
Expectations, Outcomes, and Challenges

Of Modern Code Review
Alberto Bacchelli

REVEAL @ Faculty of Informatics

University of Lugano, Switzerland

alberto.bacchelli@usi.ch

Christian Bird

Microsoft Research

Redmond, Washington, USA

cbird@microsoft.com

Abstract—Code review is a common software engineering

practice employed both in open source and industrial contexts.

Review today is less formal and more "lightweight" than the code

inspections performed and studied in the 70s and 80s. We

empirically explore the motivations, challenges, and outcomes of

tool-based code reviews. We observed, interviewed, and surveyed

developers and managers and manually classified hundreds of

review comments across diverse teams at Microsoft. Our study

reveals that while finding defects remains the main motivation

for review, reviews are less about defects than expected and

instead provide additional benefits such as knowledge transfer,

increased team awareness, and creation of alternative solutions to

problems. Moreover, we find that code and change

understanding is the key aspect of code reviewing and that

developers employ a wide range of mechanisms to meet their

understanding needs, most of which are not met by current tools.

We provide recommendations for practitioners and researchers.

I. INTRODUCTION

Peer code review, a manual inspection of source code by

developers other than the author, is recognized as a valuable

tool for reducing software defects and improving the quality of

software projects [1] [2]. In 1976, Fagan formalized a highly

structured process for code reviewing [3], based on line-by-line

group reviews, done in extended meetings—code inspections.

Over the years, researchers provided evidence on code

inspection’s benefits, especially in terms of defect finding, but

the cumbersome, time-consuming, and synchronous nature of

this approach hinders its universal adoption in practice [4].

Nowadays, many organizations are adopting more

lightweight code review practices to limit the inefficiencies of

inspections. In particular, there is a clear trend toward the usage

of tools specifically developed to support code review [5]. In

the context of this paper, we define Modern Code Review, as

review that is (1) informal (in contrast to Fagan-style), (2) tool-

based, and that (3) occurs regularly in practice nowadays, for

example at companies such as Microsoft, Google [6], Facebook

[7], and in other companies and OSS projects [8].

This trend raises questions, such as: Can we apply the

lessons learned from previous research on code inspections to

modern code reviews? What are the expectations for code

review nowadays? What are the actual outcomes of code

review? What challenges do people face in code review?

Answers to these questions can provide insight for both

practitioners and researchers. Developers and other software

project stakeholders can use empirical evidence about

expectations and outcomes to make informed decisions about

when to use code review and how it should fit into their

development process. Researchers can focus their attention on

practitioners’ challenges to make code review more effective.

We present an in-depth study of practices in teams that use

modern code review, revealing what practitioners think, do,

and achieve when it comes to modern code review.

Since Microsoft is made up of many different teams

working on very diverse products, it gives the opportunity to

study teams performing code review in situ and understand

their expectations, the benefits they derive from code review,

the needs they have, and the problems they face.

We set up our study as an explorative investigation. We

started without a priori hypotheses regarding how and why

code review should be performed, with the aim of discovering

what developers and managers expect from code review, how

reviews are conducted in practice, and what the actual

outcomes and challenges are. To that end, we (1) observed 17

industrial developers performing code review with various

degrees of experience and seniority across 16 separate product

teams with distinct reviewing cultures and policies; (2)

interviewed these developers using a semi-structured

interviews; (3) manually inspected and classified the content of

570 comments in discussions contained within code reviews;

and (4) surveyed 165 managers and 873 programmers.

Our results show that, although the top motivation driving

code reviews is still finding defects, the practice and the actual

outcomes are less about finding errors than expected: Defect

related comments comprise a small proportion and mainly

cover small logical low-level issues. At the same time, code

review additionally provides a wide spectrum of benefits to

software teams, such as knowledge transfer, team awareness,

and improved solutions to problems. Moreover, we found that

context and change understanding is the key of any review.

According to the outcomes they want to achieve, developers

employ many mechanisms to fulfill their understanding needs,

most of which are not currently met by any code review tool.

This paper makes the following contributions:

 Characterizing the motivations of developers and

managers for code review and compare with actual

outcomes.

 Relating the outcomes to understanding needs and

discuss how developers achieve such needs.

Based on our findings, we provide recommendations for

practitioners and implications for researchers as well as outline

future avenues for research.

II. RELATED WORK

Previous studies exist that have examined the practices of

code inspection and code review. Stein et al. conducted a study

focusing specifically on distributed, asynchronous code

inspections [17]. The study included evaluation of a tool that

allowed for identification and sharing of code faults or defects.

Participants at separated locations can then discuss faults via

the tool. Laitenburger conducted a survey of code inspection

methods, and presented a taxonomy of code inspection

techniques [9]. Johnson conducted an investigation into code

review practices in open source development and the effect

they have on choices made by software project managers [10].

Porter et al. [11] reported on a review of studies on code

inspection in 1995 that examined the effects of factors such as

team size, type of review, and number of sessions on code

inspections. They also assessed costs and benefits across a

number of studies. These studies differ from ours in that they

were not tool-based and were the majority involved planned

meetings to discuss the code.

However, prior research also sheds light on why review

today is more often tool-based, informal, and often

asynchronous. The current state of code review might be due to

the time required for more formal inspections. Votta found that

20% of the interval in a “traditional inspection” is wasted due

to scheduling [12]. The ICICLE tool [13], or “Intelligent Code

Inspection in a C Language Environment,” was developed after

researchers at Bellcore observed how much time and work was

expended before and during formal code inspections. Many of

today’s review tools are based on ideas that originated in

ICICLE. Other similar tools have been developed in an effort

to reduce time for inspection and allow asynchronous work on

reviews. Examples include CAIS [14] and Scrutiny [15].

