact on usability? (§8.2)

8.1 Stack Overflow

In an attempt to determine how closely the problems we
identified match problems users experience in practice, we
performed a manual analysis of Stack Overflow posts on July
18, 2016. We started by finding all questions with more than
30 upvotes tagged with the keyword “git.” We then examined,
by hand, the resulting questions (roughly 2400) to determine
whether or not the issue being asked about is related to one
of the misfits. We considered a question to be related only if
there’s evidence that the original poster (OP) is experiencing
the complication illustrated by the misfit. If it’s hard to tell,
based on the information available in the question, we don’t
include the question in our results. Take, for example, the
question “Squash my last X commits together using Git.”®
This question might be related to misfit “saving changes’
since the OP might have done bogus commits to achieve
persistence and now wants to group changes. But it may also
be the case that the OP’s commits represent logical groups of
changes that now need to be regrouped. Since it’s hard to tell,
we don’t include the question in our results.

Despite our analysis being conservative, we found 41
highly ranked questions that match the misfits. The question
titles, with their respective upvote and view counts are
shown, clustered by misfits, in Table 3. The sheer number
of aggregated views per misfit suggests that these misfits
represent real problems experienced by Git users.

For misfit “saving changes,” most questions (Q1-4, Q6-
7) are about trying to fulfill the purpose of making a set
of changes persistent (“backup’). One is about trying to fix
an unfortunate situation caused by using Dropbox and Git
together (QS).

>

Shttp://gitless.com
®http://stackoverflow.com/questions/5189560

Misfit Question Upvotes Views
Ql Using Git and Dropbox together effectively? 927 215523

Q2 Backup a Local Git Repository 122 78674

Q3 Fully backup a git repo? 54 37502

Saving Changes Q4 Is it possible to push a git stash to a remote repository? 105 30820
Q5 Git fatal: Reference has invalid format: refs/heads/master 90 25717

Q6 Is “git push —mirror” sufficient for backing up my repository? 34 18415

Q7 How to back up private branches in git 33 10580

Switching Q8 The following untracked working tree files would be overwritten by checkout 365 378331
Branches Q9 git: Switch branch and ignore any changes without committing 148 129120
Q10 Why git keeps showing my changes when I switch branches (modified, added, deleted files) no matter if I run git add or not? 47 10524

Ql1 Git: How can I reconcile detached HEAD with master/origin? 784 397694

Q12 Fix a Git detached head? 490 397985

Q13 Checkout GIT tag 125 98328

Detached Head Q14 git push says everything up-to-date even though I have local changes 113 79203
Q15 Why did my Git repo enter a detached HEAD state? 202 78856

Ql6 Why did git set us on (no branch)? 65 41866

Q17 gitx How do I get my ’Detached HEAD’ commits back into master 136 42794

Q18 Handling file renames in git 315 242864

File Rename Q19 Isit possible to move/rename files in git and maintain their history? 367 153701
Q20 Why might git log not show history for a moved file, and what can I do about it? 34 17099

Q21 How to REALLY show logs of renamed files with git? 60 12923

. . Q22 Why does git commit not save my changes? 177 142189
File Tracking Q23 Git commit all files using single command 165 141815
Q24 Ignore files that have already been committed to a Git repository 1588 387112

Q25 Stop tracking and ignore changes to a file in Git 975 353136

Q26 Making git “forget” about a file that was tracked but is now in .gitignore 1458 286435

Q27 gitignore files only locally 562 120700

Q28 Untrack files from git 218 140663

Q29 Git: How to remove file from index without deleting files from any repository 110 61498

Q30 Ignore modified (but not committed) files in git? 135 38293

Untracking File Q31 Ignoring an already checked-in directory’s contents? 169 49692
Q32 Apply git .gitignore rules to an existing repository [duplicate] 40 28286

Q33 undo git update-index —assume-unchanged <file> 165 37262

Q34 using gitignore to ignore (but not delete) files 55 23381

Q35 How do you make Git ignore files without using .gitignore? 58 23709

Q36 Canl get a list of files marked —assume-unchanged? 191 20184

Q37 Keep file in a Git repo, but don’t track changes 74 15572

Q38 Committing Machine Specific Configuration Files 58 5934

Q39 How can I add an empty directory to a Git repository? 2383 432218

Empty Directory Q40 What are the differences between .gitignore and .gitkeep? 841 121484
Q41 How to .gitignore all files/folder in a folder, but not the folder itself? [duplicate] 227 80119

Table 3: List of misfits with their related Stack Overflow questions

Some users expect branching to work just as in Gitless.
In Q10, the OP states, “I thought that, while using branches,
whatever you do in one branch, it’s invisible to all the other
branches. Is not that the reason of creating branches?” In
Q8-9, the OP is trying to switch branches, but uncommitted
changes prevent her from doing so.

For “detached head,” all questions (Q11-17) are of users
that inadvertently got their repository into a detached head
state, are confused about it, and now need help to get their
repository back to a sane state.

Questions for “file rename” (Q18-21) all arise from cases
in which users are trying to figure out how to get Git to, as
Q21 says, “really” track renames.

In Q22 the OP is confused about the staging area and
wondering why commit doesn’t save the changes. In Q23,
the OP wants to simply skip it altogether.

There’s a myriad of questions about how to untrack
a committed file (Q24-32, Q34-35, Q37-38). Those who
figured out that the way to do it is by marking the file as

300

assumed unchanged are left wondering how to list this kind
of file (Q36) or how to undo the marking (Q33).

The need for sharing empty directories is so common (Q39,
Q41) that there’s a convention to use the name .gitkeep
for the bogus file added to an empty directory, making
novices wonder what the difference is between .gitkeep
and .gitignore (Q40).

8.2 User Study

Through the week of August 24-28, 2015, we conducted
a usability test in which we recruited Git users and ask
them to complete a series of short tasks using Git and
Gitless (a so-called “within-subjects design”). The goal of the
study was to evaluate the usability impact of the conceptual
transformations applied in Gitless to address misfits.
Participants were recruited by an email sent through a
public lab mailing list composed mostly of current and alumni
students, faculty, and research staff. In the study application
we asked applicants to rate their own proficiency using Git
“novice,” “regular user,” or “expert user”), indicate how

EEINT3

often they used Git (“several times a day,” “several times
a week,” or “several times a month”) and what they used
Git for. Since the experiment was to be conducted using a
Unix shell we also asked them if they were comfortable using
one and whether they have used Gitless before. We also ask
them to report their occupation in general terms (e.g., student,
software engineer).

The study consisted, for each participant, in two sessions
of (roughly) 1-hour duration each. Participants completed
one session using Git and the other using Gitless. To account
for learning effects, participants were randomly assigned to
use Git or Gitless for their first session, and the sessions were
scheduled at least a day apart from each other. In each session,
participants found themselves in an imaginary scenario where
they were part of a team developing a software artifact. The
team used Git(less) to track changes to code. We didn’t
require participants to know how to code; instructions were
provided on what to change. What was left for them to figure
out was how to use Git(less) to complete the tasks.

