Debugging (1/2)

Martin Kellogg

Debugging (Part 1/2)

Today’s agenda:

e Whatis a bug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o debuggers

o deltadebugging

Review: finding bugs

e Quality assurance is critical to software engineering

Review: finding bugs

e Quality assurance is critical to software engineering
e We've discussed static (code review, dataflow analysis) and
dynamic (testing) approaches to finding bugs

Review: finding bugs

e Quality assurance is critical to software engineering

e We've discussed static (code review, dataflow analysis) and
dynamic (testing) approaches to finding bugs

e Key question for today: what happens to all of the bugs those
find?

Terminology: what is a bug?

Terminology: what is a bug?

e “bug”is an ambiguous term in common usage - it can refer to
either static or dynamic problems

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
e whenyou’re running a program and something goes wrong, a
fault has occurred

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

e whenyou’re running a program and something goes wrong, a
fault has occurred

Definition: a is any characteristic of a product which hinders
its usability for its intended purpose

Terminology: what is a bug?

e “bug”’isan ambiguous termin common usage - it can refer to
either static or dynamic problems
e we'll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

e whenyou’re running a program and something goes wrong, a
fault has occurred

Definition: a is any characteristic of a product which hinders
its usability for its intended purpose
o cf. “design defect”. I'll use “bug” to mean “a defect in source code”

Terminology: bug reports

Terminology: bug reports

Definition: a bug report provides information about a defect

Terminology: bug reports

Definition: a bug report provides information about a defect
e Created by testers, users, tools, etc.

e Often contains multiple types of information

e Often trackedin adatabase

Terminology: bug reports

Definition: a bug report provides information about a defect
e Created by testers, users, tools, etc.

e Often contains multiple types of information

e Often trackedin adatabase

Definition: A is a potential change to the intended
purpose (requirements) of software

Terminology: bug reports

Definition: a bug report provides information about a defect
e Created by testers, users, tools, etc.

e Often contains multiple types of information

e Often trackedin adatabase

Definition: A is a potential change to the intended

purpose (requirements) of software

e InCS:anissueis either a bug report or a feature request (cf.
“issue tracking system?”)

Terminology: bug vs. features

Terminology: bug vs. features

e whatisabugandwhatisa
featureis

Terminology: bug vs. features

e whatisabugandwhatisa
featureis

BUG

Terminology: bug vs. features

e whatisabugandwhatisa
featureis

e good rule of thumb:in any
system with a large
number of users, someone
relies on every behavior of

(())

the system (intended * K
e system (intended or
not) as if it were a feature B U G FEATU RE

Terminology: bug vs. features

e good rule of thumb:in any
system with a large

‘ ’/’. l ‘ \\ y k
\\ / \
e whatisabugandwhatisa o (e
featureis i [
e

e ety
2

This is often why “old” systems \
number of users, someone (e.g., Linux, Windows, etc.) have

relies on every behavior of behaviors that are unintuitive or
the system (intended or difficult to learn:

not) as if it were a feature , S0 changing them
\Wwould be consideredabug! /

Debugging (Part 1/2)

Today’s agenda:

e Whatisabug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o debuggers

o deltadebugging

Defect report lifecycle

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

e Not every defect report follows the same path

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

e Not every defect report follows the same path

e The overall processis not linear
o There are multiple entry points, some cycles, and multiple

exit points (and some never leave ...)

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
e Not every defect report follows the same path
e The overall processis not linear
o There are multiple entry points, some cycles, and multiple
exit points (and some never leave ...)
Definition: the status of a defect report tracks its position in the

N«

lifecycle (“new”, “resolved” etc.)

Defect report lifecycle

Defect report lifecycle

e For example, Bugzilla (a
widely-used open-source
issue tracker) uses this —»
flow for issues

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

(UNCONFIRMED

Bug is reopened,

Bug confirmed or
receives enough votes

Developer akes
NEW
Ownership
is changed Developer takes
possession
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio
Issue is
resolved
QA nat satisfied QA verifies
with solution solution worked

REOPEN

was never confirmed

Development is
finished with bug

Bug is closad

Bug is reopened

VERIFIED

Bug is reopened

Bug is closed

(CLOSED

New bug from a
usar with canconfirm
or a product without
UNCONFIRMED state (

UNCONFIRMED

Defect report lifecycle L e

e For example, Bugzilla (a
widely-used open-source _
issue tracker) uses this —» |G

WONTFIX
WORKSFORME
INVALID

flow for issues o
e GitHub's built-in issue

tracker is similar (less

structured)

ASSIGNED

Development is
finished with bug

RESOLVED

Developer akes

VERIFIED

=
=
=
=] <
c
m 35
c
=]
p
.
2
B
3
2 o
[
=1
-
o
S

(REOPEN

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle

e For example, Bugzilla (a
widely-used open-source
issue tracker) uses this —»
flow for issues

e GitHub's built-inissue
tracker is similar (less
structured)

o you should use anissue
tracker for the group
project (GitHub is okay)

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED
Bug is reopened,

was never confirmed

Ownership
is changed

Pessible resolutions:

Developer takes
possession

Development is
finished with bug

FIXED
DUPLICATE
WONTFIX
WORKSFORME

ASSIGNED

INVALID
REMIND
LATER

finished with bug

Development is
ini wi

Developer takes
possessio

RESOLVED

Issue is
resolved

A

REOPEN

Bug is reopened
Bug is closed

with solution

f QA net satisfied

QA verifies
solution worked

Bug is reopened

VERIFIED

(

CLOSED

user with canconfirm
or a product without

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: e

New bug from a . l

Bug is reopened,
was never confirmed

Developer akes
new bugs s
Ownership
is changed Developer takes Development is
e most new bugs enter the s A
Pessible resolutions:
t « ﬁ d » FIXED
DUPLICATE
system as “unconfirme oumcK ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved
QA nat satisfied QA verifies
with solution solution worked
REOPEN E’“g S reopened VERIFIED
Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle:

new bugs

e most new bugs enter the
system as “unconfirmed”
e two main sources:

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

—

Bug confirmed or

UNCONFIRMED

Bug is reopened,
was never confirmed

receives enough votes
Y Developer akes
possession
NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved A
QA nat satisfied QA verifies
with solution solution worked
B ed
REOPEN “9 IS reopen VERIFIED
Bug is reopened
Bug is closed

(CLOSED

user with canconfirm
or a product without

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L
new bugs

New bug from a . l

Pessible resolutions:

e most new bugs enter the
system as “unconfirmed” e

WONTFIX
WORKSFORME

e two main sources: o
e bug reports, .
e.g., from testers/QA = AL

(REOPEN

Bug is reopened
Bug is closed

(CLOSED

VERIFIED

=
=5
2
c
m 35
c
=]
p
.
2
B
i
4
=1
-
o
S

New bug from a . l

user with canconfirm
or a product without
UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L e
new bugs -

e most new bugs enter the S

system as “unconfirmed” ourLcaTe Pem—
e two main sources: i lfm.&mh .
o bug reports, i ——

e.g., from testers/QA Sk
o external bug reports, (

e.g., from users

(CLOSED

VERIFIED

=
=5
2
c
m 35
c
=]
p
.
2
B
i
[o
=1
-
o
S

Defect report lifecycle:

new bugs

most new bugs enter the

system as “unconfirmed”

two main sources:

0 bug reports,
e.g., from testers/QA

o external bugreports,

e.g., from users

internal reports are usually
higher quality/more detailed

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

—

UNCONFIRMED

Bug is reopened,
was never confirmed

Ownership
is changed

Pessible resolutions:

DUPLICATE

WORKSFORME

Developer takes

possessio

NEW
Developer takes Development is
possession finished with bug
ASSIGNED
Development is
finished with bug
RESOLVED
resolve A
QA nat satisfied QA verifies
with solution solution worked

REOPEN

Bug is reopened
Bug is closed

(CLOSED

EUy & rengwned VERIFIED

user with canconfirm

New bug from a . l

orla pnladuct without (\

Defect report lifecycle: (. B
Modern view of end-user bug
new bugs reports: we cannot count on

end users to describe bugs in

e most new bugs enter the = a helpful manner l)
system as “unconfirmed” m&
e two main sources: :m —
o bug reports, o e
e.g., from testers/QA il
o external bugreports, ey e

Bug is reopened

REOPEN VERIFIED

e.g., from users

e internal reports are usually k—\ f—““““J

higher quality/more detailed (cLosep

Defect report lifecycle:
new bugs
most new bugs enter the

system as “unconfirmed”
two main sources:

New bug from a
user with canconfirm

or a product without i

]

MCONFIRMED cate fi

Modern view of end-user bug
reports: we cannot count on
end users to describe bugs in

~

= ahelpful manner

REMIND

LATER

0 bug reports,

e.g., from testers/QA

o external bugreports,
e.g., from users

internal reports are usually

higher quality/more detailed

Deve

ApPened

eating a bean and cheese taco

Cancel OK

| p

7

med

'\
/

Quick demo: GitHub issue tracker

example: https://github.com/typetools/checker-framework/issues

https://github.com/typetools/checker-framework/issues

Writing a good defect report

e clearly explain:

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem
o what the program did
m usually you should copy-paste output, but this could also
be screenshots, video, etc.