More recently, Rigby has done extensive work examining

code review practices in open source software development [5].

For example in a study of practices in the Apache project [16]

they data-mined the email archives and found that reviews

were typically small and frequent, and that the contributions to

a review were often brief and independent from one another.

 Sutherland and Venolia conducted a study at Microsoft

regarding using code review data for later information needs

[17]. They hypothesized that the knowledge exchanged during

code reviews could be of great value to engineers later trying to

understand or modify the discussed code. They found that “the

meat of the code review dialog, no matter what medium, is the

articulation of design rationale” and, thus, “code reviews are an

enticing opportunity for capturing design rationale.”

When studying developer work habits, Latoza et al. found

that many problems encountered by developers were related to

understanding the rationale behind code changes and gathering

knowledge from other members of their team [18].

III. METHODOLOGY

In this section we define the research questions, describe

the research settings, and outline our research method.

A. Research Questions

Our investigation of code review revolves around the

following research questions, which we iteratively refined

during our initial in-field observations and interviews:

1. What are the motivations and expectations for

modern code review? Do they change from managers

to developers and testers?

2. What are the actual outcomes of modern code

review? Do they match the expectations?

3. What are the main challenges experienced when

performing modern code reviews relative to the

expectations and outcomes?

B. Research Setting

Our study took place with professional developers, testers,

and managers. Microsoft develops software in diverse domains,

from high end server enterprise data management solutions

such as SQL Server to mobile phone applications and smart

phone apps to search engines. Each team has its own

development culture and code review policies. Over the past

two years, a common tool for code review at Microsoft has

achieved wide-spread adoption. As it represents a common and

growing solution for code review (over 40,000 developers used

it so far), we focused on developers using this tool for code

review—CodeFlow.

CodeFlow is a collaborative code review tool that allows

users to directly annotate source code in its viewer and interact

with review participants in a live chat model. The functionality

of CodeFlow is similar to other review tools such Google’s

Mondrian [6], Facebook’s Phabricator [7] or open-source

Gerrit [8]. Developers who want their code to be reviewed

create a package with the changed (new, deleted, and modified)

files, select the reviewers, write a message to describe the code

review, and submit everything to the CodeFlow service.

CodeFlow then notifies the reviewers about the incoming task

via email.

Once reviewers open a CodeFlow review, they interact with

it via a single desktop window (Figure 1). On the top left (1),

they see the list of files changed in the current submission, plus

a “description.txt” file, which contains a textual explanation of

the change, written by the author. On bottom left, CodeFlow

shows the list of reviewers and their status (2). We see that

Christian is the review author and Alberto, Tom, and Nachi are

the reviewers. Alberto has reviewed and is waiting for the

author to act, as the clock icon suggests, while Nachi already

signed off on the changes. CodeFlow’s main view (3) shows

the diff-highlighted content of the file currently under review.

Both the reviewers and the author can highlight portions of the

code and add comments inline (4). These comments can start

threads of discussion and are the interaction points for the

people involved in the review. Each user viewing the same

review in CodeFlow sees events as they happen. Thus, if an

author and reviewer are working on the review at the same

time, the communication is synchronous and comment threads

act similar to instant messaging. The comments are persisted so

that if they work at different times, the communication

becomes asynchronous. The bottom right pane (5) shows the

summary of all the comments in the review.

CodeFlow centralizes and records all the information on

code reviews on a central server. This provides an additional

data source that we used to analyze real code review comments

without incurring the Hawthorne effect [19].

C. Research Method

Our research method followed a mixed approach [20],

depicted in Figure 2, collecting data from different sources for

triangulation: (1) analysis of previous study, (2) observations

and interviews with developers, (3) card sort on interview data,

(4) card sort on code review comments, (5) the creation of an

affinity diagram, and (6) survey to managers and programmers.

1. Analysis of previous study: Our research started with

the analysis of a study commissioned by Microsoft, between

April and May 2012 carried out by an external vendor. The

study investigated how different product teams were using

CodeFlow. It consisted of structured interviews (lasting 30-50

minutes) to 23 people with different roles.

Most of the interview questions revolved around topics that

are very specific to tool usage, and were only tangentially

related to this work. We found one relevant as a starting point

for our study: “What do you hope to accomplish when you

submit a code review?” We analyzed the transcript of this

answer, for each interview, through the process of coding [21]

(also used in grounded theory [22]): breaking up the answers

into smaller coherent units (sentences or paragraphs) and

adding codes to them. We organized codes into concepts,

which in turn were grouped into more abstract categories.

From this analysis, four motivations emerged for code

review: finding defects, maintaining team awareness,

improving code quality, and assessing the high-level design.

We used them to draw an initial guideline for our interviews.

2. Observations and interviews with developers: Next,

we conducted a series of one-to-one meetings with developers

who use CodeFlow, each taking 40-60 minutes.

We contacted 100 random candidates who signed-off

between 50 and 250 code reviews since the CodeFlow release

and sampled across different product teams to address our

research questions from a multi-point perspective. We wrote

developers who used CodeFlow in the past and asked them to

contact us, giving us 30 minute notice when they received their

next review task so that we could observe. The respondents

that we interviewed comprised five developers, four senior

developers, six testers, one senior tester, and one software

architect. Their time in the company ranged from 18 months to

almost 10 years, with a median of five years.

Each meeting was comprised of two parts: In the first part,

we observed them performing the code review that they had

been assigned. To minimize invasiveness we used only one

observer and to encourage the participant to narrate their work,

we asked the participants to think of us as a newcomer to the

team. In this way, most developers thought aloud without need

of prompting. With consent, we recorded the audio, assuring

the participants of anonymity. Since we, as observers, have

backgrounds in software development and practices at

Microsoft, we were able to understand most of the work and

where and how information was obtained without inquiry.

