
Variability and Reproducibility in Software
Engineering: A Study of Four Companies

that Developed the Same System
Bente C.D. Anda, Dag I.K. Sjøberg, Member, IEEE, and Audris Mockus, Member, IEEE

Abstract—The scientific study of a phenomenon requires it to be reproducible. Mature engineering industries are recognized by

projects and products that are, to some extent, reproducible. Yet, reproducibility in software engineering (SE) has not been

investigated thoroughly, despite the fact that lack of reproducibility has both practical and scientific consequences. We report a

longitudinal multiple-case study of variations and reproducibility in software development, from bidding to deployment, on the basis of

the same requirement specification. In a call for tender to 81 companies, 35 responded. Four of them developed the system

independently. The firm price, planned schedule, and planned development process, had, respectively, “low,” “low,” and “medium”

reproducibilities. The contractor’s costs, actual lead time, and schedule overrun of the projects had, respectively, “medium,” “high,” and

“low” reproducibilities. The quality dimensions of the delivered products, reliability, usability, and maintainability had, respectively,

“low,” “high,” and “low” reproducibilities. Moreover, variability for predictable reasons is also included in the notion of reproducibility. We

found that the observed outcome of the four development projects matched our expectations, which were formulated partially on the

basis of SE folklore. Nevertheless, achieving more reproducibility in SE remains a great challenge for SE research, education, and

industry.

Index Terms—Software engineering life cycle, software quality, software project success, software process, multiple-case study.

Ç

1 INTRODUCTION

SUPPOSE that you have developed a well-defined require-
ment specification for a new software system and that

you would like to contract a software development
company to build it. An important issue is how much
variability there might be regarding the firm price (as
opposed to a price based on the number of hours actually
spent), planned time schedule, and development process in
the bids from different contractors in the current software
industry. Ideally, we would like to know to what extent we
can expect similar (or better) outcomes if we were to choose
software developers with similar (or better) practices and
(more) resources. It is a practical problem for the software
industry if it is not clear what can be gained by hiring more
expensive software contractors. In this paper, this practical
problem is restated more formally as a problem of
variability and reproducibility.

From a scientific point of view, an understanding of what it
means for a phenomenon to be reproducible is important if
software engineering (SE) phenomena are to be investigated
using scientific method and, hence, if SE is to become a mature
industry. The properties of nonreproducible phenomena

cannot provide a basis for theories in SE [33]. For example,
to assess whether a specific software technology yields
desired benefits, for example reducing defects, we need to
compare the measured reduction (or increase) in defects
from using the technology with the natural variability in
defects among similar projects. If the observed impact is not
larger than the underlying variability, the technology is not
likely to be beneficial.

Moreover, many software development methods assume
that certain relationships hold and, hence, that some
reproducibility is present, among project dimensions in
their de facto use of some variables to predict others.
Examples are the use of size to predict costs [12], the use of
coupling and cohesion measures to predict maintainability
[15], and the generally assumed relationship between
development process and outcome in software develop-
ment projects [40].

The issue of reproducibility has, to our knowledge, not
previously been studied in the SE community. To investi-
gate variability in, and reproducibility of, factors that are
present in software production, we designed a longitudinal
study of software development. The study started with a
call for tender for a new Web-based information system to
track all the empirical studies conducted by the SE
Department, Simula Research Laboratory. The tender was
sent to 81 software consultancy companies in Norway,
including all large companies. Thirty-five of the companies
provided bids. Then, four of the companies were selected to
develop the system and to be subject to an in-depth study.
We observed large variations in the firm price, planned time
schedule, and proposed development processes of the
35 bids. This led us to select four companies that were
different with respect to these factors. At the time of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009 407

. B.C.D. Anda is with the Department of Informatics, University of Oslo,
PO Box 1080 Blindern, N0-316, Oslo, Norway. E-mail: bentea@ifi.uio.no.

. D.I.K. Sjøberg is with the Simula Research Laboratory, PO Box. 134, N0-
1325, Lysaker, Norway. E-mail: dagsj@simula.no.

. A. Mockus is with Avaya Labs Research, Department of Software
Technology Research, 233 Mt. Airy Rd., Basking Ridge, NJ 07920.
E-mail: audris@avaya.com.

Manuscript received 15 Feb. 2008; revised 16 Oct. 2008; accepted 7 Nov.
2008; published online 24 Nov. 2008.
Recommended for acceptance by K. Inoue.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-02-0071.
Digital Object Identifier no. 10.1109/TSE.2008.89.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

writing, the four systems had been in use by internal and
external users for two years.

Because the reproducibility of software production had
not been explored previously, we did not have the
necessary basis to formulate elaborate hypotheses and
predictions and, consequently, the study is exploratory in
nature. Nevertheless, if software production is reproduci-
ble, it should be possible to observe systematic effects of
variations in the inputs to software production. Conse-
quently, we studied how required resources and planned
development processes differ given the same requirement
specification and how these differences may, in turn, affect
how software projects are carried out and the products that
are developed.