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem
o what the program did
m usually you should copy-paste output, but this could also
be screenshots, video, etc.
0 you believe that what the program did is wrong

Writing a good defect report

e clearly explain:
o what you did
m ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem
o what the program did
m usually you should copy-paste output, but this could also
be screenshots, video, etc.
0 you believe that what the program did is wrong
o what you expected the program to do instead

Defect reports: conversations

Defect reports: conversations

e Defectreports are not static

Defect reports: conversations

e Defectreports are not static

e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions

Defect reports: conversations

e Defectreports are not static
e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions
e Thereportisa of all relevant activity

Defect reports: conversations

e Defectreports are not static
e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions
e Thereportisalogof all relevant activity
o e.g.
o https://github.com/typetools/checker-framework/issues/4838

https://github.com/typetools/checker-framework/issues/4838

Defect reports: conversations

e Defectreports are not static
e |[nstead, they are updated over time
o Request more info
o Assigntoadev
o Discuss solutions
e Thereportisalog of all relevant activity
o e.g.
o https://github.com/typetools/checker-framework/issues/4838
o https://github.com/typetools/checker-framework/issues/3001

https://github.com/typetools/checker-framework/issues/4838
https://github.com/typetools/checker-framework/issues/3001

New bug from a
usar with canconfirm
or a product without

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: T i

Bug is reopened,
was never confirmed

t ° Developer akes
riage e
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio Bug is closad
Issue is
= _A
QA nct satisfied QA verifies
with solution solution worked

REOPEN E’“g is reopened VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: e

Bug is reopened,
was never confirmed

t ° Developer akes
riage e
Ownership
° ° is changed Developer takes Development is
. i finished with bi
e Key question: which bugs psston i W g
Pessible resolutions:
hould we address first? |
DUPLICATE
snould we adadress 1rst: s ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved
QA nat satisfied QA verifies
with solution solution worked
REOPEN E’“g S reopened VERIFIED
Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L e
triage ==

e Key question: which bugs

should we address first? ourLcaTe P—
e “triage” is an analogy to i lfmr;mh .
medicine: which emergency
pacajom RESOLVED

possessio

Issue is
= A
7 QA nat satisfied QA verifies
e p rst : with solution solution worked
(REOPEN)M VERIFIED

Bug is reopened
Bugisc

(CLOSED

room patient should you

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of

patients or casualties

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of

patients or casualties
e bug triage has the same definition, but with software defects

instead of wounds/illnesses

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of

patients or casualties
e bug triage has the same definition, but with software defects

instead of wounds/illnesses
e there are always
to address them

available

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
e bug triage has the same definition, but with software defects
instead of wounds/illnesses
e there are always available
to address them
e we must do cost-benefit analysis:
o How expensive is it to fix this bug?
o How expensive is it to not fix this bug?

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system
e intuition: severity = “cost of not fixing the bug”

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system

e intuition: severity = “cost of not fixing the bug”

e BugZillaseverity levels (varies by company/tool, but these typical):

Severity Meaning
Blocker Blocks further development and/or testing work
Critical Crashes, loss of data (internally, not your edit preview!) in a widely used and important component
Major Maijor loss of function in an important area
Normal Default/average
Minor Minor loss of function, or other problem that does not affect many people or where an easy workaround is present
Trivial Cosmetic problem like misspelled words or misaligned text which does not really cause problems

Enhancement | Request for a new feature or change in functionality for an existing feature

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to
prioritize between them

B

Defect report lifecycle: pp— \
nﬂually, ¢ ’="3

Definition: priority indicates the i developer will work on this
defect soon” (e.g., in the next sprint).
e related to, but officially differer
o intuition: if you have lots of
prioritize between them

_ /

Defect report lifecycle: pp—

. e .Wﬁ:ually,“ ="“a
Definition: priority indicates the i

defect
e related to, but officially differer
o intuition: if you have lots of
prioritize between them

B

developer will work on this

Qmeptional times.”

soon” (e.g., in the next sprint).

“As a rule of thumb, limit High
priority task assignments for a
single person to three, five in

/

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a

defect

e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to

prioritize between them

e severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
e related to, but officially different from, severity
o intuition: if you have lots of high severity bugs, you need to
prioritize between them
e severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports
o note that thisis a bit of an oversimplification:
“severity + priority = triage” is like “supply + demand = price”

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: T i

Bug is reopened,
was never confirmed

° t Developer akes
assignmen NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
VONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Developer e RESOLVED
possessio Bug is closad
Issue is
A A
QA nct satisfied QA verifies
with solution solution worked

Bug is reopened

REOPEN VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: e

Bug is reopened,
was never confirmed

° t Developer akes
assignmen s
Ownership
° is changed Developer takes Development is
. i finished with bui
e Key question: who should — e
Pessible resolutions:
ﬁ t h . b ? FIXED
DUPLICATE
X IS ug . WONTFIX ASSIGNED

WORKSFORME

INVALID

REMIND Development is

LATER finished with bug

Develcper R RESOLVED A
possessio Bug is closad
Issue is
resolved A
QA nat satisfied QA verifies
with solution solution worked
Bug is reopened

REOPEN VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state (UNCONFIRMED
Bug is reopened,

Defect report lifecycle: 7 N
assignment

NEW

e Keyquestion:whoshould __ ™ lﬁ:i.i::i?“ o

ﬁX th'S bug? :DEE%&TE ASSIGNED
Definition: an assignment i lfm.&mh .
associates a developer with the iy

sk RESOLVED

responsibility of addressing a SN
defect report U s A=

REOPEN EUy & rengwned VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state (UNCONFIRMED
Bug is reopened,

Defect report lifecycle: 7 N
assignment

NEW

e Keyquestion:whoshould __ ™ lﬁ:i.i::i?“ o

ﬁX th'S bug? :DEE%&TE ASSIGNED
Definition: an assignment i lfm.&mh .
associates a developer with the iy

sk RESOLVED

responsibility of addressing a SN
defect report U s A=

REOPEN EUy & rengwned VERIFIED

Bug is reopened
Bug is closed

(CLOSED

e stateofthe artis “manual”

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state [UNCONFIRMED
Bug is reopened,

Defect report lifecycle: N
assignment

NEW

e Keyquestion:whoshould __ ™ l‘?f..:is”.?f“ o

ﬁX th'S bug? ‘EEE%&TE ASSIGNED
Definition: an assignment i lfm.ho;memh .
associates a developer with the N

gsisilon RESOLVED

responsibility of addressing a SN
defect report U s A=

REOPEN EUy & rengwned VERIFIED

e stateofthe artis “manual”

e usually based on who “owns” the L—\ (—WJ

relevant code (R

Defect report lifecycle:

resolution

New bug from a
usar with canconfirm
or a product without
UNCONFIRMED state

UNCONFIRMED

(

Bug confirmed or
receives enough votes

Bug is reopened,
was never confirmed

Developer akes
NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio Bug is closad
Issue is
A A
QA nct satisfied QA verifies
with solution solution worked

REOPEN Bug is reopened

Bug is reopened
Bug is closed

(CLOSED

VERIFIED

Defect report lifecycle:

resolution

e Key question: did we fix it?

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED

(

Bug confirmed or
receives enough votes

Bug is reopened,
was never confirmed

Developer akes
NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
VONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Developer e RESOLVED A
possessio Bug is closad

Issue is

resolved

QA nct satisfied QA verifies

with solution solution worked

B ed
REOPEN ug s reopen VERIFIED

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L
resolution

e Key question: did we fix it?

DUPLICATE
WONTFIX
WORKSFORME
INVALID
REMIND
LATER

ASSIGNED

Development is
finished with bug

RESOLVED

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it

Developer akes

VERIFIED

_,
=
=
=] <
c
m 35
c
=]
p
.
2
B
3
2 o
[
=1
-
o
S

(REOPEN

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle:

resolution

e Key question: did we fix it?

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it
Important: resolved need
not mean “fixed”

New bug from a
usar with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED

Y Developer akes
possession

Bug is reopened,
was never confirmed

NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio
ue 1s
) " A
QA nat satisfied QA verifies
with solution solution worked

REOPEN M VERIFIED

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle: possible resolutions

Bug/Zilla resolution options:
e FIXED (give commit #)

Defect report lifecycle: possible resolutions

Bug/Zilla resolution options:

FIXED (give commit #)

INVALID (bug report is invalid)

WONTFIX (we don't ever plan to fix it)
DUPLICATE (link to other bug report #)
WORKSFORME (cannot reproduce, a.k.a. “WFM”)
MOVED (give link: filed with wrong project)
NOTABUG (report describes expected behavior)
NOTOURBUG (is a bug, but not with our software)
INSUFFICIENTDATA (cannot triage/fix w/o more)

Defect report lifecycle: possible resolutions

BugZilla resolution options: (Thought question: A
FIXED (give commit #) what fraction of bug
INVALID (bug report is invalid) reports end up with
WONTFIX (we don't ever plan to fix i{ @achresolution?
DUPLICATE (link to other bug report #)

WORKSFORME (cannot reproduce, a.k.a. “WFM”)

MOVED (give link: filed with wrong project)

NOTABUG (report describes expected behavior)
NOTOURBUG (is a bug, but not with our software)
INSUFFICIENTDATA (cannot triage/fix w/o more)

Defect report lifecycle: possible resolutions

A significant fraction of submitted bug reports are spuri-

ous duplicates that describe already-rgported defects. Pre-
vious studies report that as many a§ 36% Jof bug reports
were duplicates or otherwise invalid [2}-O1 the 29,000 bug

reports used in the experiments in this paper, 25.9% were
identified as duplicates by the project developers.

