
Software Architecture

David Garlan
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

(412) 268-5056
garlan@cs.cmu.edu

1. INTRODUCTION

As the size and complexity of software systems increase,
the design, specification, and analysis of overall system
structure becomes a critical issue. Structural issues include
the organization of a system as a composition of compo-
nents; global control structures, the protocols for communi-
cation, synchronization, and data access; the assignment of
functionality to design elements; the composition of design
elements; physical distribution; scaling and performance,
and dimensions of evolution. This is the software architec-
ture level of design.

Over the past decade architectural design has emerged as
an important subfield of software engineering. Practitioners
have come to realize that having a good architectural de-
sign is a critical success factor for complex system devel-
opment. A good architecture can help ensure that a system
will satisfy key requirements in such areas as performance,
reliability, portability, scalability, and interoperability. A
bad architecture can be disastrous.

Practitioners have also begun to recognize the value of
making explicit architectural choices, and leveraging past
architectural designs in the development of new products.
Today there are numerous books on architectural design,
regular conferences and workshops devoted specifically to
software architecture, a growing number of commercial
tools to aid in aspects of architectural design, courses in
software architecture, major government and industrial
research projects centered on software architecture, and an
increasing number of formal architectural standards. Codi-
fication of architectural principles, methods, and practices
has begun to lead to repeatable processes of architectural
design, criteria for making principled tradeoffs among ar-
chitectures, and standards for documenting, reviewing, and
implementing architectures.

2. THE ROLES OF SOFTWARE ARCHITECTURE

What exactly is meant by the term “software architecture?”
If we look at the common uses of the term “architecture” in
software, we find that it is used in different ways, often
making it difficult to understand what aspect is being ad-
dressed. Among the uses are: (a) the architecture of a par-
ticular system, as in “the architecture of system S contains
components C1… Cn,” (b) an architectural style, as in “sys-
tem S adopts a client-server architecture,” and (c) the gen-
eral study of architecture, as in “there are many books on
software architecture.”

Within software engineering, however, most uses of the
term focus on the first of these interpretations. A typical
definition is:

The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software components, the externally
visible properties of those components, and the rela-
tionships among them [5].

While there are numerous similar definitions of software
architecture, at the core of all of them is the notion that the
architecture of a system describes its gross structure using
one or more views. The structure in a view illuminates a
set of top-level design decisions, including things such as
how the system is composed of interacting parts, where are
the main pathways of interaction, and what are the key
properties of the parts. Additionally, an architectural de-
scription ideally includes sufficient information to allow
high-level analysis and critical appraisal.

Software architecture typically plays a key role as a bridge
between requirements and code (see Figure 1).

 To appear in Encyclopedia of Software Engineering,

John Wiley & Sons, Inc. 2001

By providing an abstract description (or model) of a sys-
tem, the architecture exposes certain properties, while hid-
ing others. Ideally this representation provides an intellec-
tually tractable guide to the overall system, permits design-
ers to reason about the ability of a system to satisfy certain
requirements, and suggests a blueprint for system construc-
tion and composition.

For example, an architecture for a signal processing appli-
cation might be constructed as a dataflow network in which
the nodes read input streams of data, transform that data,
and write to output streams. Designers might use this de-
composition, together with estimated values for input data
flows, computation costs, and buffering capacities, to rea-
son about possible bottlenecks, resource requirements, and
schedulability of the computations.

To elaborate, software architecture can play an important
role in at least six aspects of software development.

1. Understanding: Software architecture simplifies our
ability to comprehend large systems by presenting
them at a level of abstraction at which a system’s de-
sign can be easily understood [2, 20, 35]. Moreover,
at its best, architectural description exposes the high-
level constraints on system design, as well as the ra-
tionale for specific architectural choices.

2. Reuse: Architectural design can support reuse in

several ways. Current work on reuse generally fo-
cuses on component libraries. Architectural design
supports, in addition, both reuse of large components
(or subsystems) and also frameworks into which
components can be integrated. Such reusable frame-
works may be domain-specific software architectural
styles [4, 27], component integration standards [43],
and architectural design patterns [8].

3. Construction: An architectural description provides
a partial blueprint for development by indicating the
major software components and dependencies be-
tween them. For example, a layered view of an ar-
chitecture typically documents abstraction bounda-
ries between parts of a system’s implementation,
clearly identifying the major internal system inter-
faces, and constraining what parts of a system may
rely on services provided by other parts [2].