Participants were allowed to use the command line help
(e.g., git help, git submcd -h, gl subcmd -h)as well
as any resource on the web. Note that while there’s a wealth
of information about Git on the web, for Gitless the only
resource is the webpage manual’. A 3-minute overview of
Gitless was given to participants before their Gitless session.

The tasks were performed on a desktop machine with Mac
OS v10.10, Git v2.5 and Gitless v0.8.2. We used QuickTime
to record the screen. (No audio was recorded.) A slide
presentation was used to present the tasks. Each task (or
subtask for the long tasks) was described in one slide. We
asked participants to walk through the slides and complete
the tasks in order. They could take breaks between tasks.

After each session, we asked them to complete a short
questionnaire about their experience using Git(less) to com-
plete the tasks. We collected data using 7-point Likert scales
on satisfaction, efficiency, difficulty, frustration and confu-
sion. At the end of their second session, we asked them to
complete an additional final questionnaire comparing Git and
Gitless with respect to learnability and easiness of use, rate
how much they enjoyed using Gitless, and state whether they
would continue using it if they could.

8.2.1 Tasks

Each session had a total of 6 tasks (plus one practice task).
Each task had a number of steps to be completed in order.
To provide guidance, each step was usually accompanied
with a set of command executions and their expected output.
These were intentionally vague so that participants could take
different paths to reach the same end state.

In each session, participants where asked to role-play as
a member of the team of “Fit Industries Inc.,” developers of
“fit-cli.” Fit-cli is a command line tool (written in Python)
that given your gender, age, weight and height, computes an

"http://gitless.com

301

estimate of the number of calories you burn per day just for
being alive (also known as the resting metabolic rate).

Table 4 includes a description of the tasks we asked
participants to do and their relation to the misfits (§3). Task 2
was a buffer task to build an interesting repository and leave
the participant with uncommitted changes that are relevant
for Task 3. For the full list of steps per task, including the
changes to files they were asked to make, see the appendix.

The tasks were specifically designed to put participants
in challenging situations when using Git. For example, in
Task 1, to create a commit that includes all changes made
to the file, the participant needs to remember to stage the
file again before commit. In Task 3, uncommitted changes
prevent a clean switch, to fix the bug participants need to
create a stash or an intermediate commit. At the beginning
of Task 4 there are two stashes in the stash stack: the top one
is the one corresponding to the meters feature and the other
one to the kilos feature (the right one to apply for that task).
An execution of git stash pop with no argument would
therefore apply the wrong stash. In Task 5, since stashing
doesn’t work while in the middle of conflicts, participants
need to find a workaround. One option is to copy the changes
made so far out of the repository, abort the rebase, and when
back at fixing conflicts retrieve the changes. Others involve
continuing the rebase with an intermediate commit and later
amending it. Finally, in Task 6, if the participant were to
checkout the previous commit this would put the user in a
detached head state, which causes problems later.

8.2.2 Measures

e Task success rate: percentage of participants that com-
pleted the task successfully. We say a participant com-
pleted the task successfully if the state of the repository
at the end of the task matches the expected one. Minor
differences in the content of files or in commit messages
are ignored.

e Task completion time: time taken to complete or abandon
a task.

8.2.3 Participants

We recruited 11 participants (9 male, 2 females), ages 20 to
38 (M=26.09). They consisted of students (3 undergraduates,
2 graduates), researchers (3) and software engineers (3).
None of them classified their Git proficiency as “novice,” 10
“regular” and 1 “expert.” 7 typically used Git “several times
a day,” 3 “several times a week,” 1 “several times a month.”
None of the subjects had used Gitless before. All reported
being comfortable using a Unix shell. Six participants used
Git for their first session; the rest used Gitless. For the time
and trouble of participating in the study, a $30 gift card was
given to participants.

8.2.4 Results and Discussion

To establish an objective classification that would allow us
to better separate questionnaire results by Git proficiency

Task Description

Misfit

1. Add readme file
all changes made to the file
2. Let users input weight in kilos
another change that is left uncommitted
3. Let users input height in meters
to master to fix a bug
4. Wrap with features
back uncommitted changes
5. Fixing conflicts
6. Code cleanup

Create a new file (readme), track it, make another modification to it, and create a commit that includes
Create a new branch feat/kilos, switch to it, make a change and commit. We then ask them to make
Create a new branch feat/meters, switch to it and make a change. The participant then needs to switch
Go back to working on the kilos feature, which involves switching to feat/kilos branch and bringing

Switch to another branch in the middle of conflicts
Undo an unpushed commit (as if it never existed before)

File tracking

No related misfit (see §8.2.1)
Switching branches
Switching branches

Switching branches
Detached Head

Table 4: List of tasks with their related misfit

Task Success Rate
Git Gitless Difference

1. Add readme file 81.82% 100.00% 18.18%
2. Let users input weight in kilos 90.91% 63.64% —27.27%
3. Let users input height in meters 72.73% 81.82% 9.09%
4. Wrap with features 54.55% 63.64% 9.09%
5. Fixing conflicts 54.55% 90.91% 36.36%
6. Code cleanup 63.63% 81.82% 18.90%

Table 5: Task success rates

we ran a k-means clustering algorithm (k=3) using Git task
completion times and got a total of 4 novices, 3 regular
and 4 experts. We had planned to rely on our subjects’
own classifications of their level of Git proficiency, but we
found this to be more subjective than we had anticipated,
with their perceptions influenced by how they use Git and
how aware they are of what they do not know. We therefore
decided instead to establish a more objective classification by
clustering them based on Git task completion times.

Task Success Rates
Overall, participants did better using Gitless. In Task 2,
participants that failed the task using Gitless (4) did so
because they never switched to branch feat/kilos after
creating it. We think the reason for this could be a confusion
with gl branch -c where most assumed that it would not
only create the branch given as input but also switch to it (like
git checkout -Db) when in fact it does not.

Task Completion Times Task completion times are shown
in Fig. 1. There is more variance in the completion time for
Git. This is perhaps because of the different proficiency levels
participants had with Git, which caused them to struggle
with tasks in varying degrees. None of the participants had
used Gitless before, and the 3-minute overview created a
uniform understanding, so they all spent a similar amount
of time doing the tasks. Most participants completed tasks
3, 4, and 5 (which are all branching related) faster when
using Gitless than when using Git. A paired t-test found
the differences in task 5 to be significant (t=3.95, df=10,
p=0.003). For task 4 the result was p=0.066. In all of these
tasks, having truly independent lines of development proved
useful. Some participants (1 novice, 1 regular, 1 expert)
highlighted branching in Gitless: “Branch handling was

Task success rates are shown in Table 5.

302

g T g o1+ 18 [

g~ 2 oo ¢ 1|2 T

E o4 E : : E o :

- £~ L E T

5 _ B 0 S © - .