[Jalbert et al. Automated Duplicate Detection for Bug Tracking Systems. DSN 2008. |

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: T i

Bug is reopened,
was never confirmed

) Developer akes
reopening e
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
VONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND 1. Development is
LATER finished with bug
Developer e RESOLVED
possessio Bug is closad
QA net satisfied QA verifies
with solution solution worked

Bug is reopened

VERIFIED

[REOPEN

Bug is reopened
Bug is closed

CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle:
reopening

Pessible resolutions:

e Adefectreportthat was
previously resolved (e.g. copcaT

WONTFIX
WORKSFORME

“FIXED”) may be if | e
later evidence suggests the

old resolution is no longer
adequate

Developer takes

(CLOSED

Defect report lifecycle:
reopening

e Adefectreportthat was

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

!

UNCONFIRMED

Bug is reopened,
was never confirmed

previously resolved (e.g.

“FIXED”) may be if

later evidence suggests the
old resolution is no longer
adequate

Surely this only happens
rarely?

Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Developer takes

RESOLVED

QA nat satisfied
with solution

Bug is reopened
Bug is closed

(CLOSED

Defect report lifecycle: reopening

This paper presents a comprehensive characteristic study

on incorrect bug-fixes from large operating system code bases

including Linux, OpenSolaris, FreeBSD and also a mature e M any ﬁxes are wrong,
— commercial OS developed and evolved over the last 712 years, even on mature. critical

investigating not only the mistake patterns during bug-fixing ’

but also the possible human reasons in the development pro- SoftW a re!

cess when these incorrect bug-fixes were introduced. Our
major findings include: (1) at least 14.8%~24.4% of sam-
pled fixes for post-release bugs ' in these large OSes are
incorrect and have made impacts to end users. (2) Among
several common bug types, concurrency bugs are the most
difficult to fix correctly: 39% of concurrency bug fixes are
incorrect. (3) Developers and reviewers for incorrect fixes
—3usually do not have enough knowledge about the involved
code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software

Defect report lifecycle: reopening

This paper presents a comprehensive characteristic study

on incorrect bug-fixes from large operating system code bases

including Linux, OpenSolaris, FreeBSD and also a mature ¢ Many ﬁxes are wrong,
—P commercial OS developed and evolved over the last 12 years, even on matu re, Critical

investigating not only the mistake patterns during bug-fixing

but also the possible human reasons in the development pro- SoftW a re!

cess when these incorrect bug-fixes were introduced. Our

major findings include: (1) at least 14.8%~24.4% of sam- () Imp“cati(_)n: reopening

pled fixes for post-release bugs ' in these large OSes are .

incorrect and have made impacts to end users. (2) Among bugS IScCOmMmmon

several common bug types, concurrency bugs are the most
difficult to fix correctly: 39% of concurrency bug fixes are
incorrect. (3) Developers and reviewers for incorrect fixes
—pusually do not have enough knowledge about the involved
code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software

Defect report lifecycle: reopening

This paper presents a comprehensive characteristic study

on incorrect bug-fixes from large operating system code bases

including Linux, OpenSolaris, FreeBSD and also a mature ¢ Many ﬁxes are wrong,
— commercial OS developed and evolved over the last 12 years, iti

investigating not only the mistake patterns during bug-fixing even on matu re, Crltlcal

but also the possible human reasons in the development pro- Softwa re!

cess when these incorrect bug-fixes were introduced. Our

major findings include: (1) at least 14.8%~24.4% of sam- () Imp“cati(_)n: reopening

pled fixes for post-release bugs ' in these large OSes are .

incorrect and have made impacts to end users. (2) Among bugS IScommon

several common bug types, concurrency bugs are the most

difficult to fix correctly: 39% of concurrency bug fixes are O |mp0rta nce Of

incorrect. (3) Developers and reviewers for incorrect fixes . .
—pusually do not have enough knowledge about the involved regreSS|0n teStlng!

code. For example, 27% of the incorrect fixes are made by
developers who have never touched the source code files as-
sociated with the fix. Our results provide useful guidelines
to design new tools and also to improve the development
process. Based on our findings, the commercial software

New bug from a
usar with canconfirm

or a product without (

UNCONFIRMED state

UNCONFIRMED

Defect report lifecycle: T i
fixing

Bug is reopened,
was never confirmed

NEW
Ownership
is changed Developer takes Development is
possession finished with bug
Pessible resolutions:
FIXED
DUPLICATE
WONTFIX ASSIGNED
WORKSFORME
INVALID
REMIND Development is
LATER finished with bug
Develcper R RESOLVED
possessio Bug is closed
Issue is
e _A
QA nct satisfied QA verifies
with solution solution worked

REOPEN Bug is reopened

Bug is reopened
Bug is closed

(CLOSED

VERIFIED

New bug from a
user with canconfirm

or a product without
UNCONFIRMED state (UNCONFIRMED

Defect report lifecycle: L =
fixing =

e Key question: once we have
a good defect report, how |ame

WORKSFORME
INVALID

do we figure out how to oegm o

LATER

resolve the defect? T

Bug is reopened
Bug is closed

(CLOSED

New bug from a
user with canconfirm

or a product without (

UNCONFIRMED state UNCONFIRMED

Defect report lifecycle: L =
fixing .-

e Key question: once we have
a good defect report, how |ame

WORKSFORME
INVALID

do we figure out how to

LATER

resolve the defect? o ——
o Thisisdebugging

(CLOSED

New bug from a
user with canconfirm

or a product without
UNCONFIRMED state (UNCONFIRMED

Bug is reopened,

Defect report lifecycle: L
fixing s

vew
e Key question: once we have m@” li“iﬁ:i?“
a good defect report, how |8 assiGED
do we figure out how to V:KS lmm:?“
resolve the defect? . ——

o Thisisdebugging = AL
o Rest of today’s lecture + U s A=

all of Friday’s lecture on D G

debugging \—\ (—WJ

(CLOSED

was never confirmed

Development is
finished with bug

Debugging (Part 1/2)

Today’s agenda:

e Whatis abug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o debuggers

o deltadebugging

Debugging: what makes it difficult?

Debugging: what makes it difficult?

e modern software is unimaginably huge

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams
o you will be asked to fix bugs in very large software!

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams
o you will be asked to fix bugs in very large software!
e Techniques developed based on smaller code bases simply do not
apply or scale to larger code bases

Debugging: what makes it difficult?

e modern software is unimaginably huge
o analogy: scale of space vs human scale
m “Spaceis big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” - Douglas Adams
o you will be asked to fix bugs in very large software!
e Techniques developed based on smaller code bases simply do not
apply or scale to larger code bases
o Techniques from the 1980s or your habits from classes

How big are programs, really?

hundred
thousand

(@]
N
©
S
(3}
[
~]
|

simple iPhone game app I 0.01

Unix v1.0 0.01
1971
Win32/Simile virus I 001
average iPhone app - 0.04 i
Pacemaker - 0.08

Photoshop v. 1.0
1990

web browser

©
4

Quake 3 engine GAME
3D Video game system
Space Shuttle MACHINE

a million lines of code

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

hundred
thousand

simple iPhone game app
Unix v 1.0

1971

Win32/Simile virus

average iPhone app
Pacemaker
Photoshop v. 1.0

1990

Camino
web browser

Quake 3 engine

3D Video game system
Space Shuttle

a million lines of code

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

0

) (

oo
B oo
I

\

0.08

2

3 4 5

IP1 starter code
~2,000 lines

APP

BROWSER

GAMI

MACHINE

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

thousand 0 1 ’ ’ ' ’) i
simple iPhone game app I 0.01
Unixv1.0 0.0l
Win32/Simile vitl*?.:sl [M d I I Of
average iPhone app - 004 COVGY.tOWﬂ . APP
Pacemaker

~16,000 lines

||\ o
o
(o3]
o
.

Photoshop v. 1.0

1990
Camino | 2
web browser '
Quake 3 engine GAMI
3D Video game system
Space Shuttle MACHINE

a million lines of code

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

HD DVD Player on XBox
(just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

Linux kernel 2.6.0
2003

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windows NT 3.5
1993

Firefox
latest version

. 4.7
- 5

.
K

-

! \

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

HD DVD Player on XBox

(just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

Linux kernel 2.6.0
2003

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windows NT 3.5
1993

Firefox
latest version

. 4.7

-] Chrome at ~7M LoC is ~400x
bigger than covey.town

—— up
est
- 6‘5
mel®
.

a~

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?
D D e Tre ploren . 47

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

25
Linux kernel 2.6.0 :

7000 [Windows 2000 ﬂ

Google Chrome Microsoft Office for Mac
latest 6.0 — “pt 2006 30

es’
World of WarCraft - Symbian
server only 0.0 mobile operating system 180%
Boeing 787 Windows 7 ’_138
avionics & online support systems only 6.5 2009 /
Windows NT 3.5 iy A1 < / 0
1993 <’ (
Firefox . Microsoft Office 2013 .
latest version 9.7

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

HD DVD Player on XBox
(just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover
Martian ground vehicle probe

Linux kernel 2.6.0
2003

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windows NT 3.5
1993

Firefox
latest version

. 4.7

Chrome is small compared to

even old versions of Windows!