The study involved four companies with independent
professional teams who develop software. We controlled
the requirements, team size, developer skill, and the
technology environment to ensure that they were as similar
as possible across the four projects. We also controlled the
interaction between the contractor and developers to ensure
that it was as similar as possible for all of the projects.

The four development projects were assessed according
to costs, lead time, and schedule overrun. The quality of the
resulting systems was assessed according to reliability,
usability, and maintainability. The usability assessment was
outsourced to a research institute that specializes in human-
computer interaction. The maintainability assessment in-
volved hired experts on commercial software development.
These dimensions of the projects and products were
considered to be the most important from the point of
view of a software contractor. We studied the variations in
bids and in these project and product dimensions to obtain
a measure of reproducibility.

Previous SE case studies have tended not to have either
the degree of control over the project and product
requirements that we imposed or the ability to follow
projects through their entire life cycle that we had in our
study. Even though the case study reported in this paper is
exploratory and it is not possible to identify causal
inferences, it is possible to make a number of observations
of scientific and practical importance.

The methodological contributions include the measure-
ment framework of the entire life cycle of a project and
multifaceted observations that were drawn and triangu-
lated from numerous data sources. The scientific contribu-
tions involve a better understanding of reproducibility in
software production that should provide the basis for SE
methods, tools, and studies. The practical contributions
involve descriptions of detailed scenarios of what can be
expected in a software-contracting context and how to use
software bids to anticipate project outcomes.

The remainder of this paper is organized as follows: We
start from related work in Section 2. The concept of
reproducibility is explicated in Section 3. Section 4 intro-
duces the terminology and concepts that were used in this
study. Section 5 describes the research methods that were
used to design and organize the study, including how the
collection of data was validated. Section 6 reports the results
of the investigation of the reproducibility of the bids,
projects, and products. Section 7 discusses the results for
each of the four companies in light of what could be
expected on the basis of the information given at the time of
bidding. Section 8 discusses the validity of the results of this

study. Section 9 discusses the results and identifies
methodological, scientific, and practical contributions. Sec-
tion 10 concludes and outlines directions for further work.

2 RELATED WORK

We have been unable to find other studies that focus on the
variability and reproducibility of the outcome of complete
software development projects that were carried out by
professional developers. The most closely related study
examined nine companies who developed the same system,
in order to investigate the effect of three development
platforms (Java EE, PHP, and Perl) [74]. The systems were
evaluated with respect to usability, correctness, robustness,
performance, maintainability, and size and structure of the
code. The informal way in which these attributes were
measured, the different purpose of the study, and a much
smaller scale (a maximum of 30 hours in the atmosphere of
a noncommercial competition) make it difficult to make any
direct comparisons with our study.

In N-version programming (NVP), several individuals or
teams develop independently multiple functionally equiva-
lent versions of the same system in order to build fault-
tolerant software: “the independence of programming
efforts will greatly reduce the probability of identical
software faults occurring in two or more versions of the
program” [6], [7]. The various versions are executed in
parallel and the output given by the majority of the versions
is used. In an NVP experiment on the independence of
defects [57], [14], 27 students built their own version of a
small program. The number of input cases for which more
than one program failed was substantially larger than could
be expected if the defects in code that caused the program
failures were independent. In several cases, the students
made the same logical errors when coding. This suggests
that failures, at least in student-produced programs, are to
some extent reproducible. Unfortunately, the study does
not present sufficient detail to quantify the extent to which
defects are reproducible.

At Sheffield University, students formed multiple small
teams that built systems for commercial clients [41]. For
each client, several teams competed to build the system that
the client judged to be the best. However, little information
was reported on the actual quality of the resultant products
and how quality was measured. A more remotely related
work compares seven programming languages according to
runtimes, sizes, reliability, implementation effort, and
program structure, using as a basis 80 implementations of
a simple program [73].

The reproducibility of the effect of using specific SE
technologies may be manifested in replicated experiments.
However, among the 5,453 scientific papers in the SE
literature that were identified in a systematic review of SE
experiments, only 20 replicated experiments were found
[88]. Only one replicated experiment involved subjects that
actually built anything (use cases) [23]. Most (seven)
replications were conducted in the area of inspection. We
have found no replicated case studies on software devel-
opment in the literature.

The study reported herein investigated how differences
in resources and development process affect software
projects and products. Related to this is the study of cost
models for software development projects. COCOMO is an

408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

example of a cost model and takes as input the size of the
project, various product attributes, personnel attributes
(reflected by team experience and familiarity with the
application), and technology used in the project [12], [13].
Another type of cost model is analogy-based estimation
models, which use the cost of completed similar projects as
input [84], [92]. Many studies have also been conducted on
identifying cost drivers of, and productivity factors in,
software development. Examples are [10], [63], [65], [75].
Among the large range of factors that have been identified
are the ones that we chose to control in our study:
requirements, team size, developer skills, programming
language, and contractor-developer interaction.