4. Evolution: Software architecture can expose the di-
mensions along which a system is expected to
evolve. By making explicit the "load-bearing walls"
of a system, system maintainers can better under-
stand the ramifications of changes, and thereby more
accurately estimate costs of modifications. More-
over, architectural descriptions separate concerns
about the functionality of a component from the
ways in which that component is connected to (in-
teracts with) other components, by clearly distin-
guishing between components and mechanisms that
allow them to interact. This separation permits one
to more easily change connection mechanisms to
handle evolving concerns about performance and re-
use.

5. Analysis: Architectural descriptions provide new

opportunities for analysis, including system consis-
tency checking [3, 25], conformance to constraints
imposed by an architectural style [1], conformance
to quality attributes [9], dependence analysis [42],
and domain-specific analyses for architectures built
in specific styles [10, 15, 26].

6. Management: Experience has shown that successful

projects view achievement of a viable software ar-
chitecture as a key milestone in an industrial soft-
ware development process. Critical evaluation of an
architecture typically leads to a much clearer under-
standing of requirements, implementation strategies,
and potential risks [7].

7. Communication: An architectural description often

serves as a vehicle for communication among stake-
holders. For example, explicit architectural design
reviews allow stakeholders to voice opinions about
relative weights of features and quality attributes
when architectural tradeoffs must be considered [9].

3. PRECURSORS
The notion of providing explicit descriptions of system
structures goes way back. In the 1960’s and 1970’s there
were active debates about criteria on which to base modu-
larization of software [12, 45]. Programming languages
began to provide new features for modularization and the
specification of interfaces.

Figure 1: Software Architecture as a Bridge

 Code

Requirements

Software Architecture

In 1975 DeRemer and Kron [11] argued that creating pro-
gram modules and connecting them to form larger struc-
tures were distinct design efforts. They created the first
module interconnection language (MIL) to support that
connection effort. In an MIL, modules import and export
resources, which are named programming-language ele-
ments such as type definitions, constants, variable, and
functions. A compiler for an MIL ensures system integrity
using inter-module type checking. Since DeRemer and
Kron’s proposal, other MILs have been developed for spe-
cific programming languages such as Ada and Standard
ML, and have provided a base from which to support soft-
ware construction, version control, and system families
[33,46]. Enough examples are available to develop models
of the design space [47].

These early efforts to develop good ways to talk about sys-
tem structures and to provide criteria for software modu-
larization focused primarily on the problem of code organi-
zation, and relationships between the parts based on inter-
actions such as procedure call and simple data sharing. The
key question was how to partition the software into units
that could be implemented separately by software develop-
ers, and that would provide downstream benefits in support
of extensibility, maintenance, and system understandability.

Today’s view of software architecture builds on the insights
and concepts from the early days of software structuring,
but goes much further by also considering architectural
representations that capture a system’s run-time structures
and behavior. By representing architectures as interacting
components (viewed as actual run-time entities), these rep-
resentations more directly facilitate reasoning about system
properties such as performance, security, and reliability.
Additionally, modern views of software architecture pro-
vide a much richer notion of interaction (than procedure
call and simple data sharing), permitting new abstractions
for the “glue” that allows components to be composed.

4. A NEW DISCIPLINE EMERGES
Initially architectural design was largely an ad hoc affair.
Architectural definitions relied on informal box-and-line
diagrams, which were rarely maintained once a system was
constructed. Architectural choices were made in an idio-
syncratic fashion – typically by adapting some previous
design, whether or not it was appropriate. Good architects
– even if they were classified as such within their organiza-
tions – learned their craft by hard experience in particular
domains, and were unable to teach others what they knew.
It was usually impossible to analyze an architectural de-
scription for consistency or to infer non-trivial properties
about it. There was virtually no way to check that a given
system implementation faithfully represented its architec-
tural design.

However, despite their informality, architectural descrip-
tions were central to system design. As people began to
understand the critical role that architectural design plays in
determining system success, they also began to recognize
the need for a more disciplined approach. Early authors
began to observe certain unifying principles in architectural
design [36], to call out architecture as a field in need of
attention [35], and to establish a working vocabulary for
software architects [20]. Tool vendors began thinking
about explicit support for architectural design. Language
designers began to consider notations for architectural rep-
resentation [30].