- 5 Microsoft Office 2001
Windows 2000
EEEEE -

Microsoft Office for Mac
6./ —uP 2006

| est
11 oo
5.5 mobile operating system
- Windows 7
6.5 2009
Windows XP
pEl® 2001

I=\

Microsoft Office 2013

! \

L 1V, Z ov

“4u

="\
K

/
-ll:\

10 20 0 a0

) |-

Dl |

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

Large riauroll vouder
total code

Windows Vista
2007

Microsoft Visual Studio 2012

Facebook

(including backend code)

US Army Future Combat System

fast battlefield network system (aborted)

Debian 5.0 codebase

free, open-source operating system

Mac OS X “Tiger”
v10.4

LTI T

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

Google Is 2 Billion Lines of Code—And It's All in One Place

SIARE GOOGLE IS 2 BILLION LINES OF
a CODE—ANDIT'S ALL IN ONE
- PIACE

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

Humans are poor at comprehending large scales

e covey.town 16 000
e google 2 000 000 000

Humans are poor at comprehending large scales

e covey.town 16 000
e google 2 000 000 000
e |magine that there is a bug somewhere, anywhere, in covey.town

Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o |Imagine further that you can find that bug in one minute

Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o |Imagine further that you can find that bug in one minute

e Atthesamerate, it would take you more than a month to find it
in all of google

Humans are poor at comprehending large scales

e covey.town 16 000

e google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in covey.town
o |Imagine further that you can find that bug in one minute

e Atthesamerate, it would take you more than a month to find it
in all of google
o aone-hour bug on covey.town would take on google!

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically

e To effectively debug a problem, you should do the following:
o reproduce the issue yourself

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically

e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
reproduce the issue yourself
minimize the reproduction so that you can reason about it
the fault to a particular part of the program
possible fixes to find the right one

O
O
O
O

Steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program
o possible fixes to find the right one
o confirm that your fix actually resolves the issue

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the

reported symptoms themself

e “reported symptoms” = “the problem described in the defect
report”

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur
e |ots of bugs are resolved at this stage:

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur

e |ots of bugs are resolved at this stage:
o WORKSFORME is the BugZilla resolution for this

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
e “reported symptoms” = “the problem described in the defect
report”
e reproducing bugsis a problem:
o find the inputs that cause the fault to occur
e |ots of bugs are resolved at this stage:
o WORKSFORME is the BugZilla resolution for this
o especially bugs reported by users often do not get past this
stage: not enough information to reproduce the fault

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that

elicits the bug’s reported symptoms

e defect reports containing minimal failing examples are the gold
standard (but rare in practice)

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
e defect reports containing minimal failing examples are the gold
standard (but rare in practice)
e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was
running

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that

elicits the bug’s reported symptoms

e defect reports containing minimal failing examples are the gold
standard (but rare in practice)

e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was

running

e minimizing the reproduction helps the developer reason about

which part of the software might be responsible for the bug

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that

elicits the bug’s reported symptoms

e defect reports containing minimal failing examples are the gold
standard (but rare in practice)

e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was

running
e minimizing the reproduction helps the developer reason about

which part of the software might be responsible for the bug
o also useful for

Minimizing the reproduction

~

Definition: a minimal reproduction of ' Minimizing the reproduction

elicits the bug’s reported symptoms | is ‘3

e defect reports containing minima| small (but not minimal) input
standard (but rare in practice) ~ \ is often good enough y

e commonly, even reproducible bugs come with a complex test input
o e.g. including the entire environment in which the software was

running
e minimizing the reproduction helps the developer reason about

which part of the software might be responsible for the bug
o also useful for

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug

Fault localization

Definition: fault localization is the task of identifying source code

regions implicated in a bug

e “Thisregression test is failing. Which lines should we change to fix
things?”

Fault localization

Definition: fault localization is the task of identifying source code

regions implicated in a bug

e “Thisregression test is failing. Which lines should we change to fix
things?”

e Answer is not unique: there are often many places to fix a bug

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
e “Thisregression test is failing. Which lines should we change to fix
things?”
e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
e “Thisregression test is failing. Which lines should we change to fix
things?”
e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?
e While some tool support is available, state of the practice is manual

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
e “Thisregression test is failing. Which lines should we change to fix
things?”
e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?
e While some tool support is available, state of the practice is manual
o automated tools rank parts of the program by “ ”

Fault localization

Definition: fault localization is the task of identifying source code

regions implicated in a bug

e “Thisregression test is failing. Which lines should we change to fix

things?”

e Answer is not unique: there are often many places to fix a bug
o Example: check for null at caller or callee?

e While some tool support is available, state of the practice is manual
o automated tools rank parts of the program by “ ”
o suspiciousness computed by how often each part of the

program is by passing vs. failing tests

Testing and confirming your fix

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

e another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

e another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

o easy mistake to make: write or modify a test in such a way that
you end up no longer reproducing the bug while “fixing” the bug

Testing and confirming your fix

e rule of thumb: every bug fix should be accompanied by a

o often more than one: many fixes are possible, but some are
better than others, so you want tests that rule out “wrong” fixes
that you tried

e another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

o easy mistake to make: write or modify a test in such a way that
you end up no longer reproducing the bug while “fixing” the bug

o best practice: commit tests separately

Debugging (Part 2/2)

Two-lecture agenda:

e Whatisabug, anyway?
e Bugreports, triage, and the defect lifecycle
e Debugging

o printf debugging and logging

o debuggers

o deltadebugging

Review: steps of debugging

e When working with very large systems, it is important to think of
debugging systematically
e To effectively debug a problem, you should do the following:
o reproduce the issue yourself
o minimize the reproduction so that you can reason about it
o the fault to a particular part of the program
o possible fixes to find the right one
o confirm that your fix actually resolves the issue

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

e all of these strategies have one in common: treat
debugging as a series of hypothesis tests

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

e all of these strategies have one in common: treat
debugging as a series of hypothesis tests

o hypothesis testing is one of the key components of the
scientific method:

Debugging strategies

e theremainder of our lectures on debugging will be devoted to
discussing different strategies for debugging
e all of these strategies have one in common: treat
debugging as a series of hypothesis tests
o hypothesis testing is one of the key components of the
scientific method:
1. guess why something happens, devise an experiment to
test if your guess is correct, then run the experiment
2. repeat step 1 until you've figured it out

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”
o ideally, you'd also like your guesses to be easy to test

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”
o ideally, you'd also like your guesses to be easy to test

e each time you make such a guess, you need to design an
experiment to check if the guess is correct

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

o ‘“falsifiable” = “can be true or false”
o ideally, you'd also like your guesses to be easy to test

e each time you make such a guess, you need to design an
experiment to check if the guess is correct

o most of the debugging strategies we'll talk about are ways to
check if a particular guess is correct

Debugging as hypothesis testing

e thekey to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a

partlculzj\r way (Bigdifference betweenyou)
o “falsifiable” = “can be true or (") and

o ideally, you'd also like your g| anyone who knows how to
e each time you make such a gues{ program: the ability to apply the
experiment to check if the guess scientific method to coding)
o most of the debugging strategies we'll talk about are ways to
check if a particular guess is correct

Debugging strategies

e “printf” debugging: using print statements to find a bug
o and its larger-scale cousin: logging
e debuggers: inspecting program state while it is running
o we'll talk alittle about how they work
e deltadebugging
o aformalization of the scientific approach to debugging

Debugging (Part 2/2)

Today’s agenda:

e Debugging
o printf debugging and logging
o debuggers
o deltadebugging

“printf” debugging

e probably your most common debugging strategy already!

“printf” debugging

e probably your most common debugging strategy already!
e keyidea:instrument the program so that it prints the values of
key variables at a particular point

“printf” debugging

e probably your most common debugging strategy already!

e keyidea:instrument the program so that it prints the values of
key variables at a particular point

e advantages:
o easy and natural

“printf” debugging

e probably your most common debugging strategy already!
e keyidea:instrument the program so that it prints the values of
key variables at a particular point
e advantages:
o easy and natural
e disadvantages:
o must recompile, rerun program each time you want to test
something else
o sometimes considered “unprofessional”

“printf” debugging

key variables at a part
e advantages:
o easy and natural

probably your most common debugging strategy already!
key idea: instrument th

This is a misconception: professional
engineers commonly use printf
debugging. But printf debugging

e disadvantages:

. 0
o must recompile, r&

something else

f debugging strategies!

should be just one tool in your toolbox

J

o sometimes considered “unprofessional”

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

Logging
Definition: logging is the process of recording information about the

program’s internal state as it runs via a printf-like interface

e loggingis a key technology for monitoring modern systems
o e.g.,viatools like Log4j, slf4j, etc.

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

e loggingis a key technology for monitoring modern systems
o e.g.,viatools like Log4j, slf4j, etc.

e logs also play a major role in debugging large-scale failures of
important distributed systems

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

e loggingis a key technology for monitoring modern systems
o e.g.,viatools like Log4j, slf4j, etc.
e logs also play a major role in debugging large-scale failures of
important distributed systems
o we'll discuss this more when we talk about in
our DevOps lectures, near the end of the semester

Logging: levels

Typical example of a (Java) logging statement:

log.debug ("myVariable=%s”, myVariable);

Logging: levels

Typical example of a (Java) logging statement:

log.debug ("myVariable=%s”, myVariable);

the log itself is usually a static
field; the logging framework
instantiates it, etc.