The second part of the meeting was a semi-structured

interview [23]. Semi-structured interviews make use of an

interview guide that contains general groupings of topics and

questions rather than a pre-determined exact set and order of

questions. They are often used in an exploratory context to

“find out what is happening [and] to seek new insights” [24].

The guideline was iteratively refined after each interview, in

particular when developers started providing answers very

similar to the earlier ones, thus reaching a saturation effect.

Observations also reached a saturation point, thus providing

insights very similar to the earlier ones. For this, after the first

5-6 observations, we adjusted the meetings to have shorter

observations, which we used as a starting point for our

meetings and as a “hook” to talk about topics in our guideline.

The audio of each interview was then transcribed and

broken up into smaller coherent units for subsequent analysis.

3. Card sort (meetings): To group codes that emerged

from interviews and observations into categories, we conducted

a card sort. Card sorting is a sorting technique that is widely

used in information architecture to create mental models and

derive taxonomies from input data [25]. In our case it helped to

organize the codes into hierarchies to deduce a higher level of

abstraction and identify common themes. A card sort involves

three phases: In the (1) preparation phase, participants of the

card sort are selected and the cards are created; in the (2)

execution phase, cards are sorted into meaningful groups with a

descriptive title; and in the (3) analysis phase, abstract

hierarchies are formed to deduce general categories.

We applied an open card sort: There were no predefined

groups. Instead, the groups emerged and evolved during the

sorting process. In contrast, a closed card sort has predefined

groups and is typically applied when themes are known in

advance, which was not the case for our study.

The first author of this paper created all of the cards, from

the 1,047 coherent units in the interviews. Throughout our

Figure 1. Screenshot of CodeFlow, the dominant code review

tool used by developers at Microsoft.

further analysis other researchers (the second author and

external people) were involved in developing categories and

assigning cards to categories, so as to strengthen the validity of

the result. The first author played a special role of ensuring that

the context of each question was appropriately considered in

the categorization, and creating the initial categories. To ensure

the integrity of our categories, the cards were sorted by the first

author several times to identify initial themes. Next, all

researchers reviewed and agreed on the final set of categories.

4. Card sort (code review comments): The same method

was applied to group code review comments into categories:

We randomly sampled 200 threads with at least two comments

(e.g., Point 4 of Figure 2), from the entire dataset of CodeFlow

reviews, which embeds data from dozens of independent

software products at Microsoft. We printed one card for each

comment (along with the entire discussion thread to give the

context), totaling 570 cards, and conducted a card sort, as

performed for the interviews, to identify common themes.

5. Affinity Diagram: We used an affinity diagram to

organize the categories that emerged from the card sort. This

tool allows large numbers of ideas to be sorted into groups for

review and analysis [26]. We used it to generate an overview of

the topics that emerged from the card sort, in order to connect

the related concepts and derive the main themes. For generating

the affinity diagram, we followed the five canonical steps: we

(1) recorded the categories on post-it-notes, (2) spread them

onto a wall, (3) sorted the categories based on discussions, until

all are sorted and all participants agreed, (4) named each group

with a description, and (5) captured and discussed the themes.

6. Surveys: The final step of our study was aimed at validating

the concepts that emerged from the previous phases. Towards

this goal, we created two surveys to reach a significant number

of participants and to challenge our conclusions (The full

surveys are available as a technical report [27]). For the design

of the surveys, we followed Kitchenham and Pfleeger’s

guidelines for personal opinion surveys [28]. Both surveys

were anonymous to increase response rates [29].

We sent the first survey to a cross section of managers. We

considered managers for which at least half of their team

performed code reviews regularly (on average, one per week or

more) and sampled along two dimensions. The first dimension

was whether or not the manager had participated in a code

review himself since the beginning of the year and the second

dimension was whether the manager managed a single team or

multiple teams (a manager of managers). Thus, we had one

sample of first level managers who participated in review,

another sample of second level managers who participated in

reviews, etc. The first survey was a short survey comprising 6

questions (all optional), which we sent to 600 managers that

had at least ten direct or indirect reporting developers who used

CodeFlow in the past. The central focus was the open question

asking to enumerate the main motivations for doing code

reviews in their team. We received 165 answers (28% response

rate), which we analyzed before devising the second survey

The second survey comprised 18 questions, mostly closed

with multiple choice answers, and was sent to 2,000 randomly

chosen developers who signed off on average at least one code

review per week since the beginning of the year. We used the

time frame of January to June of 2012 to minimize the amount

of organizational churn during the time period and identify

employees’ activity in their current role and team. We received

873 answers (44% response rate). Both response rates were

high, as other online surveys in software engineering have

reported response rates ranging from 14% to 20% [30].

IV. WHY DO PROGRAMMERS DO CODE REVIEWS?

Our first research question seeks to understand what

motivations and expectations drive code reviews, and whether

managers and developers share the same opinions.

Based on the responses that we coded from observations of

developers performing code review as well as interviews, there

are various motivations for code review. Overall, the interviews

revealed that finding defects, even though prominent, is just

one of the many motivations driving developers to perform

code reviews. Especially when reinforced by a strong team

culture around reviews, developers see code reviews as an

activity that has multiple beneficial influences not only on the

code, but also for the team and the entire development process.

In this vein, one senior developer’s comment summarized

many of the responses: “[code review] also has several

beneficial influences: (1) makes people less protective about

their code, (2) gives another person insight into the code, so

Figure 2. The mixed approach research method applied.

there is (3) better sharing of information across the team, (4)

helps support coding conventions on the team, and [...] (5)

helps improving the overall process and quality of code.”

Through the card sort on both meetings and code review

comments, we found several references to motivations for code

review and identified six main topics. To complete this list, in

the survey for managers, we included an open question on why

they perform code reviews in their team. We analyzed the

responses to create a comprehensive list of high-level

motivations. We included this list in the developers’ survey and

asked them to rank the top three main reasons that described

why they do code reviews.