The developers’ skills may be an important predictor of
project cost and effort. For example, a study with programs
written by volunteer Master’s students showed variation of
an order of magnitude in the programming time between
the fastest and the slowest programmer for a variety of
programming languages [71]. Great variability in perfor-
mance on debugging tasks by programmers who had
different experience was reported in [25]. Others have
suggested that programmers’ experience may not affect
their skill to any great extent [29]. A discussion of when
people learn from experience in general, and in the context
of software maintenance in particular, can be found in [53].

Furthermore, maturity of development process has been
shown to have a positive effect on project and product
outcomes; in particular, lead time, effort, and quality [19],
[36], [37], [40], [59], although the benefits may be reduced
by the costs incurred by development processes [21].
Studying the impact of the processes’ maturity lies beyond
the scope of this paper. Assessments of the maturity of
development processes are very rare in Norwegian con-
sulting companies, and none of the companies that we
studied had been subject to such an assessment.

3 REPRODUCIBILITY

Scientific inquiry and mature engineering industries are
recognized by reproducibility. That phenomena and the
results of investigating them should be reproducible is a
central principle of the scientific method. When evaluating
a study, scientists must ask themselves “how reproducible
are the findings” [30].

3.1 Definitions of Reproducibility

The precise definition of reproducibility varies across
disciplines, but it is often closely related to the definitions
of repeatability and replicability. In a recent encyclopedia of
philosophy of science [89], reproducibility is described as
the repeatability of the process of establishing a fact or of
the conditions under which the same fact can be observed.
In natural science, reproducibility is often related closely to
the repeatability of experimental conditions and results. For
example, in a compendium of chemical terminology [47],
reproducibility is defined as “the closeness of agreement
between independent results obtained with the same
method on identical test material but under different
conditions, different operators, different apparatus, differ-
ent laboratories, and/or after different intervals of time.”
Furthermore, ISO 5725-1:1994 defines conditions of repro-
ducibility as conditions under which test results are
obtained with the same method on identical test items in

different laboratories with different operators using differ-
ent equipment [46].

Although most literature relates reproducibility and
repeatability, Hunter [43] introduces a special use of the
term “repeatability” to distinguish between those two
concepts: “Repeatability is a measure of the variability
(imprecision) of a single response within a single labora-
tory. Reproducibility measures the variability (interlabora-
tory bias) between measurements of the same response
across different laboratories.”

In the social and behavioral sciences (as well as in the
natural sciences), reproducibility is often used as a synonym
for replicability [5]. For example, Judd et al. [49] state that
“replication means that other researchers in other settings
with different samples attempt to reproduce the research as
closely as possible”; see also [24], [58], [85]; Cohen [22,
p. 155] refers to the reproducibility of observation statements
as a requirement for using them to evaluate universal
knowledge claims, but, instead of replicability, he uses the
term “reliability” to denote “the stability of a set of
observations generated by an indicator under a fixed set
of conditions, regardless of who collects the observations or
of when or where they are collected.”

When testing for reproducibility, the relevant conditions
must be kept fixed; “it does not matter if irrelevant
conditions vary” [5]. Wagner [91] refers to the relevant
conditions as the theoretical ones and stresses that this does
not mean that the empirical conditions need to be the same.
Hence, reproducibility is related to the repeatability of
theoretical conditions. Of course, determining which con-
ditions are the theoretical ones may not always be
straightforward. The typical SE situation is that an actor
applies various technologies to perform certain activities on
an existing or planned software system [87]. Hence, the
theoretical conditions will often relate to these dimensions.

If a phenomenon cannot be reproduced, knowing its
properties is unlikely to be very useful, and hypotheses that
predict the phenomenon cannot be falsified. An example of
how the lack of reproducibility can hinder progress is the
setback that a promising new technology of gene micro-
arrays experienced when it was shown to yield widely
different results among different microarray platforms [62].

3.2 Reproducibility in Software Engineering

If SE projects and products are not reproducible, then
results from one project may not be applicable in any other
project. Without reproducibility in the SE industry, software
practitioners and contractors would have little control over
their projects. Models for assessing processes, such as CMM
[68] and ISO/IEC 15504 [81] (formerly SPICE), have been
developed as a way of making the SE industry more
mature. A study of CMM level 5 projects indicates that
“some of the biggest rewards from high levels of process
maturity come from the reduction in variance of software
development outcomes that were caused by factors other
than software size” [1]. Note, however, that very few
software companies use CMM [64] and that, of these, very
few get the top score [20]. The extent to which such
assessments measure actual performance has also been
questioned [86]. Moreover, models of process assessment
may indicate the level of maturity of a particular organiza-
tion but do not reflect the practices of the entire industry.

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 409

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

SE projects or products that are not trivially small or
simple are unlikely to be reproduced completely in all
respects. Every software project has its unique requirements
and is carried out by a unique development team in the
sense that, even if the same team were to conduct several
identical projects, their experience would increase from one
project to the next. Consequently, we cannot usually study
the reproducibility of complete software projects and
products. In this paper, we consider a project or product
to have been reproduced if, for a given purpose, it is
sufficiently similar to the original project or product. Our
overall research question is, therefore, to investigate the
extent to which key dimensions of software projects and
products are reproduced.