Logging: levels

Typical example of a (Java) logging statement:

log.debug ("myVariable=%s”, myVariable);

“debug” means if debug-level
logging isn't enabled in the
framework, this becomes a
no-op

Logging: levels

Typical example of a (Java) logging statement:

log.debug ("myVariable=%s”, myVariable);

levels:
error € warning € info € debug

“debug” means if debug-level
logging isn’t enabled in the developer chooses one level, all

framework, this becomes a lower level messages are also logged
no-op

Logging: levels

Typical example of a (Java) logging statement:

log.debug ("myVariable=%s”, myVariable);

printf-like syntax isn’t just for show: goal
here is lazy evaluation, so that if debug
logging isn’t enabled, this string is never
constructed

Logging: levels

Typical example of a (Java) logging statement:

log.debug ("myVariable=%s”, myVariable);

arguments to printf passed by reference, so
if debug-level logging is off, this argument’s
toString() method is never called

Logging: advice

Logging: advice

e Do loglots of information at debug or info level, so that if
something is wrong with your service you can quickly get lots of
information that you can use to debug it.

Logging: advice

e Do loglots of information at debug or info level, so that if
something is wrong with your service you can quickly get lots of
information that you can use to debug it.

° log sensitive data (e.g., credit card numbers in plaintext!)

o thisis asurprisingly common and important problem -
developers have a tendency to log anything that might be
useful when debugging a failure later!

Debugging (Part 2/2)

Today’s agenda:

e Debugging
o printf debugging and logging
o debuggers
o deltadebugging

Debuggers

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

e Canoperate on source code or assembly code

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

e Canoperate on source code or assembly code
e Inspect the values of registers, memory

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

e Canoperate on source code or assembly code

e Inspect the values of registers, memory

o Key Features (we'll explain all of them): attach to process,
single-stepping, breakpoints, conditional breakpoints,

watchpoints

Debuggers: how do they work

Debuggers: how do they work: signals

Debuggers: how do they work: signals

e Asignalis an asynchronous notification sent to a process about
an event:
o User pressed Ctrl-C (or did kill %pid)
m Or asked the Windows Task Manager to terminate it
o Exceptions (divide by zero, null pointer)
o From the OS (SIGPIPE)

Debuggers: how do they work: signals

e Asignalis an asynchronous notification sent to a process about
an event:
o User pressed Ctrl-C (or did kill %pid)
m Or asked the Windows Task Manager to terminate it
o Exceptions (divide by zero, null pointer)
o From the OS (SIGPIPE)
e You caninstall asignal handler - a procedure that will be
executed when the signal occurs.

Debuggers: how do they work: signals

e Asignalis an asynchronous notification sent to a process about
an event:
o User pressed Ctrl-C (or did kill %pid)
m Or asked the Windows Task Manager to terminate it
o Exceptions (divide by zero, null pointer)
o From the OS (SIGPIPE)
e You caninstall asignal handler - a procedure that will be
executed when the signal occurs.
o Signal handlers are vulnerable to race conditions. Why?

Debuggers: how do they work: attaching

e Attaching adebugger to a process requires operating system
support

Debuggers: how do they work: attaching

e Attaching adebugger to a process requires operating system
support

e Thereis aspecial system call that allows one process to act as a
debugger for a target

Debuggers: how do they work: attaching

e Attaching adebugger to a process requires operating system
support

e Thereis aspecial system call that allows one process to act as a
debugger for a target
o What are the concerns?

Debuggers: how do they work: attaching

e Attaching adebugger to a process requires operating system
support

e Thereis aspecial system call that allows one process to act as a
debugger for a target
o What are the concerns?

e Once thisis done, the debugger can basically “catch signals”
delivered to the target
o thisisn’'t exactly what happens, but it’s a good explanation ...

Debuggers: how do they work: breakpoints

e We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:

Debuggers: how do they work: breakpoints

e We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:

(A breakpoint is a user-speciﬁed\
program statement on which
the debugger should stop the
program and begin an
\Unteractive debugging session

Debuggers: how do they work: breakpoints

e We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
o Attachtotarget

Debuggers: how do they work: breakpoints

e We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
o Attachtotarget
o Setupsignal handler

Debuggers: how do they work: breakpoints

e We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
o Attachtotarget
o Setupsignal handler
o Addin exception causing instructions at desired breakpoints

Debuggers: how do they work: breakpoints

e We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:

Attach to target

Set up signal handler

Add in exception causing instructions at desired breakpoints

Inspect globals, do other debugger things, etc.

O
O
O
O

Debuggers: how do they work: breakpoints

##define BREAKPOINT * (0)=0 é)
. o All code added
int global = 11;
int debugger signal handler() ({ by the debugger
printf (“debugger prompt: \n”); in purple
g _

// debugger code goes here!
}

void main() {
signal (SIGSEGV, debugger signal handler) ;

global = 33;
BREAKPOINT;
global = 55;

printf ("Outside, global = %d\n", global);

Debuggers: how do they work: breakpoints

#define BREAKPOINT * (0)=0 (“BREAKPOINT”)
int global = 11; “k-§“‘-\\§§§§\ macro is
int debugger signal handler() ({ guaranteed to
printf (“debugger prompt: \n”);
\ cause SIGSEGV

// debugger code goes here!
}

void main() {
signal (SIGSEGV, debugger signal handler) ;

global = 33;
BREAKPOINT;
global = 55;

printf ("Outside, global = %d\n", global);

Debuggers: how do they work: breakpoints

##define BREAKPOINT * (0)=0

int global = 11;

int debugger signal handler() ({
printf (“debugger prompt: \n”);
// debugger code goes here!

}

-
debugger registers
a SIGSEGV handler

void main() {
signal (SIGSEGV, debugger signal handler)
global = 33;
BREAKPOINT;
global = 55;
printf ("Outside, global = %d\n", global);

.
4

\

\

J

Debuggers: how do they work: breakpoints

##define BREAKPOINT * (0)=0
int global = 11;
int debugger signal handler() ({

printf (“debugger prompt: \n”); s ~
// debugger code goes here! \@ugger registers

\}roid main () { a SIGSEGV handler
signal (SIGSEGV, debugger signal handler) ; - /
global = 33;

BREAKPOINT;
global = 55;

printf ("Outside, global = %d\n", global);

Debuggers: how do they work: breakpoints

#define BREAKPOINT * (0)=0

int global = 11;

int debugger signal handler() ({
printf (“debugger prompt: \n”);
// debugger code goes here!

}

void main () {
signal (SIGSEGV, debugger signal handler) ; [at the user-speciﬁed \
global = 33/ breakpoint, the
BREAKPOINT, -—
global = 55; debugger forc.esg
printf ("Outside, global = %d\n", global); SIGSEGV (Wh|Ch Its

} \[handler will intercept)J

Debuggers: advanced breakpoints

Debuggers: advanced breakpoints

e Optimization:

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal
o Faster than software, works on ROMs, only limited number
of breakpoints, etc.

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal
o Faster than software, works on ROMs, only limited number
of breakpoints, etc.
e Feature: conditional breakpoint: “break at instruction X if
some_var = some_value”

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal
o Faster than software, works on ROMSs, only limited number
of breakpoints, etc.
e Feature: conditional breakpoint: “break at instruction X if
some_var = some_value”
e As before, but signal handler checks if some_var = some_value

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal
o Faster than software, works on ROMSs, only limited number

of breakpoints, etc.

e Feature: conditional breakpoint: “break at instruction X if
some_var = some_value”

e As before, but signal handler checks if some_var = some_value
o |fso, presentinteractive debugging prompt

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal
o Faster than software, works on ROMSs, only limited number

of breakpoints, etc.

e Feature: conditional breakpoint: “break at instruction X if
some_var = some_value”

e As before, but signal handler checks if some_var = some_value
o |fso, presentinteractive debugging prompt
o If not, return to program immediately

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal
o Faster than software, works on ROMSs, only limited number

of breakpoints, etc.

e Feature: conditional breakpoint: “break at instruction X if
some_var = some_value”

e As before, but signal handler checks if some_var = some_value
o |fso, presentinteractive debugging prompt
o If not, return to program immediately
o |s thisfast or slow?

Debuggers: advanced breakpoints

e Optimization:
o Special register: if PC value = HBP register value, signal
o Faster than software, works on ROMSs, only limited number

of breakpoints, etc.

e Feature: conditional breakpoint: “break at instruction X if
some_var = some_value”

e As before, but signal handler checks if some_var = some_value
o |fso, presentinteractive debugging prompt
o If not, return to program immediately
o Isthis fast or slow?

Debuggers: single-stepping

Debuggers: single-stepping

e Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

Debuggers: single-stepping

e Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

e Toimplement this, put a breakpoint at the first instruction (= at
program start)

Debuggers: single-stepping

e Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)
e Toimplement this, put a breakpoint at the first instruction (= at

program start)
e The* "or” ” interactive command is equal to:

Debuggers: single-stepping

e Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)
e Toimplement this, put a breakpoint at the first instruction (= at

program start)
e The* "or” ” interactive command is equal to:

o Put abreakpoint at the next instruction
o Resume execution
o (No, really.)