In the rest of this section, we discuss the motivations that

emerged as the most prominent. We order them according to

the importance they were given by the 873 developers and

testers who responded to the final survey.

A. Finding Defects

One interviewed senior tester explains that he performs

code reviews because they “are a great source of bugs;” he

goes even further stating: “sometimes code reviews are a

cheaper form of bug finding than testing.” Moreover, the tool

seems not to have an impact on this main motivation: “using

CodeFlow or using any other tool makes a little difference to

us; it's more about being able to identify flaws in the logic.”

Almost all the managers included “finding defects” as one

of the reasons for doing code reviews; for 44% of the

managers, it is the top reason. Managers considered defects to

be both low level issues (e.g., “correct logic is in place”) and

high level concerns (e.g., “catch errors in design”). Concerning

surveyed developers/testers, “finding defects” is the first

motivation for code review for 383 of the programmers (44%),

second motivation for 204 (23%), and third for 96 (11%).

This is in-line with the reason why code inspections were

devised in the first place: reducing software defects [1].

Nevertheless, even though “finding defects” emerged from

our data as a strong motivation (the first for almost half of the

programmers and managers), interviews and survey results

indicate that this only tells part of the story of why practitioners

do code reviews and the outcomes they expect.

B. Code Improvement

Code improvements are comments or changes about code

in terms of readability, commenting, consistency, dead code

removal, etc., but do not involve correctness or defects.

Programmers ranked “code improvement” as an important

motivation for code review, close to “finding defects:” This is

the primary motivation for 337 programmers (39%), the second

for 208 (24%), and the third for 135 (15%). Managers reported

code improvements as their primary motivation in 51 cases

(31%). One manager wrote how code review in her view is a

“discipline of explaining your code to your peers [that] drives

a higher standard of coding. I think the process is even more

important than the result.”

Most interviewed programmers mentioned that at least one

of the reviewers involved in each code review takes care of

checking whether the code follows the team conventions, for

example in terms of code formatting and in terms of function

and variable naming. Some programmers use the “code

improvement” check as a first step when doing code review:

“the first basic pass on the code is to check whether it is

standard across the team.”

The interviews also gave us a glimpse of the connection

between the quality of code reviews and “code improvement”

comments. Such comments seem easier to write and sometimes

interviewees mentioned them as the way reviewers use to avoid

spending time to conduct good code reviews. An observation

by a senior developer, in the company for more than nine years,

summarizes the opinions we received from many interviewees:

“I’ve seen quite a few code reviews where someone commented

on formatting while missing the fact that there were security

issues or data model issues.”

C. Alternative Solutions

“Alternative solutions” regard changes and comments on

improving the submitted code by adopting an idea that leads to

a better implementation. This is one of the few motivations in

which developers and managers do not agree. While 147 (17%)

developers put this as the first motivation, 202 (23%) as the

second, and 152 (17%) as the third, only 4 managers (2%) even

mentioned it (e.g., “Generate better ideas, alternative

approaches” and “Collective wisdom: Someone else on the

project may have a better idea to solve a problem”). The

outcome of the interviews was similar to the position of

managers: Interviewees vaguely mentioned this motivation,

and mostly in terms of generic “better ways to do things.”

D. Knowledge Transfer

All the interviewees but one motivated their code reviews

also from a learning, or “knowledge transfer,” perspective.

With the words of a senior developer: “one of the things that

should be happening with code reviews over time is a

distribution of knowledge. If you do a code review and did not

learn anything about the area and you still do not know

anything about the area, then that was not as good code review

as it could have been.” Although we did not include questions

related to “knowledge transfer” in our interview guideline, this

topic kept emerging spontaneously from each meeting, thus

underscoring its value for practitioners.

Sometimes programmers told us that they follow code

reviews explicitly for learning purposes. For example, a tester

explained: “[I read code reviews because] from a code review

you can learn about the different parts you have to touch to

implement a certain feature.”

According to interviewees, code review is a learning

opportunity for both the author of the change and the

reviewers: There is a bidirectional knowledge transfer about

APIs usage, system design, best practices, team conventions,

“additional code tricks,” etc. Moreover code reviews are

recognized for educating new developers about code writing.

Managers included “knowledge transfer” as one of the

reasons for code review, although never as the top motivation.

They mostly wrote about code review as an education means

by mentioning among the motivations for code review:

“developer education,” “education for junior developers who

are learning the codebase,” and “learning tool to teach more

junior team members.”

Programmers answering the survey declared “knowledge

transfer” to be their first motivation for code review in 73 cases

(8%), their second in 119 (14%), and their third in 141 (16%).

E. Team Awareness and Transparency

During one of our observations, one developer was

preparing a code review submission as an author: He wanted

other developers to “double check” his changes before

committing them to the repository. After preparing the code, he

specified the developers he wanted to review his code; he

required not only two specific people, but he also put a generic

email distribution group as an “optional” reviewer. When we

inquired about this choice, he explained us: “I am adding [this

alias], so that everybody [in the team] is notified about the

change I want to do before I check it in.” In the subsequent

interviews, this concept of using an email list as optional

reviewer, or including specific optional reviewers exclusively

for awareness emerged again frequently, e.g., “Code reviews

are good FYIs [for your information].”

Managers often mentioned the concept of team awareness

as a motivation for code review, frequently justifying it with

the notion of “transparency:” Not only must the team be kept

aware of the directions taken by the code, but also nobody

should be allowed to “secretly” make changes that might break

the code or alter functionalities.