Within industry, two trends highlighted the importance of
architecture. The first was the recognition of a shared rep-
ertoire of methods, techniques, patterns, and idioms for
structuring complex software systems. For example, the
box-and-line-diagrams and explanatory prose that typically
accompany a high-level system description often refer to
such organizations as a "pipeline,'' a "blackboard-oriented
design,'' or a "client-server system.'' Although these terms
were rarely assigned precise definitions, they permitted
designers to describe complex systems using abstractions
that make the overall system intelligible. Moreover, they
provided significant semantic content about the kinds of
properties of concern, the expected paths of evolution, the
overall computational paradigm, and the relationship be-
tween this system and other similar systems.

The second trend was the concern with exploiting com-
monalities in specific domains to provide reusable frame-
works for product families. Such exploitation is based on
the idea that common aspects of a collection of related sys-
tems can be extracted so that each new system can be built
at relatively low cost by "instantiating'' the shared design.
Familiar examples include the standard decomposition of a
compiler (which permits undergraduates to construct a new
compiler in a semester), standardized communication pro-
tocols (which allow vendors to interoperate by providing
services at different layers of abstraction), fourth-
generation languages (which exploit the common patterns
of business information processing), and user interface
toolkits and frameworks (which provide both a reusable
framework for developing interfaces and sets of reusable
components, such as menus and dialogue boxes).

Much has changed in the past decade. Although there is
wide variation in the state of the practice, broadly speaking,
architecture is much more visible as an important and ex-
plicit design activity in software development. Job titles
now routinely reflect the role of software architect; compa-
nies rely on architectural design reviews as critical staging
points; and architects recognize the importance of making
explicit tradeoffs within the architectural design space.

In addition, the technological basis for architectural design
has improved dramatically. Three of the important ad-
vancements have been the development of architecture de-
scription languages and tools, the emergence of product
line engineering and architectural standards, and the codifi-
cation and dissemination of architectural design expertise.

5. ARCHITECTURE DESCRIPTION LANGUAGES

AND TOOLS
The informality of most box-and-line depictions of archi-
tectural designs leads to a number of problems. The mean-
ing of the design may not be clear. Informal diagrams can-
not be formally analyzed for consistency, completeness, or
correctness. Architectural constraints assumed in the initial
design are not enforced as a system evolves. There are few
tools to help architectural designers with their tasks.

To alleviate these problems there have been number of im-
portant developments. First has been the emergence of
practitioner guidelines [2] and published standards for ar-
chitectural documentation [44, 48]. These have helped to
codify best practices and provide some uniformity to the
way architectures are documented.

A second development has been the creation of formal no-
tations for representing and analyzing architectural designs.
Sometimes referred to as "Architecture Description Lan-
guages'' or “Architecture Definition Languages” (ADLs),
these notations usually provide both a conceptual frame-
work and a concrete syntax for characterizing software
architectures [19, 30]. They also typically provide tools for
parsing, displaying, compiling, analyzing, or simulating
architectural descriptions.

Examples of ADLs include Acme[18], Adage [10], Aesop
[15], C2 [28], Darwin [26], Rapide [25], SADL [32], Uni-
Con [39], Meta-H [6], and Wright [3]. While all of these
languages are concerned with architectural design, each
provides certain distinctive capabilities: Acme supports
interchange of architectural descriptions, Adage supports
the description of architectural frameworks for avionics
navigation and guidance; Aesop supports the use of archi-
tectural styles; C2 supports the description of user interface
systems using an event-based style; Darwin supports the
analysis of distributed message-passing systems; Meta-H
provides guidance for designers of real-time avionics con-
trol software; Rapide allows architectural designs to be
simulated, and has tools for analyzing the results of those
simulations; SADL provides a formal basis for architectural
refinement; UniCon has a high-level compiler for architec-
tural designs that supports a mixture of heterogeneous
component and connector types; Wright supports the for-
mal specification and analysis of interactions between ar-
chitectural components.

Although these languages (and their tools) differ in many
respects, a number of key insights have emerged through
their development.

The first insight is that good architectural description bene-
fits from multiple views, each view capturing some aspect
of the system [2, 24, 44, 48]. Two of the more important
classes of view are:

• Code-oriented views, which describe how the
software is organized into modules, and what
kinds if implementation dependencies exist be-
tween those modules. Class diagrams, layered dia-
grams, and work breakdown structures are exam-
ples of this class of view; and

• Execution-oriented views, which describe how
the system appears at run time, typically providing
one or more snapshots of a system in action. These
views are useful for documenting and analyzing
execution properties such as performance, reliabil-
ity, and security.