3.3 Measuring Reproducibility

Software projects and products are complicated entities that
cannot be represented by a single scalar; the study of
reproducibility requires a conceptual model and measures
of several software dimensions to determine whether the
conditions referred to by a concept have been reproduced.
We had to answer the following questions:

1. What dimensions of software projects and products
should be used to measure reproducibility?

2. What is the best way to measure them?
3. What values indicate low, medium, and high

reproducibilities?

The dimensions that one should select to describe software
production will, of course, depend on the focus of interest.
In the study reported herein, we selected a number of
commonly used dimensions that are represented by
measures that take only positive values. This choice was
made to simplify our assessment of variability. The detailed
measures are described in Section 4.

We considered a number of concepts and measures that
are related to reproducibility and that are used in several
domains. We chose to use the inverse of the coefficient of
variation (CV) to quantify the extent of reproducibility in
software production for each dimension that characterizes
the software project and product:

Coefficient of variation : CV ¼ stddev

mean
;

Reproducibility :
1

CV
:

The standard deviation represents the variation in (or the
lack of) reproducibility. The mean is used to normalize the
measure to make comparisons among dimensions that have
different scales and measurement units. To measure
reproducibility, we invert the CV. This choice is motivated
by the intuitive appeal of the idea that a phenomenon that
can be reproduced more easily would exhibit lower
variability. Note that the CV (also known as an effect size
measure in which the change is expressed in standard
deviation units) is commonly used in other domains, such
as the biological and medical sciences [55]. In biology, the
CV is often used for assays (procedures that measure
certain properties of biological components). The results of
repeated trials of such assays tend to be reported in terms of
the CV because the standard deviations of assays generally
increase (or decrease) in proportion to the increase (or
decrease) in the mean [77].

Meta-analysis is a method for summarizing multiple
quantitative research studies and aims to reduce the
uncertainty by combining information from individual
studies [38]. Analogous to our use of 1/CV to adjust for
different scales and units among multiple dimensions of
software production is the use of, for example, Cohen’s d and
Hedges’ g as measures of effect size in meta-analysis to
adjust for possible variations in scale among multiple studies
[31], [54], [80].

The CV is also used when studying reliability. In this
case, it can be used to summarize the distribution of times
between failures. The most tractable is the exponential
distribution when the mean and standard deviation are
equal, making the CV close to 1. Moreover, the CV is most
suitable for measures that take positive values.

The only use of the CV in SE that we identified as
directly relevant to our study is reported in [28], in which
the variability of effort among development phases was
measured using the CV.

We would have liked to have used specific universal
values to judge the extent of reproducibility from the 1/CV
values observed in this and other studies. Unfortunately,
such values would depend strongly on the domain and the
purpose of the analysis. For example, safety-critical pro-
ducts may require much higher levels of reproducibility in
factors that pertain to reliability than products that do not
pose any danger to health or safety. Instead, we think it
makes more sense to observe values of reproducibility for
multiple projects and make a judgement that is based on the
particular context. We discuss this further in Section 6.

In addition to measuring reproducibility in absolute terms
for various dimensions of software production, we also
investigated reproducibility by comparing actual outcomes
with our expectations using pattern matching as described in
Section 7. If the existing knowledge of the effect of input and
context variables on project and product dimensions can be
represented in a model, investigating the accuracy of the
model would be similar to measuring reproducibility;
reproducibility has been achieved if we have variability for
predictable reasons. For example, a large variation in the firm
price of a bid would not indicate a lack of reproducibility as
long as it was possible to accurately predict that the higher the
bid, the better the service or product that the customers
receive, and the lower the bid, the worse the service or
product. The current state of the SE field does not allow the
construction of such models, but as the SE field matures, it
may be possible in the future.

Errors in measurement may present a challenge when
attempting to measure reproducibility; even if processes
involved in software production were perfectly reproduci-
ble, we would expect to see some variation even for the
measures that were controlled to be the same. For example,
the reproducibility of medical measurements (see [11])
involves comparison between the error produced by the
measurement device and the variance observed in repeated
measures of the same property. In our study, we observed
some measures, including costs, size, and lead time without
error. We controlled a number of project properties and
used data validation and triangulation extensively to
reduce possible errors for the remaining measures.

410 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

4 CONCEPTUAL MODEL AND MEASURES

The complex nature of SE means that many dimensions of
software development cannot be measured directly. There-
fore, a challenge in SE studies is to find one or more measures
that faithfully represent a given dimension. It is often difficult
or impossible to identify a set of measures that completely
represent a phenomenon. Therefore, measures that only
indicate or represent some aspects of the phenomenon, called
indicators, are used [22]. Here, we use the term “measure” for
measurements that provide values for the dimensions or for
their indicators. The process of defining concepts (or
constructs) in terms of observable variables or measures is
called operationalization. Construct validity represents the
extent to which inferences can be made about theoretical
constructs on the basis of these operationalizations [83]. Fig. 1
shows the relationships between bids and outcomes that we
investigate in this paper. Figs. 2, 3, and 4 show how the
dimensions depicted in Fig. 1 were operationalized in our
study and how the data sources were used. The data sources
are described in Table 11 in the Appendix.