£ E £ E —|

o o ; o < - ' ' o < - '

g 1= o |3 — L |% - =

= T T = T T = T T
Git Gitless Git Gitless Git Gitless

(a) Task 1 (b) Task 2 (c) Task 3

n — 0 — n 5

Q T S o | j L2 <+ |

2 v ! g « 3 2 -

E 7 E : E o4

£ £ o Q g o H

= 2 c < :

g g S oo

g T|E e = |2

Jiimmi==(E B RS I

e T T e e T T e T T
Git Gitless Git Gitless Git Gitless

(d) Task 4 (e) Task 5 (f) Task 6

Figure 1: Box plots of task completion times

way more intuitive than with git. I would use gitless to deal
with branches”, “Keeping branches separate is great. [...]
Transitions between branches are very smooth”, “I really
enjoyed the fact that one can transition between branches
without committing or staging—that’s a killer feature.”

Questionnaire Results Questionnaire results are shown
in Fig. 2. Overall, participants found Gitless more satis-
fying than Git (Mgy;;=3.91, My4=5.09) and less frustrat-
ing (Mgy;;=4.73, M45=2.91) but there’s no big difference
in efficiency (M g;1=4.54, My=4.91), difficulty (M 4;:=3.45,
M4=3.09) and confusion (M;;=3.82, M,=3.72). This ap-
parent contradiction might be due to the fact that all of the
participants had used Git before but were encountering Git-
less for the first time without any substantive training. Some
participants (2 regular, 1 expert) commented that indeed their
problems with Gitless were mostly due to their lack of prac-
tice using it: “The hardest part was learning the new com-
mands. With more experience, I can see how this could be
a better way of using git”, “Overall, the frustrations I ran

7 7 7 1 7
|
<6 _6 6 —6
v S < I T
5 =5 15 | =5
c ~ c
24 B4 24 | S4
8 g 2 | 2
_(% 3 %’ 3 ;Q; 3 | g 3
P 2 2 | 2
1 1 1 1
Git Gitless Git Gitless Git Gitless Git Gitless
Git Proficiency al . regular Git Proficiency all . regular Git Proficiency al . regular Git Proficiency al : regular
novice | £expert novice [£]expert novice | £]expert novice [£]expert
(a) Satisfaction (b) Efficiency (c) Difficulty (d) Frustration
7 I 7 |
5 | |
=5 I NS I
54 [%4 |
@ [|
23 [&a '
S | |
P [2 '
| |
1 1

Git Gitless | enjoyed using Gitless

Git Proficiency gﬁgvicea;i%ﬂsr

(e) Confusion

| found Gitless to be
easier to learn than Git

| found Gitless to be
easier to use than Git

| would continue using
Gitless if | could

Git Proficiency [l all/Inovice[regularf expert

(f) Git versus Gitless

Figure 2: Post-session and post-study questionnaire results (1=strongly disagree, 4=neutral, 7=strongly agree), with standard

errors bars

into with gitless were because I wasn’t familiar enough yet
to know the terms/commands, while my frustrations with git
were due to a limitation of the tool”, “Most of what slowed
me down was still thinking in git commands rather than git-
less commands. [...] I have over 6 years of experience with
git and less than an hour with gitless.”

A paired t-test found the difference in satisfaction for
novices significant (t=-3.81, df=3, p=0.032). (p=0.134 for all
proficiency levels.) We also found the difference in frustration
for all proficiency levels and for novices significant (t=2.60,
df=10, p=0.026 and t=3.81, df=3, p=0.032).

Results comparing Git with Gitless are encouraging.
Novices specially liked it, while experts didn’t find it worse
than Git. Overall, participants enjoyed using Gitless (M=5.18)
and found it easier to learn (M=4.91) and use (M=5.09). One
(novice) participant stated “I found myself using status and
diff less often because the simplified workflow and termi-
nology gave me greater confidence that my mental model
matched Gitless’s.” When asked if they would continue using
Gitless the results are somewhat split (M=4.45). Some (1
regular, 1 expert), for example, showed concern about its
power: “Gitless was easier to use for the tasks these sessions
asked me to perform, but I really like having a Git stash and
staging area to work with in Git”, “[...] the ability to walk
away from a branch in any state is very useful and would go
far in helping new git users [...] However, [make heavy use
of the staging area and interactive rebase and I would not be

303

willing to part with either.” These comments are not surpris-
ing since Gitless is a mere prototype while Git has been in
use for over 10 years. (Also, at the time of the experiment,
we didn’t have a partial flag to select segments of files to
commit, or a command to cleanup history.)

Note that while results suggest that our redesign efforts
were fruitful (especially for novices, without a notable nega-
tive impact on experts) this doesn’t mean Gitless is a “better”
VCS than Git. Our study focused only on misfits and did
so in a controlled environment. A full evaluation of a VCS
would require testing it in the context of large projects with
complex requirements. Yet our results provide some empiri-
cal evidence that suggests our approach can be profitable in
addressing design-related usability problems.

8.3 Threats to Validity

Internal In addition to the conceptual model, the type (e.g.,
command language, direct manipulation), and quality of the
user interface affects usability. This is not a major factor in our
study, since Gitless has a command line interface that follows
the same Unix conventions as Git; the only differences are in
the command names (and of course their semantics).

External The user study was conducted on only 11 people
that are, or have previously been, affiliated with computer
science at MIT and may not generalize to Git users in general.
To mitigate this factor Gitless is available online for free,
and anyone can download and try the tool. Our findings may

not generalize to real-world usage if the tasks that occur
in the wild are significantly different from the ones in our
experiment. The fact that we have been using Gitless for
over a year now and haven’t encountered any big limitations
mitigates this concern. But there may be Git usage patterns
that are not well supported by Gitless, especially those that
use features such as stashing for special purposes.

Reliability The auxiliary material that accompanies this
paper includes the Stack Overflow questions we analyzed and
all necessary resources to replicate the user study. A detailed
description of the tasks is included in the appendix.

9. Related Work

Our focus here is not on the theory of concept design we
apply in this study; see [16] for that.

Version Control Most work on version control focus on its
usage [13, 17], branching practices [1, 2, 5, 23, 28], impact
in software development [4, 6, 26, 27], and on the transition
from CVCSs to DVCSs [11, 19]. Our work instead looks
at the problem of version control from a design perspective.
The closest related work is [10], where the authors apply the
cognitive dimensions framework [14] to Git.

Attempts to Fix Git Gitless is certainly not alone in its at-
tempt to remove some of Git’s complexity. Other popular
attempts include GitHub’s desktop client®, legit’, and Easy-
Git'?. These tend to focus mostly on changes in the user
interface presentation, through more consistent terminology
in commands and documentation, and graphical user inter-
faces. Gitless is a deeper reworking, and appears to a user
more like a different VCS than the same VCS with a different
user interface. Recent releases of the GitHub desktop app are
becoming more like our redesign however, as they introduce
new concepts (such as “pull requests’); the GitHub client is
becoming more of a GUI for GitHub than for Git.