A second insight is that architectural description of execu-
tion-oriented views, as embodied in most of the ADLs
mentioned earlier, requires the ability to model the follow-
ing as first class design entities:

• Components represent the computational ele-
ments and data stores of a system. Intuitively,
they correspond to the boxes in box-and-line de-
scriptions of software architectures. Examples of
components include clients, servers, filters, black-
boards, and databases. Components may have
multiple interfaces, each interface defining a point
of interaction between a component and its en-
vironment. A component may have several inter-
faces of the same type (e.g., a server may have
several active http connections).

• Connectors represent interactions among compo-
nents. They provide the “glue” for architectural
designs, and correspond to the lines in box-and-
line descriptions. From a run-time perspective,
connectors mediate the communication and coor-
dination activities among components. Examples
include simple forms of interaction, such as pipes,
procedure call, and event broadcast. Connectors
may also represent complex interactions, such as a
client-server protocol or a SQL link between a da-
tabase and an application. Connectors have inter-
faces that define the roles played by the partici-
pants in the interaction.

• Systems represent graphs of components and con-
nectors. In general, systems may be hierarchical:
components and connectors may represent subsys-
tems that have their own internal architectures. We
will refer to these as representations. When a sys-

tem or part of a system has a representation, it is
also necessary to explain the mapping between the
internal and external interfaces.

• Properties represent additional information (be-
yond structure) about the parts of an architectural
description. Although the properties that can be
expressed by different ADLs vary considerably,
typically they are used to represent anticipated or
required extra-functional aspects of an architec-
tural design. For example, some ADLs allow one
to calculate system throughput and latency based
on performance estimates of the constituent com-
ponents and connectors. In general, it is desirable
to be able to associate properties with any archi-
tectural element in a description (components,
connectors, systems, and their interfaces). For ex-
ample, a property of an interface might describe an
interaction protocol.

• Styles represent families of related systems. An
architectural style typically defines a vocabulary
of design element types as a set of component,
connector, port, role, binding, and property types,
together with rules for composing instances of the
types. We will describe some of the more promi-
nent styles later in this article.

To illustrate the use of these modeling constructs, consider
the example shown in Figure 2. The system defines an exe-
cution-oriented view of a simple string-processing appli-
cation that extracts and sorts text. The system is described
in a pipe-filter style, which provides a design vocabulary
consisting of a filter component type and pipe connector
type, input and output interface (port) types, and a single
binding type. In addition, there would likely be constraints
(not shown) that ensure, for example, that the reader/writer
roles of the pipe are associated with appropriate in-
put/output ports. The system is described hierarchically:
MergeAndSort is defined by a representation that is itself a
pipe-filter system. In complementary documentation, prop-
erties of the components and connectors might list, for ex-

ample, performance characteristics used by a tool to calc-
ulate overall system throughput.

6. PRODUCT LINES AND ARCHITECTURAL

STANDARDS
As noted earlier, an important trend has been the desire to
exploit commonality across multiple products. Two spe-
cific manifestations of that trend are improvements in our
ability to create product lines within an organization and
the emergence of domain-specific architectural standards
for cross-vendor integration.

With respect to product lines, a key challenge is that a
product line approach requires different methods of devel-
opment. In a single-product approach the architecture must
be evaluated with respect to the requirements of that prod-
uct alone. Moreover, single products can be built independ-
ently, each with a different architecture.

However, in a product line approach, one must also con-
sider requirements for the family of systems, and the rela-
tionship between those requirements and the ones associ-
ated with each particular instance. Figure 3 illustrates this
relationship. In particular, there must be an up-front (and
on-going) investment in developing a reusable architecture
that can be instantiated for each product. Other reusable
assets, such as components, test suites, tools, etc., typically
accompany this.

Although product line engineering is not yet widespread,
we are beginning to have a better understanding of the pro-
cesses, economics, and artifacts required to achieve the
benefits of a product line approach. A number of case stud-
ies of product line successes have been published [22, 13].)
Moreover, organizations such as the CMU Software Engi-
neering Institute are well on their way towards providing
concrete guidelines and processes for the use of a product
line approach [37].

Figure 2. A system in the pipe-filter style

Splitter

Grep MergeAndSort

Merge Sort

Style PF

Filter

Output Port

Input Port

Pipe

Binding

System simple : PF

Like product line approaches, domain-specific architectural
standards for cross-vendor integration provide frameworks
that permit system developers to configure a wide variety
of specific systems by instantiating that framework. But
more importantly, such standards support the integration of
parts provided by multiple vendors. A number of these
have been sanctioned as formal international standards
(such as those sponsored by IEEE or ISO), while others are
ad hoc or de facto standards promoted by one or more in-
dustrial leaders.