The 873 programmers answering the survey ranked “team

awareness and transparency” very close to “knowledge

transfer.” In fact, the two concepts appeared logically related

also in the interviews; for example one tester, while reviewing

some code said: “oh, this guy just implemented this feature, and

now let me back and use it somewhere else.” Showing that he

both learned about the new feature and he was now aware of

the possibility to use it in his own code. 75 (9%) developers

considered team awareness their first motivation for code

review, 108 (12%) their second, and 149 (17%) their third.

Although team awareness and transparency emerged from

our data as clearly promoted by the code review process,

academic research seems to have given little attention to it.

F. Share Code Ownership

The concept of “shared code ownership” is closely related

to “team awareness and transparency,” but it has a stronger

connotation toward active collaboration and overlapping

coding activities. Programmers and managers believe that code

review is not only an occasion to notify other team members

about incoming changes, but also a means to have more than

one knowledgeable person about specific parts of the codebase.

A manager put the following as her second motivation for code

review: “Broaden knowledge & understanding of how specific

features/areas are designed and implemented (e.g., grooming

“backup developers” for areas where knowledge is too

concentrated on one or two expert developers.”

Moreover, both developers and managers have the opinion

that practicing code review also improves the personal

perception of team members about shared code ownership. On

this note, a senior developer, with more than 30 years in the

software industry, explained: “In the past people did not use to

do code reviews and were very reluctant to put themselves in

positions where they were having other people critiquing their

code. The fact that code reviews are considered as a normal

thing helps immensely with making people less protective about

their code.” Similarly a manager wrote us explaining that she

deems code reviews important because they “Dilute any "rigid

sense of ownership" that might develop over chunks of code.”

In the programmers’ survey, 51 respondents (6%) marked

“share code ownership” as their first motivation, 100 (11%) as

their second, and (10%) as their third.

G. Summary

In this section, we analyzed the motivations that developers

and managers have for doing code review. We abstracted them

into a list, which we finally included in the programmers’

survey. Figure 3 reports the answers given to this question: The

black bar is the number of developers that put that row as their

top motivation, the gray bar is the number that put it as the

second motivation, etc. We have ordered the factors by giving

3 points for a first motivation response, 2 points for a second

motivation, etc. and then sorting by the sum.

 We discussed the five most prominent motivations, which

show that “finding defects” is the top motivation, although

participants believe that code review brings other benefits. The

first two motivations were already popular in research and their

effectiveness have been evaluated in the context of code

inspections; on the contrary, the other motivations are still

unexplored, especially those regarding more “social” benefits

on the team, such as shared code ownership.

Although motivations are well defined, we still have to

verify whether they actually translate into real outcomes of a

modern code review process.

V. THE OUTCOMES OF CODE REVIEWS

Our second research question seeks to understand what the

actual outcomes of code reviews are, and whether they match

the motivations and expectations outlined in the previous

section. To that end, we conducted indirect field research [31]

by analyzing the content of 200 threads (corresponding to 570

Figure 3. Developers’ motivations for code review.

comments) recorded by CodeFlow. Figure 4 shows the

categories of comments found through the card sort.

Code Improvements: The most frequent category, with

165 (29%) comments, is “code improvements.” In detail,

among “code improvements” comments we find 58 on using

better code practices, 55 on removing not necessary or unused

code, and 52 on improving code readability.

Defect Finding: Although “defect finding” is the top

motivation and expected outcome of code review for many

practitioners, the category “defect” is the only the fourth most

frequent, out of nine items, with 78 (14%) comments. Among

“defect” comments, 65 are on logical issues (e.g., a wrong

expression in an if clause), 6 on high-level issues, 5 on security,

and 3 on wrong exception handling.

Knowledge Transfer: Concerning the other expected

outcomes of code reviews, we did not expect to find evidence

about them, because of their more “social”—thus harder to

quantify—nature. Nevertheless, we found some (12) comments

specifically about “knowledge transfer,” where the reviewers

were directing the code change author to external resources

(e.g., internal documentation or websites) for learning how to

tackle some issues. This provides additional evidence on the

importance of this aspect of reviews.

A. Finding defects: When expectations do not meet reality

Why do we see this significant gap in frequency between

“code improvements” and “defects” comments? Possible

reasons may be that our sample of 570 comments is too small

to represent the population, that the submitted changes might

require less need fixing of “real” defects than of small code

improvements, or that programmers could consider “code

improvements” as actual defects. However, by triangulating

these numbers with the interview discussions, the survey

answers, and the other categories of comments, another reason

seems to justify this situation. First, we start by noting that

most of the comments on “defects” regard uncomplicated

logical errors, e.g., corner cases, common configuration values,

or operator precedence. Then, from interview data, we see that:

(1) most interviewees explained how, with tool-based code

reviews, most of the found defects regard “logic issues—where

the author might not have considered a particular or corner

case”; (2) some interviewees complained that the quality of

code reviews is low, because reviewers only look for easy

errors: “[Some reviewers] focus on formatting mistakes

because they are easy [...], but it doesn’t really help. […] In

some ways it’s kind of embarrassing if someone asks you to do

a code review and all you can find are formatting mistakes

when there are real mistakes to be found”; and (3) other

interviewees admitted that if the code is not among their

codebase, they look at “obvious bugs (such as, exception

handling).” Finally, managers mentioned “catching early

obvious bugs” or “finding obvious inefficiencies or errors” as

reasons for doing code review.

These points illustrate that the reason for the gap between

the number of comments on “code improvements” and on

“defects” is not to be found in problems in the sample or in

classification misconceptions, but it is rather just additional

corroborating evidence that the outcome of code review does

not match the main expectation of both programmers and

managers—finding defects. Review comments about defects

are few, comprising one-eighth of the total in our sample, and

mostly address “micro” level and superficial concerns; while

programmers and managers would expect more insightful

remarks on conceptual and design level issues. Why does this

happen? The high frequency of understanding comments hints

at the answer to our question, addressed in the next section.