For all companies, the team included two developers and
one project manager. The skills of the developers were
represented by formal education in programming of at least
three years and by three years of industrial experience with
the technology used in the projects (individual qualifica-
tions are known to have a large impact in SE [16], [26]).
Contractors and developers interacted using a bug tracking
system and e-mail. All the projects used Java, Javascript,
Java server pages with Tomcat, and Mysql as a back end.
The projects employed similar development tools.

Other factors could have been controlled for. For
example, controlling for lead time would have enabled a

direct comparison of how projects deal with time con-
straints. However, in this study, we could not control for
this factor because we needed complete products to
evaluate their maintainability.

4.1 Information from the Bids

Bidding for contracts is an important part of the software
development business and is typically one of the first steps
taken in a software development project. From the point of
view of the development organization, the content of the bid
is important for winning contracts, attracting business, and
achieving business goals. Once a contract is won, the content
of the bid lays the foundation for the cooperation with the
contractor. From the point of view of the software contractor,
it is, of course, important not only to choose the best bid but
also to learn whether or not the bid is likely to be fulfilled.

An essential dimension of a bid and, consequently, of an
initial plan for a development project is the resources
required from the developer’s point of view. Two principal
aspects of resources are price and time schedule [32].
Measures for these two aspects were derived directly from
the bids. Note that the bid price may be affected by business
factors in addition to technical factors. For example,
different companies may have different business strategies
regarding the profit that should be derived from a project;
some companies may be willing to bid low to enter a new
market. The complete range of business factors that affect a
bid is not known and, consequently, attempting to control
for them was not feasible and would also have removed
some realism from the study. We decided to include the bid

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 411

Fig. 1. Relationships between bids and project and product outcomes.

Fig. 2. Information from the bids.

Fig. 3. Project success dimensions.

Fig. 4. Dimensions of software quality.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

price because it will necessarily have an impact on the way
projects are planned and executed, independent of how the
companies come up with the bid price.

Different development organizations may employ a range
of development processes. A software contractor may also
have specific preferences with respect to the software
development process that is to be followed in a specific
project. It is generally assumed that a relationship exists
between the development process and project and product
outcomes. A primary objective of SE is to propose develop-
ment processes that will reduce costs and lead time and
improve the quality of software products. However, because
of the creative nature of software development, the extent to
which differences between success and failure in a project can
be attributed to the software production process remains an
open question. Consequently, we chose development process as
the second dimension characterizing the bids.

Definitions of development processes are typically compre-
hensive and include factors that range from project
organization and management to the detailed use of
particular techniques. For the purpose of our study, we
chose to focus on the extent to which analysis and design
was emphasized in the description of the development
process given in the bids. This aspect was chosen because it
was well described in the bids, as opposed to other aspects
of development processes, such as quality assurance and
testing, which were less often well described. However, in
the bids that included detailed descriptions of the planned
development processes, the emphasis on analysis and
design in the majority of the cases corresponded with the
emphasis on other noncoding activities, including quality
assurance and testing. Therefore, large amounts of planned
effort on analysis and design in most cases implied more
planned effort on testing and quality assurance. Further-
more, the extent to which analysis and design should be
emphasized in the development process if companies’
development practices are to be characterized adequately
is a typical challenge in SE.

Given that we could not derive directly from the bids the
extent to which analysis and design would be emphasized
in a project, we triangulated using two indicator variables.
Triangulation is a method for deriving a measure from
several lower level measures. It is used widely for designs
in which multiple sources of data are used to investigate a
question from multiple perspectives [79]. The main objec-
tives of triangulation are to improve construct validity in
particular and overall quality in general [94].

Many of the bids contained some information about the
analysis and design of the product, which had already been
carried out at the time of bidding. To measure this variable,
we assessed subjectively the amount of analysis and design.
Most bids also contained an estimate of the effort to be
spent on the project activities. From this information, we
were able to calculate the percentage of the total effort that
was planned to be spent on analysis and design (planned
analysis and design) in the remainder of the project.

4.2 Project Success Criteria

A successful project delivers functional and nonfunctional
requirements on time and within budget. In our study, we
divided the criteria for the success of a project into easy-to-
measure dimensions (Fig. 3). Contractor-related costs are
defined as the effort spent by the contractor. The complete

cost of the project from the point of view of the contractor
includes both the price specified in the contract and
additional costs for the contractor.

Actual lead time is defined as the time from the start of the
project until the system becomes operational. Many soft-
ware products have to be introduced within a restricted
time window in order to satisfy business needs.

Schedule overrun is the delay in the delivery of the
software product relative to the time schedule specified in
the contract. Software projects are notorious for delivering
products late and exceeding estimates [48], [67]. A project
that is not delivered on time may incur extra costs or
disrupt business for the contractor and may have large
economic consequences. Note that we did not measure cost
overruns because we only investigated projects for which a
firm price was given.