A good example of the former is the High Level Architec-
ture (HLA) for Distributed Simulation [4]. Initially pro-
posed by the US Defense Modeling and Simulation Office
as a standard to permit the integration of simulations pro-
duced by many vendors, it now has become an IEEE Stan-
dard (IEEE P1516.1/D6). The HLA prescribes interface
standards defining services to coordinate the behavior of
multiple semi-independent simulations. In addition, the
standard prescribes requirements on the simulation compo-
nents that indicate what capabilities they must have, and
what constraints they must observe on the use of shared
services.

An example of an ad hoc standard is Sun’s Enterprise Java-
BeansTM (EJB) architecture [27]. EJB is intended to sup-
port distributed, Java-based, enterprise-level applications,
such as business information management systems. Among
other things, it prescribes an architecture that defines a
vendor-neutral interface to information services, including
transactions, persistence, and security. It thereby supports
component-based implementations of business processing
software that can be easily retargeted to different imple-
mentations of those underlying services.

7. CODIFICATION AND DISSEMINATION
One early impediment to the emergence of architectural
design as an engineering discipline was the lack of a shared
body of knowledge about architectures and techniques for
developing good ones. Today the situation has improved,
due in part to the publication of books on architectural de-
sign [5, 8, 22, 36, 40, 44] and courses [21].

A common theme in these books and courses is the use of
standard architectural styles. An architectural style typically
specifies a design vocabulary, constraints on how that vo-
cabulary is used, and semantic assumptions about that vo-
cabulary [1]. For example, a pipe-filter style might specify
vocabulary in which the processing components are data
transformers (filters), and the interactions are via order-
preserving streams (pipes). Constraints might include the
prohibition of cycles. Semantic assumptions might include
the fact that pipes preserve order and that filters are in-
voked non-deterministically.

Other common styles include blackboard architectures,
client-server architectures, event-based architectures, and
object-based architectures. Each style is appropriate for
certain purposes, but not for others. For example, a pipe-
and-filter style would likely be appropriate for a signal
processing application, but not for an application in which
there is a significant requirement for concurrent access to
shared data [38]. Moreover, each style is typically associ-
ated with a set of associated analyses. For example, it
makes sense to analyze a pipe-filter system for system la-
tencies, whereas transaction rates would be a more appro-
priate analysis for a repository-oriented style.

The identification and documentation of such styles (as
well as their more domain-specific variants) enables others
to adopt previously-defined architectural patterns as a start-
ing point. In that respect, the architectural community has
paralleled other communities in recognizing the value of
established, well-documented patterns, such as those found
in [14].

While recognizing the value of stylistic uniformity, realities
of software construction often force one to compose sys-
tems from parts that were not architected in a uniform fash-
ion. For example, one might combine a database from one
vendor, with middleware from another, and a user interface
from a third. In such cases the parts do not always work
well together – in large measure because they make con-
flicting assumptions about the environments in which they
were designed to work [16]. This has led to a recognition of
the need to identify architectural strategies for bridging
mismatches. Although we are far from having well under-
stood ways of detecting such mismatch, and of repairing it
when it is discovered, a number of techniques have been
developed, some of which are illustrated in Figure 4 (due to

Product
Architecture

Product
Requirements

Product Line
Requirements

Product Line
Architecture

induced
 constraint

Figure 3: Product Line Architectures

A B

Change A’s
form to
B’s form

Attach adaptor
or wrapper to A

Introduce
intermediate

form

Negotiate to
find common

form for A & B

Make B
multilingual

Transform
on the fly

Publish
abstraction
of A’s form

Provide B with
import/export
convertor

1
2 3 4

5
78 6

9 Maintain parallel consistent versions

Figure 4: Some mismatch repair techniques

Mary Shaw).

8. RELATED AREAS
There are a number of closely related areas.

9.1 Software Development Methods

One of the hallmarks of software engineering progress has
been the development of methods and processes for soft-
ware development. Like software architecture, methods
attempt to provide a path from requirements to code that
eliminates some of the ad hoc development practice of the
past.

Methods complement software architecture: the former
attempt to provide a set of regular steps for software devel-
opment, while the latter attempts to provide a basis for de-
veloping and analyzing certain design models along that
path.

To the extent that they support conceptual design of sys-
tems, they also address architectural concerns. On the other
hand, most methods tend to favor a particular architectural
style. For example, object-oriented methods naturally favor
architectural designs based on interacting objects, while
other methods favor other styles.