Debuggers: watchpoints

e You want to know when a variable changes

Debuggers: watchpoints

e You want to know when a variable changes
e A watchpointis like a breakpoint, but it stops execution after any
instruction changes the value at location L

Debuggers: watchpoints

e You want to know when a variable changes

e A watchpointis like a breakpoint, but it stops execution after any
instruction changes the value at location L

e How could we implement this?

(A watchpoint is like a)

. . breakpoint, but it stops
Debugger5° watch POI nts execution after any instruction

changes the value at location L

- J

(A watchpoint is like a)

. . breakpoint, but it stops
Debugger5° watch POI nts execution after any instruction

changes the value at location L
Software Watchpoints: _ J

(A watchpoint is like a)

. . breakpoint, but it stops
Debugger5° watch POI nts execution after any instruction

changes the value at location L
Software Watchpoints: _ J

e Put abreakpoint at (ouch!)

(A watchpoint is like a
. . breakpoint, but it stops
Debugger5° watch POI nts execution after any instruction

changes the value at location L
Software Watchpoints: g

™\

J

e Put abreakpoint at (ouch!)
e Check the current value of L against a stored value

(A watchpoint is like a)

. . breakpoint, but it stops
Debuggers- watch POI nts execution after any instruction

changes the value at location L
Software Watchpoints: g J

e Put abreakpoint at (ouch!)
e Check the current value of L against a stored value
e |[fdifferent, give interactive debugging prompt

(A watchpoint is like a)

. . breakpoint, but it stops
Debuggers- watch POI nts execution after any instruction

changes the value at location L
Software Watchpoints: g J

Put a breakpoint at (ouch!)

Check the current value of L against a stored value
If different, give interactive debugging prompt

If not, set next breakpoint and continue (single-step)

(A watchpoint is like a)

. . breakpoint, but it stops
Debugger5° watch POI nts execution after any instruction

changes the value at location L
Software Watchpoints: _ J

Put a breakpoint at (ouch!)

Check the current value of L against a stored value
If different, give interactive debugging prompt

If not, set next breakpoint and continue (single-step)

Hardware Watchpoints:

(A watchpoint is like a)

. . breakpoint, but it stops
Debugger5° watch POI nts execution after any instruction

changes the value at location L
Software Watchpoints: g J

Put a breakpoint at (ouch!)

Check the current value of L against a stored value
If different, give interactive debugging prompt

If not, set next breakpoint and continue (single-step)

Hardware Watchpoints:
e Special register holds L: if the value at address L ever changes,
the CPU raises an exception

Related tool: profilers

Related tool: profilers

Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.

Related tool: profilers

Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
e Interpreted languages provide special hooks for profiling

Related tool: profilers

Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
e Interpreted languages provide special hooks for profiling
o You that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

Related tool: profilers

Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
e Interpreted languages provide special hooks for profiling
o You that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)
e Alternative: use signals directly (called sampling)

Related tool: profilers

Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
e Interpreted languages provide special hooks for profiling
o You that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)
e Alternative: use signals directly (called sampling)
o Askthe OSto every X seconds (see alarm(2))

Related tool: profilers

Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
e Interpreted languages provide special hooks for profiling
o You that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)
e Alternative: use signals directly (called sampling)
o Askthe OSto every X seconds (see alarm(2))
o Inthe signal handler you determine the value of the target
program counter and append it to a growing list file

Related tool: profilers

Definition: A profiler is a performs leaves out some things:

frequency and duration of functio] ¢ needto map PC values back
e Interpreted languages provid to procedure names
o You thy e needtosum up map results
program calls amethod, lo] ® samplingischeap butcan
(cf. signal handlers) K miss periodic behavior /
e Alternative: use signals directly (called sampling)
o Askthe OSto every X seconds (see alarm(2))
o Inthe signal handler you determine the value of the target
program counter and append it to a growing list file

ﬁhis explanation of sampling \

Debugging (Part 2/2)

Today’s agenda:

e Debugging
o printf debugging and logging
o debuggers
o deltadebugging

Delta debugging: summary

Delta debugging: summary

e Deltadebugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

Delta debugging: summary

e Deltadebugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

e Deltadebuggingis based on divide-and-conquer and relies heavily
on critical assumptions (monotonicity, unambiguity, and
consistency).

Delta debugging: summary

e Deltadebugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

e Deltadebuggingis based on divide-and-conquer and relies heavily
on critical assumptions (monotonicity, unambiguity, and
consistency).

e It can be used to find which code changes cause a bug, to minimize
failure-inducing inputs, and even to find harmful thread schedules.

Delta debugging: motivation

e Three Problems: One Common Approach
o Simplifying Failure-Inducing Input
o Isolating Failure-Inducing Thread Schedules
o ldentifying Failure-Inducing Code Changes

Delta debugging: motivation: inputs

e Having a test input may not be enough

Delta debugging: motivation: inputs

e Having a test input may not be enough
o Even if you know the suspicious code, the input may be too
large to step through

Delta debugging: motivation: inputs

e Having a test input may not be enough
o Even if you know the suspicious code, the input may be too
large to step through
e This HTML input makes a version of Mozilla crash. Which portion is
relevant? e o

<OPTION VALUE="All">A11<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
TION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
\LUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="0S/2">0S/2<OPTION
VALUE="Solaris">S0laris<OPTION VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT>

("’

Implication: delta debugging
will be useful for test input
minimization e

JN VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>

TIPLE SIZE=7>
J¥ VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION

Delta debugging: motivation: thread schedules

Schedule Thread A Thread B Schedule Thread A Thread B

open(".htpasswd")

open(".htpasswd")
open(" .htpasswd")

read(...)
modify(...) read(...)
write(...) read(...)
close(...) modify(...)
open(".htpasswd") write(...)
Emgﬁ read(...) close(...)
modify(...) modify(...)
write(...)

write(...)

close(...) close(...)

v X

Delta debugging: motivation: thread schedules

e Multithreaded programs can be nondeterministic

Schedule Thread A Thread B Schedule Thread A Thread B
open(".htpasswd") open(".htpasswd")
read(...) open(" .htpasswd")
modify(...) read(...)
write(...) read(...)
close(...) modify(...)

open(".htpasswd") write(...)

},",,,,“g,‘,’ read(...) close(...)
modify(...) modify(...)
write(...) write(...)
close(...) close(...)

v X

Delta debugging: motivation: thread schedules

e Multithreaded programs can be nondeterministic
o Canwe find simple, bug-inducing thread schedules?

Schedule Thread A Thread B Schedule Thread A Thread B
open(" .htpasswd") open(".htpasswd")
read(...) open(" .htpasswd")
modify(...) read(...)
write(...) read(...)
close(...) modify(...)

open(".htpasswd") write(...)

;’,,‘3:,‘,’ read(...) close(...)
modify(...) modify(...)
write(...) write(...)
close(...) close(...)

v X

Delta debugging: motivation: code changes

Delta debugging: motivation: code changes

e Anew version of GDB has a Ul bug

Delta debugging: motivation: code changes

e Anew version of GDB has a Ul bug
o The old version does not have that bug (it is a regression)

Delta debugging: motivation: code changes

e Anew version of GDB has a Ul bug
o The old version does not have that bug (it is a regression)
e 178,000 lines of code have been modified between the two
versions

Delta debugging: motivation: code changes

e Anew version of GDB has a Ul bug
o The old version does not have that bug (it is a regression)
e 178,000 lines of code have been modified between the two
versions
o Where is the bug?
m ...and which commit is responsible for introducing it?

Delta debugging: motivation: code changes

e Anew version of GDB has a Ul bug
o The old version does not have that bug (it is a regression)
e 178,000 lines of code have been modified between the two
versions
o Where is the bug?
m ...and which commit is responsible for introducing it?
o These days: continuous integration testing helps
m ...but does not totally solve this. Why?

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

e Difference in the input: different character or bit in the input
stream

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

e Difference in the input: different character or bit in the input

stream
e Differencein - difference in the time before a

given thread preemption is performed

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

e Difference in the input: different character or bit in the input

stream
e Differencein - difference in the time before a

given thread preemption is performed
e Differencein code: different statements or expressions in two

versions of a program

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

e Difference in the input: different character or bit in the input

stream
e Differencein - difference in the time before a

given thread preemption is performed
e Differencein code: different statements or expressions in two

versions of a program
e Differencein - different values of internal variables

Delta debugging: unified solution

e Define the Abstract Debugging Problem as:

Delta debugging: unified solution

e Define the Abstract Debugging Problem as:
o Find which part of something (= which difference, which input,
which change) determines the failure

Delta debugging: unified solution

e Define the Abstract Debugging Problem as:
o Find which part of something (= which difference, which input,
which change) determines the failure
o “Find the smallest subset of a given set that is still interesting”

Delta debugging: unified solution

e Define the Abstract Debugging Problem as:
o Find which part of something (= which difference, which input,
which change) determines the failure
o “Find the smallest subset of a given set that is still interesting”
e Abstract solution: divide-and-conquer

Delta debugging: unified solution

e Define the Abstract Debugging Problem as:
o Find which part of something (= which difference, which input,
which change) determines the failure
o “Find the smallest subset of a given set that is still interesting”
e Abstract solution: divide-and-conquer
o key idea: split up the set into two subsets, check which of the
two is still “interesting”

Delta debugging: unified solution

e Define the Abstract Debugging Problem as:
o Find which part of something (= which difference, which input,

which change) determines the failure
o “Find the of a given set that is still interesting”

e Abstract solution: divide-and-conquer
o key idea: split up the set into two subsets, check which of the

two is still “interesting”
o can be applied to working and failing inputs, code versions,

thread schedules, program states, etc.