4.3 Software Product Quality

According to the ISO/IEC standard 9126 (www.cse.dcu.ie/
essiscope/sm2/9126ref.html), a software system has six
major dimensions that pertain to quality: functionality,
reliability, usability, efficiency, maintainability, and portability.
In our study, we compared the systems according to
reliability, usability, and maintainability.

Reliability is important because defects in an operational
system may lead to such undesirable outcomes as system
crashes or corruption of data. We used weighted defects as
our primary indicator variable (using bold type in Fig. 4)
because it best matches our understanding of the concept.
The weights indicate the severity of the defects. An
additional indicator variable is the number of unique defects
for each company. This indicator was used to validate the
primary indicator variable.

Usability is important because a system that is not
perceived as usable may prevent users from achieving
their objectives, may discourage future use, or may reduce
users’ productivity. The result of measuring the usability of
a system will depend on the population of target users. We
assumed that the target users were unfamiliar with the
system and had a limited knowledge of usability issues. We
chose this target population because users of the system
who are external to Simula will not be familiar with it, while
even internal users are not likely to use the system
frequently and may, therefore, forget how to perform tasks
between the sessions. Experienced users, or users with
detailed knowledge of usability, may experience other
usability problems. The exact consequences of low usability
would depend on the context. For example, if the use of a
system is compulsory, its low usability may not affect the
extent of use but may reduce productivity. The chosen
usability measure relies partly on expert opinion (see
Section 6.3.2) but is used in the human-computer interaction
community to provide results on an interval scale [34].

Maintainability is important because most systems under-
go changes and the costs of maintaining a system often
exceed the original development costs. The results of
measuring the maintainability of a software system depend
on the perspective adopted when measuring. In our study,
we adopted the perspective of long-term maintenance. Such
maintenance may include large maintenance tasks that are
performed by software developers who are experienced
with Java but are not thoroughly familiar with the system.
We chose this perspective because we no longer have access

412 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

to the original developers and we expect the costs of long-
term maintenance to dominate the costs of short-term
maintenance and, consequently, to have a greater economic
impact. The importance of maintainability depends on the
type and context of the system. For example, maintain-
ability may be of less concern if the expected life span of the
system is short and only small changes, such as error
corrections, are anticipated.

We did not consider the remaining three dimensions of
ISO/IEC 9126, because the system was tested thoroughly to
ensure that the required functionality had been implemen-
ted (consequently, only minor differences in functionality
would be expected). Efficiency was not important, because
the systems were relatively small, had few concurrent users,
and managed small amounts of data. Finally, we did not
consider portability to be an important issue, because such
Java systems can run on most major platforms.

5 RESEARCH METHOD

This section describes the nature of the study, the selection
of the companies that participated, the organization of the
research project, and the collection of data.

5.1 Type of Study

The unique combination of realism, scale, control, and detail
that was achieved in our study warrants some discussion. The
unit of study was the software company. The study was
conducted in two parts. In the first part, we collected bids
from 35 companies; in the second part, we selected four
companies for an in-depth study. The study’s focus on a set of
cases that had a clear identity makes it a case study.
According to Yin [93], a case study should be used “when a
“how” or “why” question is being asked about a contempor-
ary set of events” that are investigated within its real-life
context, and he states that “the case study inquiry

. copes with the technically distinctive situation in
which there will be many more variables of interest
than data points, and as one result,

. relies on multiple sources of evidence, with data
needing to converge in a triangulating fashion, and
as another result, and

. benefits from the prior development of theoretical
propositions to guide data collection and analysis.”

The typical situation of case studies, with more variables of
interest than data points, means that it is not possible to
control for all possible confounding factors. Instead, the
context in which the study is conducted should be
described in as much detail as possible.

Even though we had no propositions from tested theories,
we followed a top-down approach [76] when designing our case
study. This approach was used to select projects that
maximized the variations in firm price and in proposed
process descriptions. This study is also a multiple-instance case
study (with each development project representing an
instance) according to the definition given in [76].

According to Yin, there is one “original” study and the
studies that follow (replications) are supposed to deliver
either similar (literal) or contrasting (theoretical) results,
where the case “predicts contrasting results but for
predictable reasons.” In our situation, there was no
“original” study; we conducted all studies in parallel.

5.2 Selection of Projects

Three of the factors that we controlled were set in the call
for tender sent to 81 Norwegian and international software
consultancy companies operating in Norway: the specifica-
tion of the requirements, the Java programming language,
and the minimum size of the company. We were concerned
that a very small company would not be able to provide a
sufficiently large development team.

Thirty-five of the companies provided bids. None of the
companies had previous relations with the contractor. In
this case, we had a full list of prices and a description of
development processes of the 35 companies.

Four of the companies were selected to develop individual
systems. This choice of four companies represented a trade-
off between having a sufficient number of projects to
investigate the effects of differences in required resources
and planned development processes and having sufficient
means to hire the companies and observe their projects.