Gitless and Other VCSs There’s a myriad of VCSs out
there. Many are centralized and thus fundamentally different
from Gitless (and Git). Among the DVCSs, Mercurial'! [21]
is the most popular DVCS after Git and often regarded as
easier to use than Git. It is therefore worth discussing the
relationship between Mercurial and Gitless in more detail.

Mercurial has no staging area, which greatly reduces the
complexity related to recording changes and brings it closer to
Gitless’s design. The file classifications are not as controllable
as in Gitless though. For example, it is possible to change the
status of a file from tracked to untracked but only if the file
was not committed before.

A branch is a named, linear sequence of changesets.
The user is always working on some branch, so problems

8https://desktop.github.com/
http://www.git-legit.org/
Onttps://people.gnome.org/ newren/eg/

Ilhttps://www.mercurial-scm.org

304

like being in a detached state cannot happen in Mercurial.
But branches don’t keep the working directory information
separate, so switching branches, as in Git, can be a complex
task with uncommitted changes. In addition to the concept of
“branch,” Mercurial also has a “bookmark.” These are pointers
to commits, similar to Git’s branches. While a changeset
records the branch in which it was made, it doesn’t record
bookmarks. But these don’t help either.

Mercurial has a concept of tag as well, which is the same
as Gitless’s (and Git’s). But Mercurial also has a special
“floating” tag named “tip” that identifies the newest revision in
the repository (serves the role of “head”). Interestingly, there
is a file .hgtags that tracks the current tags of the repository.
When a new tag is created the .hgtags file is automatically
modified for the user and a new commit is created. This is
different from how Gitless (and Git) handle tags. We believe
Git’s way of handling tags (which we inherit in Gitless) is
better since it keeps tags and commits independent from each
other.

10. Conclusion

This work applies a theory of conceptual design [16] to Git.
We identify “misfit” scenarios where Git behaves badly and
concepts are to blame. We perform a manual analysis of Stack
Overflow questions and present evidence that suggests mis-
fits correspond to real problems Git users’ face. We propose
Gitless, a new VCS that aims to fix many of the misfits iden-
tified by reworking Git’s conceptual model so that it better
aligns with criteria proposed in [16]. To evaluate Gitless, and
see how effective is in fixing misfits, we conducted a small
usability test in which we gave participants a set of tasks to
complete using Git and Gitless. The results from our experi-
ment suggest our approach can be profitable in identifying,
analyzing and fixing usability problems. We don’t claim Git-
less is novel by itself; it’s the approach that delivered Gitless
that we believe to be the primary contribution of this work.

There are two ways to look at this paper. On one hand, is
an attempt to improve Git and VCSs in general. While version
control is an active research topic (e.g., see [5, 6, 13, 19], few
look at the problem from a design perspective ([10] is one
example). VCS design is an understudied topic and yet it can
have a significant impact in software development. We hope
to help by stimulating discussion on purposes and concepts
of version control.

On the other hand, this work is a systematic application of
a design theory to a widely used application. Through it we
hope to contribute to the study of concept design, show its
value in practice, and spur interest in viewing software this
way. We show how abstract ideas like purposes and concepts
can be applied to a real software system. Design research
like this is messy: instead of being a hard, easily quantifiable
topic, it relies more on compelling and well-argued ideas than
we are perhaps used to. But if we want to make progress on
software design, this might well be the only way to do so.

Acknowledgments

Thank you to the anonymous paper and artifact reviewers for
their useful feedback. Thank you also to the users of Gitless
for their enthusiasm, bug reports, and feature requests. This
research is part of a collaboration between MIT and SUTD
(the Singapore University of Technology and Design), and is
funded by a grant from SUTD’s International Design Center.

A. Appendix
A.1 User Study Tasks and Analysis

For the interested reader, here we include a detailed descrip-
tion and analysis of the tasks given to participants of the user
study. Due to space constraints we don’t include the set of
check commands. Task O (Practice Task) asked them to clone
the fit-cli repository, which left them ready to start making
changes to files.

A.1.1 Task 1: Add Readme File

Table 6 shows Task 1, Figure 3 shows the modification steps
they had to perform as part of the task.

Only one participant forgot to stage the new changes to the
file (step 1.3) before doing the commit (step 1.4). Despite the
difference showing up in the check commands, the participant
moved on to the next task instead of fixing the incorrect
commit. Another participant did a commit right after doing
an add of the file (i.e., after step 1.2). It is unclear why the
participant did this, perhaps it is because of the confusion
around what constitutes a tracked file (some explanations
of Git talk about tracked files being those files that are
committed in the local repository). The participant didn’t

Task 1: Add readme file
Maybe you didn’t notice but our app has no readme file! What an atrocity! Let’s
fix this.

1. Create README . md with these contents

2. Track README.md

3. Let’s add usage instructions to the readme. Open README.md and make this
change

4. Create a commit with all changes to README.md and message “added
readme”

Table 6: “Add readme file” task (Task 1)

fit-cli fit-cli

The ultimate fitness app. Give your gender, The ultimate fitness app. Give your gender,
age, weight and height to fit-cli and age, weight and height to fit-cli and
get an estimate of the number of get an estimate of the number of
calories you burn per day just for being calories you burn per day just for
alive; all of this without leaving the being alive; all of this without

command line! leaving the command line!

To run fit-cli execute the fit.py script
which accepts the following optional
flags:-g/—gender, -a/—age, —w/——
weight, -h/--height.

(a) Step 1.3

Figure 3: Modification steps for “Add readme file” task
(Task 1)

305

amend the commit later to match the history. The remaining
9 participants completed the task successfully (81.82% task
success rate).

We were expecting more people to end with a commit that
doesn’t include all changes. But in hindsight, all participants
use Git often, and commit is a very common task to perform,
so chances are they already have had the experience of dealing
with the subtleties that arise from having an explicit staging
area interposed between the working directory and local
repository (and thus unlikely to miss the fact that a second
add was required).

Of the 9 participants that completed the task successfully,
6 did an explicit add before doing the commit for step 1.4,
the other 3 used the a/all flag of commit.

When using Gitless all participants completed the task
successfully.

A.1.2 Task 2: Let Users Input Weights in Kilos

Table 7 shows Task 2, Figure 4 shows the modification steps
they had to perform as part of the task.

Task 2 is a buffer task so as to build an interesting repos-
itory and leave the participant with uncommitted changes
(step 2.5) that will be relevant in Task 3. All but one of the
participants completed the task successfully (90.9% success
rate). The one that didn’t, skipped step 2.1 (i.e., did all the
work—steps 2.2 through 2.5—on the master branch). For
step 2.1, of the participants that completed the task success-
fully (10), 7 of them did git checkout -b feat/kilos
to both create and switch to the branch in one command (the
remaining 3 did git branch feat/kilos followed by git
checkout feat/kilos).

The biggest surprise was that using Gitless participants did
much worse. Four participants, created branch feat/kilos
(step 2.1) but never switched to it, and did all the work on the
master branch instead (63.64% task success rate). Perhaps

Task 2: Let users input weight in kilos

The fact that users can only input their weight in pounds and height in inches
happens to be a huge deterrent to non-US users of fit-cli. Alice (the CEO) has
instructed you to implement two new features: let users input weight in kilos and
let them input height in meters.