9.2 Object-Oriented Design and Modeling

There are a number of parallels between the evolution of
object-oriented design techniques and the trends of soft-
ware architecture, outlined above.

�� Description Languages and Tools: Object-oriented

systems have long had design languages and tools to
support their use. Recently UML has emerged as a
standard notation, unifying many of its predecessors
[31]. Increasingly vendors are developing tools that
take advantage of this technological standardization.

�� Product Lines and Standards: Object-oriented

frameworks have long been an important point of lev-
erage in system development. In particular, compo-
nent-oriented integration mechanisms, such as
CORBA, DCOM, and JavaBeans have played an im-
portant role in supporting integration of object-oriented
parts. In other more domain-specific ways, frameworks
like Enterprise JavaBeansTM, VisualBasicTM, and
MFCTM, have helped improve productivity in specific
areas.

�� Codification and Dissemination: There has been

considerable work and interest in object-oriented
patterns, which serve to codify common solutions to
implementation problems [14].

Given these similarities it is worth asking the question:
what are the important differences between the two fields?
To shed light on the issue, it is helps to view the relation-
ship between architecture and object-oriented methods
from at least three distinct perspectives.

1. Object-oriented design as an architectural style: This

perspective treats the part of object-oriented develop-
ment that is concerned with system structure as the
special case of architectural design in which the com-
ponents are objects and the connectors are procedure
calls (method invocation). Some ADLs support this
view, providing built-in primitives for inter-component
procedure call.

2. Object-oriented design as an implementation base:
This perspective treats object-oriented development as
a lower-level activity, more concerned with implemen-
tation. Viewed this way, object modeling becomes one
viable implementation target for any architectural de-
sign.

3. Object-oriented design as an architectural modeling
notation: This perspective treats a notation such as
UML as a suitable notation for all architectural de-
scriptions [8, 24]. Proponents of this perspective have
advocated various ways of using object modeling, in-
cluding class diagrams, collaboration diagrams, and
package diagrams [17, 24, 29]. From this perspective,
architecture is viewed as a sub-activity of object-
oriented design.

Elaborating on the relationship between ADLs and object-
oriented modeling notations, such as UML, Figure 5 shows
some of the paths that might be followed. Path A-D is one
in which an ADL is used as the modeling language. Path B-
E is one in which UML is used as the modeling notation.
Path A-C-E, is one in which an architecture is first repre-
sented in an ADL, but then transformed into UML before
producing an implementation.

Code

Requirements

Architecture
in an ADL

Architecture
in UML

 Figure 5: ADLs versus Object Modeling

C

A B

D E

Using a more general modeling language such as UML has
the advantages of providing a notation that practitioners are
more likely to be familiar with, and providing a more direct
link to object-oriented implementations and development
tools. But general-purpose object languages suffer from the
problem that the object conceptual vocabulary may not be
ideally suited for representing architectural concepts, and
there are likely to be fewer opportunities for automated
analysis of architectural properties.

9.3 Component-Based Systems

Component-based systems are closely related to object-
oriented systems insofar as both are based on the construc-
tion of systems from encapsulated entities that provide
well-defined interfaces to a set of services. However, most
component-based systems have a strong intrinsic architec-
tural flavor in that they are usually coupled with an integra-
tion framework that prescribes what kinds of interfaces the
components must have, and ways in which components can
interact at run-time [43].

From an architectural perspective component-based sys-
tems such as DCOM, CORBA, and JavaBeans define archi-
tectural styles that are predominantly object-oriented. In
addition, they may support other forms of interaction such
as event publish-subscribe. However, component integra-
tion standards typically go beyond architectural modeling
by providing run-time infrastructure and (in many cases)
considerable support for generating code from more ab-
stract descriptions.

9. FUTURE PROSPECTS
The field of software architecture is one that has experi-
enced considerable growth over the past decade, and it
promises to continue that growth for the foreseeable future.
As architectural design matures into an engineering disci-
pline that is universally recognized and practiced, there are
a number of significant challenges that will need to be ad-
dressed. Many of the solutions to these challenges are
likely to arise as a natural consequence of dissemination
and maturation of the architectural practices and technol-
ogy that we know about today. Other challenges arise be-
cause of the shifting landscape of computing and the needs
for software: these will require significant new innovations.
This article has attempted to provide a high-level overview
of the terrain – illustrating where software architecture has
come over the past few years, and outlining relationships
between software architecture and other aspects of software
engineering.