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

v = = e = - X

N ——— i —

Yesterday n changes Today

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

v = = = X
“'
Yesterday n changes Today

o We will iteratively:

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

v = = = X
“'
Yesterday n changes Today

o We will iteratively:
o hypothesize that a small subset is interesting

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

v = = = X
“'
Yesterday n changes Today

o We will iteratively:
o hypothesize that a small subset is interesting
m e.g., the subset of changes {1, 3, 8} causes the bug

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

v = = = X
“'
Yesterday n changes Today

o We will iteratively:
o hypothesize that a small subset is interesting
m e.g., the subset of changes {1, 3, 8} causes the bug
o run tests to falsify our hypothesis

Delta debugging: algorithm

Delta debugging: algorithm

o Given:

Delta debugging: algorithm

e Given:
o asetC={cl,...,cn}(ofchanges)

Delta debugging: algorithm

e Given:
o asetC={c1,...,cn}(of changes)
o afunction : C — {True, False}

Delta debugging: algorithm

e Given:
o asetC={c1,...,cn}(of changes)
o afunction : C — {True, False}

o Interesting(C) = Yes, Interesting({}) = No

Delta debugging: algorithm

o Given:
o asetC={c1,...,cn}(of changes)
o afunction : C — {True, False}
o Interesting(C) = Yes, Interesting({}) = No
o Interesting is monotonic, unambiguous and consistent (more
on these later)

Delta debugging: algorithm

o Given:
o asetC={c1,...,cn}(of changes)
o afunction : C — {True, False}
o Interesting(C) = Yes, Interesting({}) = No
o Interesting is monotonic, unambiguous and consistent (more
on these later)

e Thedeltadebugging algorithm returns a minimal Interesting
subset M of C:

Delta debugging: algorithm

o Given:
o asetC={c1,...,cn}(of changes)
o afunction : C — {True, False}
o Interesting(C) = Yes, Interesting({}) = No
o Interesting is monotonic, unambiguous and consistent (more
on these later)

e Thedeltadebugging algorithm returns a minimal Interesting
subset M of C:
o Interesting(M) = Yes

Delta debugging: algorithm

o Given:
o asetC={c1,...,cn}(of changes)
o afunction : C — {True, False}
o Interesting(C) = Yes, Interesting({}) = No
o Interesting is monotonic, unambiguous and consistent (more
on these later)
e Thedeltadebugging algorithm returns a minimal Interesting
subset M of C:
o Interesting(M) = Yes
o Forallm C M, Interesting(M - m) = No

Delta debugging: example

v

=

= we b

Yesterday
o C=

‘—_

n changes

Interesting(X) =

Today

Delta debugging: example

v

=

= we b

Yesterday

‘—_

n changes

e (C =setofnchanges
Interesting(X) =

Today

Delta debugging: example

v —> — L E— = X
‘——
Yesterday n changes Today

e (C =setofnchanges
e Interesting(X) = apply the changes in in X to Yesterday’s version
and compile. Run the tests on the result.

Delta debugging: example

v —> — L E— = X
‘——
Yesterday n changes Today

e (C =setofnchanges

e Interesting(X) = apply the changes in in X to Yesterday’s version
and compile. Run the tests on the result.
o If the tests fail, Interesting(X) = True.

Delta debugging: example

v —> — L E— = X
'—_
Yesterday n changes Today

e (C =setofnchanges

e Interesting(X) = apply the changes in in X to Yesterday’s version
and compile. Run the tests on the result.
o If the tests fail, Interesting(X) = True.
o If the tests pass, Interesting(X) = False.

Delta debugging: algorithm: naive

e Wecouldjust of C to find the smallest one that is
Interesting

Delta debugging: algorithm: naive

e Wecouldjust of C to find the smallest one that is
Interesting
o -if |C| = N, this takes 2N time

Delta debugging: algorithm: naive

e Wecouldjust of C to find the smallest one that is
Interesting
o -if |C| = N, this takes 2N time

o Recall: real-world software is unimaginably huge

Delta debugging: algorithm: naive

e Wecouldjust of C to find the smallest one that is
Interesting
o -if |C| = N, this takes 2N time

o Recall: real-world software is unimaginably huge
e \We want a polynomial-time solution

o lIdeally one that is more like log(N)

o Or we'll loop for what feels like forever

Delta debugging: algorithm candidate

Precondition: Interesting({c1 . C 1) = True
DD({c,, ..., C. D=

if n =1 then return {C1}

letP, = {c1 e Cn/2}

letP, = {cn/2+1, cn}

if (P1) is True:

then return DD(P,)

else return DD(P,)

Delta debugging: algorithm candidate

Precondition: Interesting({c1 . C 1) = True

DD({c,, ..., C. D=
if n =1 then return {C1}
letP, = {c1 e Cn/2}
letP, = {cn/2+1, cn}
if (P1) is True:
then return DD(P,)
else return DD(P,)

4)
This is just Pt
won’t work if you need a big
subset to be Interesting

\ J

Delta debugging: algorithm: assumptions

Delta debugging: algorithm: assumptions

e Any subset of changes may be Interesting
o Not just singleton subsets of size 1 (cf. binary search)

Delta debugging: algorithm: assumptions

e Any subset of changes may be Interesting

o Not just singleton subsets of size 1 (cf. binary search)
e Interestingis Monotonic

o Interesting(X)— Interesting(X U {c})

Delta debugging: algorithm: assumptions

e Any subset of changes may be Interesting

o Not just singleton subsets of size 1 (cf. binary search)
e Interestingis Monotonic

o Interesting(X)— Interesting(X U {c})
e Interestingis Unambiguous

o Interesting(X) & Interesting(Y) — Interesting(X NY)

Delta debugging: algorithm: assumptions

e Any subset of changes may be Interesting
o Not just singleton subsets of size 1 (cf. binary search)
e Interestingis Monotonic
o Interesting(X)— Interesting(X U {c})
e Interestingis Unambiguous
o Interesting(X) & Interesting(Y) — Interesting(X NY)
e |[nterestingis
o Interesting(X) = True xor Interesting(X) = False
o (Some formulations also allow: Interesting(X) = Unknown)

Delta debugging: algorithm: insights

e Basic Binary Search:
o Divide CintoP, andP,
o |If Interesting(Pl) = True then recurse on P,
o |If Interesting(Pz) = True then recurse on P,

Delta debugging: algorithm: insights

e Basic Binary Search:
o Divide CintoP, andP,
o |If Interesting(Pl) = True then recurse on P,
o |If Interesting(Pz) = True then recurse on P,
e At most one case can apply (by Unambiguous)

Delta debugging: algorithm: insights

e Basic Binary Search:
o Divide CintoP, andP,
o |If Interesting(Pl) = True then recurse on P,
o |If Interesting(Pz) = True then recurse on P,
e At most one case can apply (by Unambiguous)

(Unambiguous = A

Interesting(X) & Interesting(Y) —
dnteresting(x nyY)

J

Delta debugging: algorithm: insights

e Basic Binary Search:

o Divide CintoP, andP,

o |If Interesting(Pl) = True then recurse on P,

o |If Interesting(Pz) = True then recurse on P,
e At most one case can apply (by Unambiguous)
e By , the only other possibility is:

Delta debugging: algorithm: insights

e Basic Binary Search: g _
o Divide C iromto P,and P, Interesting(X) = True xor
o If Interesting(P,) = True the Interesting(X) = False

o |If Interesting(Pz) = True thel

e At most one case can apply (by Unambiguous)
e By , the only other possibility is:

Delta debugging: algorithm: insights

e Basic Binary Search:
o Divide CintoP, andP,
o |If Interesting(Pl) = True then recurse on P,
o |If Interesting(Pz) = True then recurse on P,
e At most one case can apply (by Unambiguous)
e By , the only other possibility is:
o (Interesting(P1) = False) and (Interesting(P2) = False)

Delta debugging: algorithm: insights

e Basic Binary Search:
o Divide CintoP, andP,
o |If Interesting(Pl) = True then recurse on P,
o |If Interesting(Pz) = True then recurse on P,
e At most one case can apply (by Unambiguous)
e By , the only other possibility is:
o (Interesting(P1) = False) and (Interesting(P2) = False)
o What happens in such a case?

Delta debugging: algorithm: interference

e By Monotonicity
o |If Interesting(Pl) = False and Interesting(Pz) = False

Delta debugging: algorithm: interference

e By Monotonicity
o |If Interesting(Pl) = False and Interesting(Pz) = False

(Monotonicity =
Interesting(X)—

_

~

Interesting(X U {c})

J

Delta debugging: algorithm: interference

e By Monotonicity
o |If Interesting(Pl) = False and Interesting(Pz) = False
o Thennosubset of P, alone or subset of P, alone is Interesting

Delta debugging: algorithm: interference

e By Monotonicity
o |If Interesting(Pl) = False and Interesting(Pz) = False
o Thennosubset of P, alone or subset of P, alone is Interesting

e Sothe Interesting subset must use a of elements from
P,and P,

Delta debugging: algorithm: interference

e By Monotonicity
o |If Interesting(Pl) = False and Interesting(Pz) = False
o Thennosubset of P, alone or subset of P, alone is Interesting

e Sothe Interesting subset must use a of elements from
P,and P,

e InDelta Debugging, this is called interference

Delta debugging: algorithm: interference

e Why s this true?