First, we are going to begin by implementing the kilos feature.

1. Let’s be diligent and work in a separate branch. Create a new branch
feat/kilos and switch to it

2. Open file fit.py and make this change
3. Create a commit with the changes to fit.py and message “kilos feature”

4. Bob (the CTO) will review our changes. Run the ut-pr-kilos-send com-
mand to send a pull request

5. Bob has sent you some comments on your code. First, he suggested we add
a help message to the kilos flag. That’s an easy fix! Open fit.py and make
this change

Bob also suggested that instead of using the w_const_female and
w_const_male variables we should change that to a dictionary. This is going
to take more time to fix, so we are going to put this aside for a while and work on
the meters feature instead.

Table 7: “Let users input weights in kilos” task (Task 2)

description=(

‘fit-cli: compute your resting
metabolic rate from the command
line'))

parser.add_argument (‘gender")

parser.add_argument('age', type=int)

parser.add_argument ('weight', type=int,
help="in pounds')

parser.add_argument('height’, type=int,

help='in inches')
args = parser.parse_args

result = rmb(args.gender, args.age,
args.weight, args.height)

parser.add_argument(age’, Type=1nt)

parser.add_argument('weight', type=int,
help="1in pounds')

parser.add_argument('height",

type=int,
help='in inches')
parser.add_argument('-k', '—-kilos',

action='store_true')

args = parser.parse_args()
result = rmb(
args.gender, args.age, args.weight,
args.height, use_kg=args.kilos)

print('Your resting metabolic rate is

{0}'.format(result))
print('Your resting metabolic rate is
{0}'.format(result))
def rmb(gender, age, weight, height,
3 use_kg=False):
w_const_female = 9.56 if use_kg else 4.35
w_const_male = 13.75 if use_kg else 6.25
if gender == 'female':

def rmb(gender, age, welght height):
if gender == 'fei
recurn (655 + 4.35 % weight + 4.7 %

tne))

parser.add_argument (' gender")

parser.add_argument('age', type=int)

parser.add_argument('weight', type=int,
help="in pounds"')

parser.add_argument('height', type=int,
help="in inches')

netp="1n pounds)
parser.add_argunent ('height', type=int,
help="in inches')

parser.add_argunent
'-m', '--meters', action='store_true',
help='if true, the height input will
be mterpreted in meters')

37s = parser.parse_args()

result = rmb(args.gender, args.age,
args.weight, args.height)

print('Your resting metabolic rate is
{0}'.format(result))

args = parser.parse_args()
result = rmb(
args.gender, args.age, args.weight,
args.height, use_m=args.meters)

print('Your resting metabolic rate is

{0}'.format(result))

def rmb(gender, age, welght height) :
if gender == 'female' 3 def rmb(gender, age, weight, height,
return (655 + 4.35 * weight + 4 7% use_m=False):
_ height - 4.7 x age) * 1 h_const= {
else "female':
return (66 + 6.25 * weight + 12.7 % ‘male':
height - 6.76 * age) * 1.1

1.8 if use_m else 4.7,
5 if use_m else 12.7

if gender == ‘female"
return (655 + 4.35 x welght + 4 7 *

if _name__ == '_main__ height - 4.7 % age) * 1
(a) Step 3. 1 2
def main(): parser = argparse.ArgumentParser(
parser = argparse.ArgumentParser(description=(

description=(
"fit-cli: compute your resting
metabolic rate from the command
line'))

"fit-cli: compute your resting
metabolic rate from the command
line'))

parser.add_argument(' gender',

height - 4.7 * age) * 1.1 —_— return (655 + w_const_female * weight +
else: 4.7 * height - 4.7 x age) * 1.1
return (66 + 6.25 * weight + 12.7 % B else:
height - 6.76 * age) * 1.1 — return (66 + w_const_male * weight +
12.7 * height - 6.76 * age) * 1.1
(a) Step 2.2
line')) parser.add_argument('age', type=int)
parser.add_argument('gender") parser.add_argument('weight', type=int,
parser.add_argument('age’, type=int) help="in pounds')
parser.add_argument('weight', type=int, parser.add_argument ('height', type=int,
help="in pounds') help="'in inches’
parser.add_argument('height', type=int, parser. add _argument(
help='in inches' g "-k', '-—kilos', action='store_true',
parser.add_argument('—k', '——Kilos', — help="if true, then the weight given
action='store true') as_input is interpreted as kg')
args = parser.parse_args() args = parser.parse_args()
(b) Step 2.5

Figure 4: Modification steps for “Let users input weights in
kilos™ task (Task 2)

Task 3: Let users input height in meters
3.1. Let’s get started with the height in meters feature.

1. Create a new branch feat/meters that diverges from master and switch to
feat/meters

2. Open file fit.py and make this change
3.2. Alice just broke into your office! One of the main users of fit-cli reported a
critical bug: no error is reported to the user if the user inputs a value that is not

the string “female” or “male” for the gender. Since she wants you to fix this right
away, we are going to fix this bug, and then go back to working on our features.

1. Switch back to master
2. Open file fit.py and make this change

3. Create a commit with the changes to fit . py and message “fix error checking
bug”

4. Push the changes

Phew, the bug is now fixed. Now we are going to finish with our features.

Table 8: “Let users input height in meters” task (Task 3)

the reason for this is that many thought that an execution
of gl branch -c feat/kilos would not only create the
branch but also switch to it.

A.1.3 Task 3: Let Users Input Height in Meters

Table 8 shows Task 3, Figure 5 shows the modification steps
they had to perform as part of the task.

Seven participants completed the task successfully (72.72%
success rate). Of the 3 that didn’t, 2 created feat/meters
diverging from feat/kilos instead of master (step 3.1.1)
and never realized about it. The other failed to create the
expected commit in step 3.2.3: the participant inadvertently
carried over the uncommitted changes from the meters feature
and included these in the bug fix on master.

306

choices=["female', 'male'])
parser.add_argument('age', type=int)
parser.add_argument('weight', type=int,

(b) Step 3.2.2

parser.add argument("gender")
parser.add_argument('age', type=int)
parser.add_argument(‘weight', type=int,

Figure 5: Modification steps for “Let users input height in
meters” task (Task 3)

For step 3.1.1, participants had to create a new branch
feat/meters and switch to it. A key detail is that we asked
them to make this branch diverge from master. Also note
that after Task 2 participants were left with uncommitted
changes and with the current branch being feat/kilos.
There are two ways to complete this step. One is to switch
to master and then create the new branch by doing git
branch feat/meters. This would make the new branch
point to the same commit master points to. Another al-
ternative is to execute git branch feat/meters master,
which would create the new branch diverging from master
without doing the switch. All but one participant did the
former and tried to do git checkout master but the exe-
cution failed. The problem is that the uncommitted changes
in the working directory conflict with the changes in master
and thus checkout fails. To work around this, 7 of the par-
ticipants that completed the task resorted to creating a stash,
the remaining one did an intermediate commit.