10. ACKNOWLEDGEMENTS
The author would like to acknowledge a number of col-
leagues and students who have helped clarify his ideas on
software architecture, including Barry Boehm, Dewayne

Perry, John Salasin, Mary Shaw, Dave Wile, Alex Wolf,
and past and present members of the ABLE research group
at Carnegie Mellon University.

11. REFERENCES
1. G. Abowd, R. Allen, and D. Garlan. Using style to

understand descriptions of software architecture. In
Proceedings of SIGSOFT’93: Foundations of Software
Engineering. ACM Press, December 1993.

2. P. Clements, F. Bachmann, L. Bass, D. Garlan, J.

Ivers, R. Little, R. Nord, J. Stafford. Software Archi-
tecture Documentation in Practice, Addison Wesley
Longman, 2001.

3. R. Allen and D. Garlan. A formal basis for architec-

tural connection. ACM Transactions on Software En-
gineering and Methodology, July 1997.

4. F. Kuhl, R. Weatherly, J. Dahmann. Creating Com-

puter Simulation Systems: An Introduction to the High
Level Architecture. Prentice Hall, 2000.

5. L. Bass, P. Clements and R. Kazman. Software Archi-

tecture in Practice. Addison Wesley, 1999, ISBN 0-
201-19930-0.

6. P. Binns and S. Vestal. Formal real-time architecture

specification and analysis. 10th IEEE Workshop on
Real-Time Operating Systems and Software, May
1993.

7. B. Boehm, P. Bose, E. Horowitz and M. J. Lee. Soft-

ware requirements negotiation and renegotiation aids:
A theory-W based spiral approach. In Proc of the 17th
International Conference on Software Engineering,
1994.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad

and M. Stal. Pattern Oriented Software Architecture:
A System of Patterns. John Wiley & Sons, 1996.

9. P. Clements, L. Bass, R. Kazman and G. Abowd. Pre-

dicting software quality by architecture-level evalua-
tion. In Proceedings of the Fifth International Confer-
ence on Software Quality, Austin, Texas, Oct, 1995.

10. L. Coglianese and R. Szymanski, DSSA-ADAGE: An

Environment for Architecture-based Avionics Devel-
opment. In Proceedings of AGARD’93, May 1993.

11. Frank DeRemer and Hans H. Kron. Programming-in-

the-Large versus Programming-in-the-Small. IEEE
Trans. on Software Engineering, SE-2(2):80-86, June
1976.

12. E. W. Dijkstra. The structure of the "THE" – multi-
programming system. Communications of the ACM,
11(5):341-346, 1968.

13. P. Donohoe, editor. Software Architecture: TC2 First

Working IFIP Conference on Software Architecture
(WICSA1). Kluwer Academic Publishers, 1999.

14. E. Gamma, R. Helm, R. Johnson and J. Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented
Design. Addison-Wesley, 1995.

15. D. Garlan, R. Allen and J. Ockerbloom. Exploiting

style in architectural design environments. In Proc of
SIGSOFT’94: The second ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages
170-185. ACM Press, December 1994.

16. D. Garlan, R. Allen and J. Ockerbloom. Architectural

mismatch: Why reuse is so hard. IEEE Software,
12(6):17-28, November 1995.

17. D. Garlan and A. J. Kompanek. Reconciling the needs

of architectural description with object-modeling nota-
tions. Proceedings of the Third International Confer-
ence on the Unified Modeling Language. 2000.

18. D. Garlan, R. T. Monroe, and D. Wile. Acme: Archi-

tectural Description of Component-Based Systems.
Foundations of Component-Based Systems, Gary T.
Leavens and Murali Sitaraman (eds), Cambridge Uni-
versity Press, 2000 pp. 47-68.

19. D. Garlan and D. Perry. Introduction to the special

issue on software architecture. IEEE Transactions on
Software Engineering, 21(4), April 1995.

20. D. Garlan and M. Shaw. An Introduction to software

architecture. In Advances in Software Engineering and
Knowledge Engineering, pages 1-39, Singapore, 1993.
World Scientific Publishing Company.

21. D. Garlan, M. Shaw, C. Okasaki, C. Scott, and R.

Swonger. Experience with a course on architectures
for software systems. In Proceedings of the Sixth SEI
Conference on Software Engineering Education.
Springer Verlag, LNCS 376, October 1992.

22. C. Hofmeister, R. Nord and D. Soni. Applied Software

Architecture. Addison Wesley, 2000.

23. C. Hofmeister, R. L. Nord and D. Soni. Describing

software architecture with UML. In Proceedings of
the First Working IFIP Conference on Software Archi-
tecture (WICSA1), San Antonio, TX, February 1999.