VI. WHAT ARE THE CHALLENGES OF CODE REVIEW?

Our third research question seeks to understand the main

challenges faced by the reviewers when performing modern

code reviews, also with respect to the expected outcomes. We

also seek to uncover the reason behind the mismatch between

expectations and actual outcomes on finding defects in code

reviews.

A. Code Review is Understanding

Even though we did not ask any specific question

concerning understanding, the theme emerged clearly from our

interviews. Many interviewees eventually acknowledged that

understanding is their main challenge when doing code

reviews. For example, a senior developer autonomously

explained to us: “the most difficult thing when doing a code

review is understanding the reason of the change;” a tester, in

the same vein: “the biggest information need in code review:

what instigated the change;” and another senior developer: “in

a successful code review submission the author is sure that his

peers understand and approve the change.” Although the

textual description should help reviewers understanding, some

developers do not find it useful: “people can say they are doing

one thing, while they are doing many more of them,” or “the

description is not enough;” in general, developers seem to

confirm that “not knowing files (or [dealing with] new ones) is

a major reason for not understanding a change.”

From interviews, no other code review challenge emerged

as clearly as understanding the submitted change. Even though

scheduling and time issues also appeared challenging, we could

always trace them back to the first challenge—through the

words of a tester: “understanding the code takes most of the

Figure 4. Frequency of comments by card sort category.

reviewing time.” On the same note, in the code review

comments we analyzed, the second most frequent category

concerns understanding. This category includes clarification

questions and doubts raised by the reviewers who want to grasp

the rationale of the changes done on the code, and the

corresponding clarification answers. This is also in line with

the evidence delivered by Sutherland & Venolia on the

relevance of rationale articulation in reviews [17].

Do understanding needs change with the expected outcome

of code review? We included a question in the programmers’

survey to know how much understanding they needed to

achieve each of the motivations listed in Figure 3. The outcome

of the question is summarized in Figure 5. The respondents

could answer with a four values Likert’s scale, by selecting the

understanding of the change they felt was required to achieve

the specific outcome. The most difficult task from the

understanding perspective is “finding defects,” immediately

followed by “alternative solutions.” Both clearly stand out from

the other items. The gap in understanding needs between

“finding defects” and “code improvement” seems to

corroborate our hypothesis that the difference in the number of

comments about these two items in review comments is mostly

due to understanding issues. Thus, if managers and developers

want code review to match their need for “finding defects,”

context and change understanding must be improved.

B. A Priori Understanding

By observing developers performing code reviews, we

noticed that somea started code reviews by thoroughly reading

the accompanying textual description, while others went

directly to a specific changed file. In the first group, the time

required for putting the first review comments and

understanding the change rationale was noticeably longer, and

some of the comments were asking to clarify the reasons for a

change. To better comprehend this situation, we included in our

interview guideline a questionn about how the interviewees

start code reviews. Participants explained that when they own

or are very familiar with the files being changed, they have a

better context and it is easier for them to understand the change

submitted: “when doing code review I start with things I am

familiar with, so it is easier to see what is going on.” When

they are file owners, they often do not even need to read the

description, but they “go directly to the files they own.” On the

contrary, when they do not own files, or have to review new

files, they need more information and try to get it from the

description, which is deemed good when it states “what was

changed and why.”

To better understand this aspect we included two questions

in the programmers’ survey to know (1) whether it takes longer

to review files they are not familiar with, and why; and (2)

whether reviewers familiar with the changed files give different

feedback, and how.

Most of the respondents (798, 91%) answered positively to

the first question, motivating it with the fact that it takes time to

familiarize with the code and “learn enough about the files

being modified to understand their purpose, invariants, APIs,

etc.,” because “big-picture impact analysis requires contextual

understanding. When reviewing a small, unfamiliar change, it

is often necessary to read through much more code than that

being reviewed.” The comment of a developer anticipates the

answer to the second question: “It takes a lot longer to

understand unknown code, but even then understanding isn’t

very deep. With code I am familiar with I have more to say. I

know what to say faster. What I have to say is deeper. And I

can be more insistent on it.” In fact, the answer to the second

question is positive in 716 (82%) cases. The main difference

with file owner comments is that they are substantially deeper,

more detailed and insightful. A respondent explained:

“Comments reflect their deeper understanding -- more likely to

find subtle defects, feedback is more conceptual (better ideas,

approaches) instead of superficial (naming, mechanical style,

etc.)” another tried to boldly summarize the concept:

“Difference between algorithmic analysis and comments on

coding style. The difference is big.”

In fact, when the context is clear and understanding is very

high, as in the case when the reviewer is the owner of changed

files, code review authors receive comments that explore

“deeper details,” are “more directed” and “more actionable

and pertinent,” and find “more subtle issues.”

C. Dealing with Understanding Needs

From the interviews, we found that, in the current situation,

reviewers try different paths to understand the context and the

changes: They read the change description, try to run the

changed code, send emails for understanding high level details

about the review, and often (from 20% to 40% of the times)

even go to talk in person to have a “higher communication

bandwidth” for asking clarifications to the author. All code

review tools that we see in practice today deliver only basic

support for the understanding needs of reviewers – providing

features such as diffing capabilities, inline commenting, or

syntax highlighting, which are limited when dealing with

complex code understanding.

Figure 5. Developers’ responses in surveys of the amount

of code understanding for code review outcomes.

VII. RECOMMENDATIONS AND IMPLICATIONS

A. Recommendations for Practitioners

From our work we derive recommendations to developers:

Quality Assurance: There is a mismatch between the

expectations and the actual outcomes of code reviews. From

our study, review does not result in identifying defects as often

as project members would like and even more rarely detects

deep, subtle, or “macro” level issues. Relying on code review

in this way for quality assurance may be fraught.