In step 3.2.1 participants had to switch to master to fix
a bug. In this case, the uncommitted changes don’t conflict
with the changes in master so checkout would work. But
the uncommitted changes are unrelated to the bug fix, so
you wouldn’t want them to follow you. To work around this,
6 participants created a stash, and 2 participants created an
intermediate commit.

When using Gitless the success rate was higher (81.81%).
The 2 participants that failed to complete the task created the
feat/meters branch diverging from feat/kilos instead
of master.

A.1.4 Task 4: Wrap With Features

Table 9 shows Task 4, Figure 6 shows the modification steps
they had to perform as part of the task.

Task 4: Wrap with features

4.1. Bob wants us to wrap up the kilos feature so that it gets shipped with the next
release. So instead of going back to working on the meters feature, we are going
to leave that aside and finish with kilos.

1. Switch back to feat/kilos and go back to what we were doing before

2. Let’s change to using a dictionary like Bob wanted. Open fit.py and make
this change

3. Create a commit with the changes to fit.py and message “kilos improve-
ments”

4. Update the kilos pull request: run the command ut-pr-kilos-update

4.2 While we wait to hear from Bob regarding the kilos feature, we are going to
go back to finishing with the meters feature.

1. Switch to feat/meters and bring back changes

2. Now let’s modify the computation of the rmb to use meters if the user
specified so. Open fit.py and make this change.

3. Create a commit with the changes to fit.py and message “meters feature”

4. Bob will review our changes. Run the ut-pr-meters-send command to
send a pull request.

Table 9: “Wrap with features” task (Task 4)

print('Your resting metabolic rate is
{0}'.format(result))

print('Your resting metabolic rate is
{0}'.format(result))

def rmb(gender, age, weight, height,
)

def rmb(gender, age, weight, height,
use_kg=False):)

use_kg=False):

W_const_female = 9.56 if use_Kkg else 4.35 W_const = {

w_const male = 13.75 if use kg else 6.25 — ‘female': 9.56 if use_kg else 4.35,
if gender == 'female': ‘male': 13.75 if use_Kg else 6.25
return (655 + w_const_female * weight + ¥
4.7 % height - 4.7 % age) * 1.1 2 if gender == 'female':
else: - return (655 + w_const[gender] * weight +
return (66 + w_const_male * weight + 4.7 % height - 4.7 x age) * 1.1
12.7 * height - 6.76 * age) * 1.1 3 else:
¢ ¢ ~ return (66 + w_const[gender] * weight +
12.7 * height - 6.76 * age) * 1.1
if __name__ == '__main__':
(a) Step 4.1.2

def rmb(gender, age, weight, height,
use_m=False):
h_const= {
"female': 1.8 if use_m else 4.7,

def rmb(gender, age, weight, height,
use_n=False):
h_const= {
"female': 1.8 if use_m else 4.7,

‘male': 5 if use_m else 12.7 ‘male': 5 if use_m else 12.7
}
if gender == 'female': if gender == 'female':
return (655 + 4.35 * weight + 4.7 % 1 return (655 + 4.35 * weight +
height - 4.7 * age) * — h_const[gender] * height - 4.7 %
else: age) * 1
return (66 + 6.25 * weight + 12.7 % else:
height - 6.76 * age) * 1.1 — return (66 + 6.25 * weight +
h_const[gender] * height - 6.76 *
age) * 1.1
iF mama o= ' main
(b) Step 4.2.2

Figure 6: Modification steps for “Wrap with features” task
(Task 4)

Six participants (out of 11) completed the task successfully
(54.55% success rate). Of the 5 that failed, one skipped part
4.2, the others never applied the stashes that they saved in
Task 3, so the commits they created for steps 4.1.3 and 4.2.3
were incomplete.

For bringing back changes in step 4.1.1, participants had
to be careful of applying the correct stash, which was not the
one in the top of the stack (thus git stash pop would apply
the wrong one). Of all the participants that completed the task
successfully one applied the wrong stash, but detected the
mistake and ended up undoing the application of the stash by
doing agit reset fit.py (so that fit.py is not marked

307

Task 5: Fixing conflicts

5.1. Bob accepted your kilos merge request, but now he’s saying that the height
pull request doesn’t apply cleanly, and he’s asking us to fix conflicts with master
and update the pull request.

1. Update our local master branch with the new changes in the remote master

2. Switch back to feat/meters and rebase the changes from master (which
will generate conflicts)

3. Let’s start fixing conflicts. Open £it.py and make this change
5.2. Bob just broke into your office! Apparently we’ve been using the wrong

shebang line all of this time. He wants you to fix this right away. We are going
to fix this bug, and then go back to finish resolving the conflicts.

. Switch to master
. Open fit.py and make this change
. Create a commit with the changes to fit.py and message “fix shebang”

Push

A~ oW

5.3. Let’s finish fixing conflicts.

—_

. Switch back to feat/meters and go back to the state where we where before
fixing the bug

2. Open fit.py and make this change

5}

. Finish with the rebase operation

4. Update the meters pull request: run the command ut-pr-meters-update

Table 10: “Fixing conflicts” task (Task 5)

as having conflicts anymore) followed by git checkout
fit.py (to discard the changes in the working directory).
When using Gitless the success rate was higher (63.54%).
Of the 4 participants that failed the task, one skipped part 4.1,
another switched to master instead of to feat/meters in
step 4.2.1, the other 2 created more commits than expected.

A.1.5 Task 5: Fixing Conflicts

Table 10 shows Task 5, Figure 7 shows the modification steps
they had to perform as part of the task.

The challenge here was in step 5.2.1 where we asked
the participant to switch to the master branch while in
the middle of resolving conflicts. Many participants tried
git checkout master that doesn’t work because of the
uncommitted changes, then tried git stash that doesn’t
work because of conflicts. Of the 4 participants that failed the
task, 3 created an intermediate commit in the middle of the
rebase to switch to master but when resuming the conflict
resolution they never amend the commit, thus ending with
a different history than the expected one. The other one that
failed the task couldn’t complete the rebase. (Task success
rate was 54.55%.)