In a case study, the selection of cases should be driven by
the research questions. To investigate the extent of
reproducibility in the second phase, we considered four
approaches:

1. Reproducibility is indicated if there exists a set of
software providers that produce similar project and
product outcomes.

2. Reproducibility is indicated if a random set of
providers produce similar results.

3. Reproducibility is indicated if dissimilar providers
produce similar results.

4. Reproducibility is indicated if different types of
providers produce different results that can be
predicted from the differences among the providers.
In this context, the differences in the bids predict
differences in the projects and systems produced.
That is, if we understood underlying cause-effect
relationships, we would be able to reproduce
different effects if we chose to.

We chose a combination of approaches 1 and 4; the
companies were similar with respect to the controlled
context and, at the same time, dissimilar with respect to the
amount of resources devoted to the project and develop-
ment processes (see Fig. 1). As an additional criterion, to
reduce the risks for our research project, we selected
companies that appeared likely to complete the project
satisfactorily.

5.3 Practical Organization and Logistics

The SE Department at Simula represented researchers and
contractors in the same project. To separate the concerns of
researchers and contractors, one team played the role of the
contractor and consisted of a project manager and one user
representative. Both were employed by Simula and had,
respectively, 10 and 5 years of experience in software
development in industry but no research experience. The
other team was responsible for research and consisted of
two researchers and one research assistant. In addition, an
experienced consultant worked on an hourly basis to
ensure that Simula behaved realistically in the role of a
contractor and that the development projects were affected
by the research project as little as possible. Three people
who were not involved directly in the rest of the project had
developed the requirement specification, which focused on

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 413

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

functionality, but also indicated that the user interface should
be similar to that of the general Web system used at Simula.
The requirements were perceived by all the companies to be
well specified, given the relatively small system. The
interested reader may receive a copy of the requirement
specification document (11 pages) upon request.

The usability experiment also involved researchers from
another institution, SINTEF. Two external senior practi-
tioners provided expert evaluation of the code.

In the contract meetings with the four chosen companies,
the companies were, for the first time, told about the
research project and that three other companies (the
identity of which was not revealed) would develop the
same system. Our plans for ensuring privacy and collecting
data were also presented. We also obtained the curriculum
vitae of each of the proposed team members and after, some
negotiation, we chose teams in which all members had
approximately three years of experience in software
development (cf. skill factor, Fig. 1).

We decided to run the four development projects in
parallel, to ensure that Simula as a contractor would behave
as similarly as possible with each team and to avoid
learning effects in the role of a contractor. One method for
helping to ensure that the “contractor” team behaved
consistently toward the different companies (cf. factor
contractor-developer interaction, Fig. 1) was to use an issue-
tracking tool, Bugzero, for communications.

5.4 Data Collection

To help ensure that the values of the variables were
measured correctly, we made several attempts to control
the process by which data was collected. The companies
were given extra payment as compensation for the effort
needed for research purposes, such as participating in
interviews and preparing and sending snapshots of code.
Because the contractor was a Simula team, we could easily
measure the contractor effort and collect information about
the number and kind of defects that occurred after the
systems became operational.

6 RESULTS

This section describes the results of our study of the
reproducibility found in the bids, projects, and products.
Table 1 shows the reproducibility of all measured
dimensions.

We used 1/CV as an indicator measure of reproduci-
bility, as explained in Section 3.3. We mapped values of
1/CV to three categories of reproducibility: 1/CV falling in
the intervals ð0; 2:5Þ, ½2:5; 7Þ, and ½7;1Þ indicates, respec-
tively, “low,” “medium,” and “high” reproducibilities.
Because of the lack of previous work in this area in SE,
we chose this mapping on the basis of the context of the
study, observed values of reproducibility measures, and
common sense. Other levels may be more appropriate in
other domains; for example, drug manufacturing may
require greater reproducibility than software production.
The particular choices of the three reproducibility levels
were made primarily to streamline the discussion.

6.1 The Bids

Table 12 in the Appendix shows the information from the
bids for all 35 companies. A firm price was given in all of
the bids. The functionality was specified well in the
requirements, but none of the companies used a method
for functional sizing when bidding. A time schedule was
given by some of the companies, but many were probably
reluctant to suggest a time schedule at the bidding because
this entails additional risk for the company [32]. Most of the
bids included an analysis and design of the system, a
description of the development process to be used, and an
estimate of effort in hours for each project activity.

It was not feasible to study the reproducibility of the
description of analysis and design that was included in the
bids directly. There were, of course, similarities among many
of the diagrams because the functionality was specified well
in the requirements, but there were large variations in the
level of detail of analysis and design, ranging from nothing at
all to one or more of the use cases, screens, architectural
description, data models, and navigation diagrams, as well as
discussions of nonfunctional requirements.

Many of the companies described their process as
incremental. However, there was no time for several
increments because of the short duration of the project. In
fact, the companies did not develop this system incremen-
tally. Therefore, we disregarded whether the processes
were described as incremental or waterfall. Moreover, some
of the bids referred to the companies’ formal process, but
our focus was on their planned process, that is, what they
actually planned to do in the project.