24. P. B. Kruchten. The 4+1 view model of architecture.
IEEE Software, pages 42-50, November 1995.

25. D. C. Luckham, L. M. Augustin, J. J. Kenny, J. Veera,

D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4): 336-355, April 1995.

26. J. Magee, N. Dulay, S. Eisenbach and J. Kramer.

Specifying distributed software architectures. In Pro-
ceedings of the Fifth European Software Engineering
Conference, ESEC'95, September 1995.

27. V. Matena and M. Hapner. Enterprise JavaBeans™.

Sun Microsystems Inc., Palo Alto, California, 1998.

28. N. Medvidovic, P. Oreizy, J. E. Robbins and R. N.
Taylor. Using object-oriented typing to support archi-
tectural design in the C2 style. In SIGSOFT’96: Pro-
ceedings of the 4th ACM Symposium on the Founda-
tions of Software Engineering. ACM Press. Oct 1996.

29. N. Medvidovic and D. S. Rosenblum. Assessing the

suitability of a standard design method for modeling
software architectures. In Proceedings of the First
Working IFIP Conference on Software Architecture
(WICSA1), San Antonio, TX, February 1999.

30. N. Medvidovic and R. N. Taylor. Architecture de-

scription languages. In Software Engineering
ESEC/FSE’97, Lecture Notes in Computer Science,
Vol. 1301, Zurich, Switzerland, Sept 1997. Springer.

31. J. Rumbaugh, I Jacobson, and G. Booch. The Unified

Modeling Language Reference Manual. Addison
Wesley, 1999.

32. M. Moriconi, X. Qian and R. Riemenschneider. Cor-

rect architecture refinement. IEEE Transactions on
Software Engineering, Special Issue on Software Ar-
chitecture, 21(4):356-372, April 1995.

33. D. L. Parnas. Designing software for ease of extension

and contraction. IEEE Transactions on Software En-
gineering, 5:128-138, March 1979.

34. D. L. Parnas, P. C. Clements and D. M. Weiss. The

modular structure of complex systems. IEEE Transac-
tions on Software Engineering. SE-11(3):259-266,
March 1985.

35. D. E. Perry and A. L. Wolf. Foundations for the study

of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52, October 1992.

36. E. Rechtin. Systems architecting: Creating and Build-
ing Complex Systems. Prentice Hall, 1991.

37. P. Clements and L. Northrop. "Software Product

Lines: Practices and Patterns." Addison Wesley Long-
man, 2001..

38. M. Shaw and P. Clements. A field guide to boxology:

Preliminary classification of architectural styles for
software systems. In Proceedings of COMPSAC 1997,
August 1997.

39. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.

Young and G. Zelesnick. Abstractions for software ar-
chitecture and tools to support them. IEEE Trans on
Software Engineering. 21(4):314-335. April 1995.

40. M. Shaw and D. Garlan. Software Architecture: Per-

spectives on an Emerging Discipline. Prentice Hall,
1996.

41. Mary Shaw. Architectural Requirements for Comput-

ing with Coalitions of Resources. 1st Working IFIP
Conf. on Software Architecture, Feb 1999
http://www.cs.cmu.edu/~Vit/paper_abstracts/Shaw-
Coalitions.html.

42. J. A. Stafford, D. J. Richardson, A. L. Wolf. Aladdin:

A Tool for Architecture-Level Dependence Analysis of
Software. University of Colorado at Boulder, Techni-
cal Report CU-CS-858-98, April, 1998.

43. C. Szyperski. Component Software: Beyond Object-

Oriented Programming. Addison-Wesley, 1998.

44. International Organization for Standardization.

ISO/IEC 10746 1-4 Open Distributed Processing –
Reference Model (Parts 1-4), July 1995. ITU Recom-
mendation X.901-904.

45. D. Parnas. On the Criteria To Be Used in Decompos-

ing Systems Into Modules. Communications of the
ACM, 15(12):1053-1058, December 1972.

46. L. W. Cooprider. The representation of software fami-

lies. Ph.D. Thesis, Technical Report CMU-CS-79-116.
Carnegie Mellon University, 1979.

47. D. E. Perry. Software interconnection models. In Pro-

ceedings of the 9th International Conference on Soft-
ware Engineering. IEEE Computer Society Press,
March 1987.

48. IEEE Std 1471-2000. Recommended Practice for Ar-

chitectural Description of Software-Intensive Systems,
October 2000.