Delta debugging: algorithm: interference

e Why s this true?
o Consider P,
m Find aminimal subset D, of P,
m Suchthat Interesting(P1 U D2) = True

Delta debugging: algorithm: interference

e Why s this true?
o Consider P,
m Find aminimal subset D, of P,
m Suchthat Interesting(P1 U D2) = True
o Consider P,
m Find aminimal subset D, of P,
m Suchthat Interesting(P2 U D1) = True

Delta debugging: algorithm: interference

e Why s this true?

o Consider P,
m Find aminimal subset D, of P,
m Suchthat Interesting(P1 U D2) = True

o Consider P,
m Find aminimal subset D, of P,
m Suchthat Interesting(P2 U D1) = True

o Then by Unambiguous
= Interesting((P1 U D2) N (P2 U D1)) = Interesting(D1 U D2) is

also minimal

Delta debugging: algorithm: interference

e Why s this true?

o Consider P,

m Find aminimal subset D, of P,

m Suchthat Interesting(P1 U D2) = True
o Consider P,

m Find aminimal subset D, of P,

m Suchthat Interesting(P2 U D1) = True
o Then by Unambiguous

= Interesting((P1 U D2) N (P2 U D1)) = Interesﬂ:ing(D1 U]Dz) is

also minimal

Key point:
combination of
elements from both

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting
1234
5678

‘\\ First step: partition C ={1, ..., 8}

into P, ={1,..,4}and P, ={5, ..., 8}

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting
1234 =777
5678 =77

Next step: test P, and P,

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678

1234

5678

= Interesting
= False
= False

Interference! Sub-step: find
minimal subset D, of P, such that
Interesting(D, +P,)

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

1234
1234

12

5678

5678
5678

= Interesting
= False

= False

=777

Interference! Sub-step: find
minimal subset D, of P, such that
Interesting(D, +P,)

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

1234
1234

12

5678

5678
5678

= Interesting
= False
= False
= False

Interference! Sub-step: find
minimal subset D, of P, such that
Interesting(D, +P,)

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting
1234 = False
5678 =False
12 5678 =False
345678 =777 Interference! Sub-step: find
minimal subset D, of P, such that

Interesting(D, +P,)

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting D,={3]}
1234 = False
5678 =False Now we need to find D,
12 5678 =False
345678 =True
3 5678 =True

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting D,={3]}
1234 = False
5678 =False Now we need to find D,
12 5678 =False
345678 =True
3 5678 =True
1234|56 = True

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting D,={3]}
1234 = False
5678 =False Now we need to find D,
12 5678 =False
345678 =True
3 5678 =True
12345 = False

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting D,={3]}
1234 = False
5678 =False D,=16}
12 5678 =False
345678 =True
3 5678 =True
1234| 6 = True

Delta debugging: algorithm: example

e Suppose {3,6}Is Smallest Interesting Subset of {1, ..., 8}
o let'suseDDtofindit

12345678 =Interesting D,={3]}
1234 = False
5678 =False D,=16}
12 5678 =False So, final answer =
345678 =True D1UD2={3,6}
3 5678 =True
1234| 6 = True

Delta debugging: final algorithm

Precondition: Interesting({c, ...c_}) = True
DD(P{c,,...c_}) =

if n =1 then return {C1}

letP, = {c1 e Cn/2}

letP, = {cn/2+1, . C_}
if (P, U P)is True then return DD(P,P.)
else if (P, U P)is True then return DD(P, P,)

else returnDD(P U P,,P,) U DD(P U P, P,)

Delta debugging: algorithmic complexity

Delta debugging: algorithmic complexity

e If asingle change induces the failure:
o DDislogarithmic: 2 * log |C]
o Why?

Delta debugging: algorithmic complexity

e If asingle change induces the failure:
o DDislogarithmic: 2 * log |C]
o Why?
e Otherwise, DD is linear
o Assuming constant time per Interesting() check
o Isthis realistic?

Delta debugging: algorithmic complexity

e If asingle change induces the failure:
o DDislogarithmic: 2 * log |C]
o Why?
e Otherwise, DD s linear
o Assuming constant time per Interesting() check
o Isthisrealistic?
e If Interesting can return “Unknown”
o DDis quadratic: |C|? + 3|C]|
o If all tests are Unknown except last one (unlikely)

Assumptions restated on this slide for convenience

Delta debugging: questioning assumptions

e All three assumptions are
e Interestingis Monotonic
o Interesting(X)— Interesting(X U {c})
e Interestingis Unambiguous
o Interesting(X) & Interesting(Y) — Interesting(X NY)
e |[nterestingis
o Interesting(X) = True xor Interesting(X) = False
o (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Delta debugging: questioning assumptions

e All three assumptions are

Lo g ic M oni
o Interesting(X)— Interesting(X U {c})
e Interestingis Unambiguous

Interesting(X) & Interes C :
i . .I glX) C/,I\/Ionotonlutyls rare in the real A
e Interestingis

. world. But DD still finds an
o Interesting(X) = True xq interesting subset if Interesting is
o (Some formulations als{ not monotonic (might not be

\minimal) Y

Assumptions restated on this slide for convenience
Delta debugging: questioning assumptions

e All three assumptions are
e Interestingis Monotonic
o Interesting(X)— Interesting(X U {c})

Lo e U |
o Interesting(X) & Interey” I
e Interestingis Ambiguity will cause DD to fail. Hint:

o Interesting(X) = True xd try tracing DD on Interesting ({2, 8})
= True, but Interesting({2, 8}

intersect {3, 6}) = False

_ J

o (Some formulations als

Assumptions restated on this slide for convenience
Delta debugging: questioning assumptions

e All three assumptions are Ghe world is often inconsistent. A

e |nterestingis Monotonic | Example: we are minimizing changes
o Interesting(X)— Interg toaprogram to find patches that

e Interesting is Unambiguoy Makes it crash. Some subsets may
o Interesting(X) & InterethOt build or run’)
Lo e
o Interesting(X) = True xor Interesting(X) = False
o (Some formulations also allow: Interesting(X) = Unknown)

Delta debugging: in the real world

git bisect implements a DD-like algorithm (look it up!)

for thread schedules: DejaVu tool by IBM, CHESS by Microsoft, etc.
Eclipse plugins for code changes (“DDinput”, “DDchange”)

you can also do delta debugging by hand (I do this often for
programs that cause compiler bugs!)

Debugging: takeaways

Debugging is a lot easier when you treat it as a science, rather than

anart

printf debugging and logging are good for determining what causes
failures after the fact

debuggers are fantastic when you want to understand a program’s

internal state
delta debugging is a semi-automated approach to formalizing the

abstract debugging problem
o useful way of thinking about how to debug anything
o trygit bisect

Reading Quiz: Debugging (part 1)

Reading Quiz: Debugging (part 1)

Q1: Today’s reading opened with an anecdote about a student’s email.
What was the author’s primary complaint about the email?
A. Poor grammar

B. Unprofessional tone
C. Repeatedly guessing without checking

D. Student was obviously wrong

Q2: TRUE or FALSE: the author claims that if an error goes away, and
you don't understand why, you shouldn’t trust that it is really gone

Reading Quiz: Debugging (part 1)

Q1: Today’s reading opened with an anecdote about a student’s email.
What was the author’s primary complaint about the email?
A. Poor grammar
B. Unprofessional tone
Repeatedly guessing without checking
D. Student was obviously wrong

Q2: TRUE or FALSE: the author claims that if an error goes away, and
you don't understand why, you shouldn’t trust that it is really gone

Reading Quiz: Debugging (part 1)

Q1: Today’s reading opened with an anecdote about a student’s email.
What was the author’s primary complaint about the email?
A. Poor grammar
B. Unprofessional tone
Repeatedly guessing without checking
D. Student was obviously wrong

Q2: TRUE or FALSE: the author claims that if an error goes away, and
you don't understand why, you shouldn’t trust that it is really gone

Reading Quiz: Debugging (part 2)

Q1: Which of the following did the author use as an example of a
situation where Delta Debugging can be applied?

A. finding the part of an HTML page that causes a browser to crash
B. usinggit bisect tofind afailure-inducing commit

C. finding the part of a program that causes a compiler to crash

Q2: The article was written in approximately what year?

A. 2001
B. 2011
C. 2021

Reading Quiz: Debugging (part 2)

Q1: Which of the following did the author use as an example of a

situation where Delta Debugging can be applied?

finding the part of an HTML page that causes a browser to crash
B. usinggit bisect tofind afailure-inducing commit
C. finding the part of a program that causes a compiler to crash

Q2: The article was written in approximately what year?

A. 2001
B. 2011
C. 2021

Reading Quiz: Debugging (part 2)

Q1: Which of the following did the author use as an example of a

situation where Delta Debugging can be applied?

finding the part of an HTML page that causes a browser to crash
B. usinggit bisect tofind afailure-inducing commit
C. finding the part of a program that causes a compiler to crash

Q2: The article was written in approximately what year?

2001
B. 2011
C. 2021