Of the 6 participants that completed the task successfully,
3 of them ended up redoing the changes they did in step 5.1.3.
(Counting these as failures, the success rate would be as low
as 27.27%). Of the other 3, one created a copy of the file out
of the repository, aborted the rebase, restarted the rebase after
the fix in master, and copied the file back again. The other
two did an intermediate commit that they amended later.

parser.add_argument(‘height', type=int,
help="in inches')
parser.add arqument(

<<<<<<< HEAD

help='1in pounds')

parser.add_argument(‘height*, type=int,
help='1in inches')

parser, add_argument(

. —Kilos', action="store_true',
help— if true, then the weight given
as input is interpreted as kg')
args = parser.parse_args()

result = rmb(
args.gender, args.age, args.weight,
args.height, use_kg=args.kilos)

-m', '--meters', action='store_true',
help='if true, the height input will
be interpreted in meters')
args = parser.parse_args()

result = rmb(
args.gender, args.age, args.weight,
args.height, use_m=args.meters)
>>>>>>> meters feature

print('Your resting metabolic rate is
{0}'.format(result))

——Kkilos', action='store_true',
help='if true, then the weight given
as input is interpreted as kg')
parser. add |_argument (
-m', '--meters', action='store_true',
help='if true, the height input will
be interpreted in meters')
args = parser.parse_args()

result = rmb(
args.gender, args.age, args.weight,
args.height,
use_kg=args.kilos, use_m=args.meters)

print('Your resting metabolic rate is
{0}'.format(result))

<<<<<<< HEAD
def rmb(gender, age, weight, heisht,
use ka=Fals

(a) Step 5.1.3

#!/usr/bin/python

—— | #!/usr/bin/env_python

Task 6: Code cleanup
6.1. It’s time to clean up our code. This should be a fairly small task so we are
going to keep it simple and work on master.

1. Switch to master and pull changes
2. Open fit.py and make this change
3. Create a commit with the changes to fit.py and message “join const dicts”

6.2. After a walk in the park you realized that the last commit might be wrong. So
we are going to try something different.

1. Go back to the same state as before the commit
. Open fit.py and make this change

. Create a new commit with message “switch to using nt for consts”

A W N

. Using namedtuples looks better than merging the dictionaries, so let’s go

import argparse import argparse

(b) Step 5.2.2

<<<<<<< HEAD
def rmb(gender, age, weight, height,
use kg=False):
w_const = {
‘female': 9.56 if use_kg else 4.35,
‘male': 13.75 if use_kg else 6.25
+

print('Your resting metabolic rate is
{0}'.format(result))

def rmb(gender, age, weight, height,
use kg=False, use m=False):

if gender == 'female': w_const = {
return (655 + w_const[gender] * weight + ‘female': 9.56 if use_kg else 4.35,
4.7 * height - 4.7 * age) * 1.1 ‘male': 13.75 if use_kg else 6.25
else: 2 }
return (66 + w_const[gender] * weight + —*| h_const= {
12.7 * height - 6.76 % age) * 1.1 ‘female': 1.8 if use_m else 4.7,
—x ‘male': 5 if use_m else 12.7
def rmb(gender, age, weight, height, b
use_m=False): if gender == 'female':
h_const= { return (

655 + w_const[gender] * weight +
h_const [gender] * height -
3 4.7 % age) * 1.1

‘female': 1.8 if use_m else 4.7,
‘male': 5 if use_m else 12.7

if gender == 'female': e else:
return (655 + 4.35 % weight + return (
h_const[gender] * height - 4.7 * 66 + w_const[gender] * weight +
age) * 1.1 h_const [gender] * height -
else: 4 6.76 * age) * 1.1
return (66 + 6.25 * weight +
h_const [gender] * height - 6.76
age) * 1.1 if __name__ == '__main__':
>>>>>>> meters feature main()
(c) Step 5.3.2

Figure 7: Modification steps for “Fixing conflicts” task
(Task 5)

With Gitless the success rate was 90.91%, the one partici-
pant that failed the task missed a few steps.

A.1.6 Task 6: Code Cleanup

Table 11 shows Task 6, Figure 8 shows the modification steps
they had to perform as part of the task.

The success rate for this task was 63.64%. Two of the 4
participants that failed to complete the task ended the task
in a detached head state with a commit that belongs to no
branch at all. The other 2 missed one or more steps.

For step 6.2.1, one participant did a git revert, which
creates a new commit that reverts the changes introduced by
the last commit. This participant eventually realized that we
wanted the last commit to disappear from the history and did
a checkout HEAD™2 to go back (which left the participant
in detached head state). To prevent doing the last commit
(step 6.2.3) in a detached head state the participant reattached
the head and did a git reset instead. Another participant
also did a checkout of the SHA and then reattached HEAD
and did a reset instead. The remaining participants all did
reset and never went into a detached head state.

The success rate was 81.82% when using Gitless. Of the 2
participants that failed the task, one skipped steps and ended

ahead and push these changes

Table 11: “Code cleanup” task (Task 6)

USE_KY=aTyS+KIT0S, USE=aTgs MeTersT
print('Your resting metabolic rate is
{0}'.format(result))

def rmb(gender, age, weight, height,
use_kg=False, use_m=False):

def rmb(gender, age, weight, height,
use_kg=False, use_m=False):

w_const = {
‘female': 9.56 if use_kg else 4.35,

‘male': 13.75 if use kg else 6.25
+

h_const= {
‘female': 1.8 if use_m else 4.7,
‘male': 5 if use_m else 12.7

if gender == 'female':
return (
655 + w_const[gender] * weight +
h_const [gender] * height —
4.7 % age) * 1.1
else:
return (
66 + w_const[gender] * weight +
h_const [gender] * height -
6.76 * age) * 1.1

if _name__ == '_main

(a) Step 6.

print('Your resting metabolic rate is
{0}'.format(result))

def rmb(gender, age, weight, height,
use_kg=False, use_m=False):
w_const = {
‘female': 9.56 if use_kg else 4.35,
'male': 13.75 if use_kg else 6.25
+

h_const= {
"female': 1.8 if use_m else 4.7,
'male': 5 if use_m else 12.7
b

if gender == 'female':
return (
655 + w_const[gender] * weight +
h_const [gender] * height —
4.7 x age) x 1.1
else:
return (
66 + w_const[gender] * weight +
h_const[gender] * height -
6.76 * age) * 1.1

if _name__ == '_main
main()

const = {
‘weight': {
‘female': 9.56 if use_kg else
4.35,
'male': 13.75 if use_kg else 6.25
‘height': {
"female': 1.8 if use_m else 4.7,
‘male': 5 if use_m else 12.7
b

¥
if gender == 'female':
return
655 + const['weight'] [gender] *
weight +
const['height*][gender] * height -
* age) * 1.
else:
return (
66 + const['weight'][gender]
weight +
const['height"][gender] * height -
76 * age) * 1.
if __name__ == '__main__
1.2

print('Your resting metabolic rate is
{0}'.format(result))

def rmb(gender, age, weight, height,
use_kg=False, use_m=False):
Const = collections.namedtuple('Const',
['weight', ‘height'])
const = Const(
{'female': 9.56 if use_kg else 4.35,
'male': 13.75 if use_kg else 6.25},
{'female': 1.8 if use_m else 4.7,
‘male': 5 if use_m else 12.7})
if gender == 'female':
return (
655 + const.weight[gender] % weight

+
const.height [gender] * height - 4.7
* age) * 1.1
else:
return (
66 + const.weight([gender] * weight +
const.height [gender] * height - 6.76
* age) * 1.1

if _name__ == '_main__
main()

(b) Step 6.2.2

Figure 8: Modification steps for “Code cleanup” task

(Task 6)

the task in a very different state than the expected one. The
other one forgot to publish changes. Since it is not possible
to go in a detached head state in Gitless participants didn’t
have much trouble completing the task. Most of the time
was spent figuring out how to change the head of the current
branch (many tried looking for a flag in checkout).