Understanding: When reviewers have a priori knowledge

of the context and the code, they complete reviews more

quickly and provide more valuable feedback to the author.

Teams should aim to increase the breadth of understanding of

developers (if the author of a change is the only expert, she has

no potential reviewers) and change authors should include code

owners and others with understanding as much as possible

when using review to identify defects. Developers indicated

that when the author provided context and direction to them in

a review, they could respond better and faster.

Beyond Defects: Modern code reviews provide benefits

beyond finding defects. Code review can be used to improve

code style, find alternative solutions, increase learning, share

code ownership, etc. This should guide code review policies.

Communication: Despite the growth of tools for

supporting code reviews, developers still have need of richer

communication than comments annotating the changed code

when reviewing. Teams should provide mechanisms for in-

person or, at least, synchronous communication.

B. Implications for Researchers

Our work uncovered aspects of code review—beyond our

research questions—that deserve further study:

Automate Code Review Tasks: We observed that many

code review comments were related to “code improvement”

concerns and low-level “micro” defects. Identifying both of

these are problems that research has begun to solve. Tools for

enforcing team code conventions, checking for typos, and

identifying dead code already exist. Even more advanced tasks

such as checking boundary conditions or catching common

mistakes have been shown to work in practice on real code. For

example Google experimented with adding FindBugs to their

review process, though little is reported about the results [32].

Automating these tasks frees reviewers to look for deeper,

more subtle defects. Code review is fertile ground to have an

impact with code analysis tools.

Program Comprehension in Practice: We identified

context and change understanding as challenges that developers

face when reviewing, with a direct relationship to the quality of

review comments. Interestingly, modern IDEs ship with many

tools to aid context and understanding, and there is an entire

conference (ICPC) devoted to code comprehension, yet all

current code review tools we know of show a highlighted diff

of the changed files to a reviewer with no additional tool

support. The most common motivation that we have seen for

code comprehension research is a developer that is working on

new code, but we argue that reviewers reviewing code they

have not seen before may be more common than a developer

working on new code. This is a ripe opportunity for code

understanding researchers to have impact on real world

scenarios.

Socio-technical Effects: Awareness and learning were

cited as motivations for code review, but these outcomes are

difficult to observe from traces in reviews. We did not

investigate these further, but studies can be designed and

carried out to determine if and how awareness and learning

increase as a result of being involved in code review.

VIII. LIMITATIONS

As a qualitative study, gauging the validity of our findings

is a difficult undertaking [33]. While we have endeavored to

uncover and report the expectations, outcomes, and challenges

of code review, limitations may exist. We describe them with

the steps that we took to increase confidence and validity.

 To achieve a comprehensive view of code review, we

triangulated by collecting and comparing results from multiple

sources. For example, we found strong agreement among the

results of expectations collected from interviews, surveys of

manager, and surveys of developers. By starting with

exploratory interviews of a smaller set of subjects (17)

followed by open coding to extract themes, we identified core

questions that we addressed to a larger audience via survey.

One common notion is that empirical research within one

company or one project provides little value for the academic

community, and does not contribute to scientific development.

Historical evidence shows otherwise. Flyvbjerg provides

several examples of individual cases that contributed to

discovery in physics, economics, and social science [34].

Beveridge observed for social sciences: “More discoveries

have arisen from intense observation than from statistics

applied to large groups” (as quoted in Kuper and Kuper [35],

page 95). This should not be interpreted as a criticism of

research that focuses on large samples. For the development of

an empirical body of knowledge as championed by Basili [36],

both types of research are essential. To understand code review

across many contexts, we observed, interviewed, surveyed, and

examined code reviews from developers across a diverse group

of software teams that work with codebases in various

domains, of varying sizes, and with varying processes.

Concerning the representativeness of our results in other

contexts, other companies and OSS use tools similar to

CodeFlow [8] [7] [6]. However, team dynamics may differ.

The need for code understanding may already be met in

contexts where projects are smaller or there is shared code

ownership and a broad system understanding across the team.

We found that higher levels of understanding lead to more

informative comments, which identify defects or aid the author

in other ways so review in these contexts may uncover more

defects. In OSS contexts, project-specific expertise often must

be demonstrated prior to being accepted as a “core committer”

[37], so learning may not be as important or frequent an

outcome for review.

In this work, we have used discussions within CodeFlow to

identify and quantify outcomes of code review. However,

some motivations that managers and developers described are

not easily observable because they leave little trace. For

example, determining how often code review improves team

awareness or transfers knowledge is difficult to assess from the

discussions in reviews. For these outcomes, we have responses

indicating that they occur, but not “hard evidence.”

Based on review comments, survey responses, and

interviews, we know that in-person discussions occurred

frequently. While we are unable to compare frequency of these

events to other outcomes as we can with events that are

recorded in CodeFlow, we know that they most often occurred

to address understanding needs.

IX. CONCLUSION

In this work, we have investigated modern, tool-based code

review, uncovered both a wide range of motivations for review,

and determined that the outcomes do not always match those

motivations. We identified understanding as a key component

and provided recommendations to both practitioners and

researchers. It is our hope that the insights we have discovered

lead to more effective review in practice and improved tools,

based on research, to aid developers perform code reviews.

REFERENCES

[1] A. Frank Ackerman, Priscilla J. Fowler, and Robert G. Ebenau,

"Software inspections and the industrial production of software,"

in Proc. of a symposium on Software validation: inspection-

testing-verification-alternatives, 1984, pp. 13--40.

[2] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski, "Software

inspections: an Effective Verification Process," IEEE Software,

1989.

[3] M.E. Fagan, "Design and code inspections to reduce errors in

program development," IBM Systems Journal, 1976.