References

[1] B. Appleton, S. P. Berczuk, R. Cabrera, and R. Orenstein.
Streamed lines: Branching patterns for parallel software
development. 1998.

[2] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German,
and P. Devanbu. Cohesive and isolated development with
branches. In Proceedings of the International Conference on
Fundamental Approaches to Software Engineering. Springer,
April 2012. URL http://research.microsoft.com/
apps/pubs/default.aspx?id=157290.

[3] S. Bennett. 10 things I hate about git, 2012. URL
http://stevebennett.me/2012/02/24/10-things-i-
hate-about-git/.

[4] M. Biazzini, M. Monperrus, and B. Baudry. On analyzing the
topology of commit histories in decentralized version control
systems. In Software Maintenance and Evolution (ICSME),
2014 IEEE International Conference on, pages 261-270, Sept
2014. doi: 10.1109/ICSME.2014.48.

[5] C. Bird and T. Zimmermann. Assessing the value of
branches with what-if analysis. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE *12, pages 45:1—
45:11, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1614-9. doi: 10.1145/2393596.2393648. URL
http://doi.acm.org/10.1145/2393596.2393648.

[6] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig. How
do centralized and distributed version control systems impact
software changes? In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages
322-333, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2756-5. doi: 10.1145/2568225.2568322. URL
http://doi.acm.org/10.1145/2568225.2568322.

[7] F. P. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Professional, 1995. ISBN
978-0-201-83595-3.

[8] F. P. Brooks. The Design of Design: Essays from a Computer
Scientist. Addison-Wesley Professional, 2010. ISBN 978-0-
201-36298-5.

[9] S. Chacon and B. Straub. Pro Git. Apress, 2 edition, 2014.
ISBN 978-1484200773. URL http://git-scm.com/book.

[10] L. Church, E. Séderberg, and E. Elango. A case of computa-
tional thinking: The subtle effect of hidden dependencies on
the user experience of version control. 2014. PPIG 2014 - 25th
Annual Workshop.

B. de Alwis and J. Sillito. Why are software projects
moving from centralized to decentralized version control
systems? In Proceedings of the 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering,
CHASE 09, pages 36-39, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-1-4244-3712-2. doi:
10.1109/CHASE.2009.5071408. URL http://dx.doi.org/
10.1109/CHASE.2009.5071408.

S. Garfinkel, D. Weise, and S. Strassmann. The UNIX
Hater’s Handbook: The Best of UNIX-Haters On-line

Mailing Reveals Why UNIX Must Die! 1DG Books
Worldwide, Inc., June 1994. ISBN 978-1-56884-203-5. URL

http://web.mit.edu/"simsong/www/ugh.pdf.

(11]

(12]

309

[13] G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory
study of the pull-based software development model. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 345-355, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi:
10.1145/2568225.2568260. URL http://doi.acm.org/10.
1145/2568225.2568260.

[14] T. R. G. Green and M. Petre. Usability analysis of
visual programming environments: a “cognitive dimensions”
framework. Journal of Visual Languages & Computing, 7(2):
131-174, 1996.

[15] A. Henderson and J. Johnson. Conceptual Models: Core
to Good Design. Synthesis Lectures on Human-Centered
Informatics. Morgan & Claypool Publishers, 2011. ISBN
978-1608457496.

[16] D. Jackson. Towards a theory of conceptual design for
software. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!), Onward! 2015, pages 282-296,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3688-8. doi: 10.1145/2814228.2814248. URL http:
//doi.acm.org/10.1145/2814228.2814248.

[17] Y. Jiang, B. Adams, and D. M. German. Will my patch make it?
and how fast?: Case study on the linux kernel. In Proceedings
of the 10th Working Conference on Mining Software
Repositories, MSR 13, pages 101-110, Piscataway, NJ, USA,
2013. IEEE Press. ISBN 978-1-4673-2936-1. URL http:
//dl.acm.org/citation.cfm?id=2487085.2487111.

[18] J. Loeliger and M. McCullough. Version Control with Git:
Powerful Tools and Techniques for Collaborative Software
Development. O’Reilly Media, second edition, 2012. ISBN
978-1-4493-1638-9.

[19] K. Mugslu, C. Bird, N. Nagappan, and J. Czerwonka. Transition
from centralized to decentralized version control systems: A
case study on reasons, barriers, and outcomes. In Proceedings
of the 36th International Conference on Software Engineering,
ICSE 2014, pages 334-344, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568284.
URL http://doi.acm.org/10.1145/2568225.2568284.

[20] J. Nielsen and R. Molich. Heuristic evaluation of user
interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI *90, pages
249-256, New York, NY, USA, 1990. ACM. ISBN 0-
201-50932-6. doi: 10.1145/97243.97281. URL http:
//doi.acm.org/10.1145/97243.97281.

[21] B. O’Sullivan. Mercurial: The Definitive Guide. O’Reilly
Media, 2009. ISBN 978-0596800673.

[22] S. Perez De Rosso and D. Jackson. What’s wrong with git?
a conceptual design analysis. In Proceedings of the 2013
ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2013,
pages 37-52, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2472-4. doi: 10.1145/2509578.2509584. URL
http://doi.acm.org/10.1145/2509578.2509584.

[23] S. Phillips, J. Sillito, and R. Walker. Branching and merging:
An investigation into current version control practices. In

Proceedings of the 4th International Workshop on Cooperative
and Human Aspects of Software Engineering, CHASE 11,
pages 9-15, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0576-1. doi: 10.1145/1984642.1984645. URL
http://doi.acm.org/10.1145/1984642.1984645.

[24] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick.

Version Control with Subversion. O’Reilly Media, 2008. ISBN
0596510330. URL http://svnbook.red-bean.com/.

[25] B. Pollack. Unorthodocs: Abandon your DVCS and return

to sanity, 2015. URL http://bitquabit.com/post/
unorthodocs-abandon-your-dvcs-and-return-to-
sanity/.

[26] P. C. Rigby, E. T. Barr, C. Bird, P. Devanbu, and D. M.

German. What effect does distributed version control

310

have on oss project organization? In Proceedings of
the Ist International Workshop on Release Engineering,
RELENG ’13, pages 29-32, Piscataway, NJ, USA, 2013.
IEEE Press. ISBN 978-1-4673-6441-6. URL http:
//dl.acm.org/citation.cfm?id=2663360.2663368.

[27] C. Rodriguez-Bustos and J. Aponte. How distributed version

control systems impact open source software projects. In
Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, MSR ’12, pages 36-39, Piscataway,
NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1761-0.
URL http://dl.acm.org/citation.cfm?id=2664446.
2664452.

[28] C. Walrad and D. Strom. The importance of branching models

in scm. Computer, 35(9):31-38, Sep 2002. ISSN 0018-9162.
doi: 10.1109/MC.2002.1033025.