[4] Shull, "Inspecting the History of Inspections," 2008.

[5] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German,

"Open Source Peer Review – Lessons and Recommendations for,"

IEEE Software, 2012.

[6] Niall Kennedy. (2006, Dec) How Google does web-based code

reviews with Mondrian. [Online].

http://www.niallkennedy.com/blog/2006/11/google-

mondrian.html

[7] Alexia Tsotsis. (2011, August) Meet Phabricator, The Witty Code

Review Tool Built Inside Facebook. [Online].

http://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-

penned-these-words/

[8] (2012, June) Gerrit (software). Wikipedia Article. [Online].

http://en.wikipedia.org/wiki/Gerrit_(software)

[9] O. Laitenberger, "A Survey of Software Inspection Technologies,"

in Handbook on Software Engineering and Knowledge

Engineering., 2002, pp. 517-555.

[10] J.P. Johnson, "Collaboration, Peer Review, and Open Source

Software," Information Economics and Policy, vol. 18, pp. 477-

497, 2006.

[11] A. Porter, H. Siy, and L. Votta, "A review of software

inspections," Advances in Computers, vol. 42, pp. 39--76, 1996.

[12] L.G. Votta, "Does every inspection need a meeting?," ACM

SIGSOFT Software Engineering Notes, vol. 18, pp. 107--114,

1993.

[13] L. Brothers, V. Sembugamoorthy, and M. Muller, "ICICLE:

groupware for code inspection," in Conference on Computer-

Supported Cooperative Work, 1990, pp. 169--181.

[14] Vahid Mashayekhi, Chris Feulner, and John Riedl, "CAIS:

collaborative asynchronous inspection of software," SIGSOFT

Softw. Eng. Notes, vol. 19, pp. 21--34, dec 1994.

[15] John Gintell et al., "Scrutiny: A Collaborative Inspection and

Review System," in Proceedings of the 4th European Software

Engineering Conference, 1993, pp. 344--360.

[16] P. Rigby, D. German, and M. Storey, "Open source software peer

review practices: a case study of the apache server," in

Proceedings of ICSE, 2008.

[17] A. Sutherland and G. Venolia, "Can peer code reviews be

exploited for later information needs?," in Proceedings of ICSE,

may 2009.

[18] T. LaToza, G. Venolia, and R. DeLine, "Maintaining mental

models: a study of developer work habits," in Proceedings of

ICSE, 2006.

[19] John G. Adair, "The Hawthorne effect: A reconsideration of the

methodological artifact," Journal of Applied Psychology, vol. 69,

no. 2, pp. 334-345, 1984.

[20] J. Creswell, Research Design: Qualitative, Quantitative, and

Mixed Methods Approaches, 3rd ed.: Sage Publications, Inc.,

2009.

[21] B. L. Berg, Qualitative Research Methods for Social Sciences.

Boston: Pearson, 2004.

[22] S., W. Hall, and P. Kruchten Adolph, "Using Grounded Theory to

Study the Experience of Software Development," Empirical

Software Engineering, vol. 16, no. 4, pp. 487-513, 2011.

[23] T. Lindlof and B. Taylor, Qualitative Communication Research

Methods.: Sage, 2002.

[24] R. S. Weiss, Learning From Strangers: The Art and Method of

Qualitative Interview Studies.: The Free Press, 1995.

[25] I. Barker. (2005, May) What is information architecture? KM

Column. [Online]. http://www.steptwo.com.au/

[26] Janice E. Shade Stuart J. Janis, Improving Performance Through

Statistical Thinking.: Mcgraw-Hill, 2000.

[27] A. Bacchelli and C. Bird, "Appendix to Expectations, Outcomes,

and Challenges of Modern Code Review," Microsoft Research,

Technical Report MSR-TR-2012-83 2012. [Online].

http://research.microsoft.com/apps/pubs/?id=171426

[28] B. A. Kitchenham and S. L. Pfleeger, "Personal Opinion Surveys,"

in Guide to Advanced Empirical Software Engineering, Forrest

Shull, Janice Singer, and Dag I. K. Sjøberg, Eds.: Springer, 2007.

[29] P. K. Tyagi, "The Effects of Appeals, Anonymity, and Feedback

on Mail Survey Response Patterns from Salespeople," Journal of

The Academy of Marketing Science, 1989.

[30] T. Punter, M. Ciolkowski, B. G. Freimut, and I. John,

"Conducting on-line surveys in software engineering," in Proc. of

International Symposium on Empirical Software Engineering,

2003.

[31] T. Lethbridge, S. Sim, and J. Singer, "Studying software

engineers: Data collection techniques for software field studies,"

Empirical Software Engineering, vol. 10, pp. 311--341, 2005.

[32] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,

"Using FindBugs on production software," in OOPSLA '07, 2007.

[33] N. Golafshani, "Understanding reliability and validity in

qualitative research," The qualitative report, vol. 8, pp. 597--607,

2003.

[34] B. Flyvbjerg, "Five misunderstandings about case-study research,"

Qualitative inquiry, vol. 12, no. 2, pp. 219-245, 2006.

[35] A. Kuper and J. Kuper, The Social Science Encyclopedia.:

Routledge, 1985.

[36] V. Basili, F. Shull, and F. Lanubile, "Building knowledge through

families of experiments.," IEEE Trans. Software Eng., vol. 25, no.

4, pp. 456-173, 1999.

[37] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu,

"Open Borders? Immigration in Open Source Projects," in

International Workshop on Mining Software Repositories, 2007.

http://www.niallkennedy.com/blog/2006/11/google-mondrian.html
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html
http://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
http://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
http://en.wikipedia.org/wiki/Gerrit_(software)
http://www.steptwo.com.au/
http://research.microsoft.com/apps/pubs/?id=171426