To measure the emphasis on analysis and design, we
obtained two indicators and combined them to obtain an
overall measure; see Fig. 2. To obtain values of the first

414 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 1
Overall Reproducibility

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

indicator, BidAD (“A&D in bids” in Table 12), one of the
authors assessed the amount of analysis and design that
was present in each bid using an (ordinal) scale with the
following values: 0 = “None,” 1 = “Very brief,” 2 = “Brief,”
3 = “Detailed,” and 4 = “Very detailed.” To obtain values of
the second indicator, PlanAD (“Planned effort on A&D” in
Table 12), we used the estimates (in hours) of effort planned
for different project activities (provided in most of the bids)
to calculate the percentage (relative to total effort) of the
planned effort for analysis and design in the project.

We judged both components to have similar effects on
the overall measure of analysis and design. Therefore, to
equalize the scales for these two measures, the PlanAD
measures were divided by 10 before being added to the
BidAD measure, which resulted in a range of values from
0.0 to 5.0 that was similar to the range of values for BidAD.
In our opinion, the slightly larger range of values (and
correspondingly larger weight) for planned effort is
justified by the fact that the projects that had a detailed
analysis and design in their bids still planned to expend
some effort on these activities during the project (from 5 to
11 percent of the total effort). The resulting values (BidAD
þ PlanAD/10) are shown in the column “Emphasis on
A&D” in Table 12.

6.1.1 Reproducibility of Bids

We found no relationship between the firm price and planned
time schedule for the companies that provided lead times.
Therefore, the lead time appears to be affected mostly by the
work style and by the amount of resources that the
company said that they would dedicate to the project.
Correspondingly, there was no relationship between the
firm price and the process measures. This is probably
because a substantial part of the analysis and design was
completed as a part of a bid and, therefore, did not directly
influence the price of the project. Yet, it may be surprising
that the general focus on process and analysis and design
does not appear to affect the firm price. Basic statistics,
including the CV and 1/CV, are shown in Table 1. The
overall measure of analysis and design is much more
reproducible than its components (BidAD and PlanAD).
However, the projects that provided planned effort (only
these projects are included in the overall measure) may be
slightly more homogeneous: If we were to restrict our sample
to these 27 projects, the 1/CV measure for BidAD would
increase from 2.3 to 2.5. The bulk of the increase can be
explained by the fact that BidAD is correlated negatively with
PlanAD (�0:72 Pearson correlation and �0:69 Spearman

correlation), and as a result, their sum has less variance than
each component. The negative correlation reflects the
simple observation that if more of the analysis and design
is done in the bid, less of the analysis and design remains to
be done during the project.

The bids made for the study, including the large
variations in firm price, were also described in [52]. The
large variations in firm price were confirmed in another
study of software development projects, in which 30 com-
panies from 11 countries in Eastern Europe and Asia
presented their bids [50]. The 1/CV of the price was 1.6.

Using raw data that was obtained from a study that
compared programming languages as a basis [72], [73], we
were able to calculate the reproducibility of the develop-
ment effort in hours for 80 implementations of a small
system with different programming languages. The overall
1/CV was 0.87, while the language-specific 1/CV ranged
from 1.1 for Java to 2.1 for the C language.

The projects in our study were small, but small software
projects are common. To get a better understanding of the
reproducibility of software projects, we compared the
projects in our study to projects within the same price
range from a collection of 279 projects of the Norwegian
Public Roads Administration in the period 1996-2006 [70].
Table 2 shows that the average 1/CV of these road
construction projects was more than three times higher
than those found in the two SE studies described above (1.5
and 1.6, respectively). The higher reproducibility measure
that was found in road construction projects may be due to
the relative maturity of the civil engineering discipline.

We investigated the values for reproducibility relative to
the size of the project. The average 1/CV for all the 279 road
construction projects was 10.8 (average price of 3.9 million
euros); that is, a 10-fold increase in size yields approxi-
mately a doubled value for 1/CV. For the six largest
projects (average price of 71 million euros), the average
1/CV was 16.7; that is, a 1,600 times increase of project size
yields a three times increase in the value for 1/CV. A
similar pattern may exist for software projects as well.

6.1.2 Selected Companies

Four companies were selected to implement the system,
using the method described in Section 5.2. We defined the
exclusion criteria for selection as follows:

. Companies that were too small to provide a team of
three members were excluded. To reflect typical
development projects, we wanted teams to develop
the systems, rather than individual developers. Note

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 415

TABLE 2
Tender Prices for Six Projects of the Norwegian Public Roads Administration

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

that apart from requiring that three people should
be involved in the project, we did not place any
constraints on how the teams cooperated and on
whether the team members worked full time or part
time.

. Companies that gave no, or a brief, or very brief,
description of the analysis and design of their
proposed solution were excluded (see Table 12).
The companies were asked to sketch a solution in
their bids. Instead of attempting to maximize the
variation in the selected companies with respect to
emphasis on analysis and design, we decided simply
to ensure a certain level of description of analysis
and design, because we assumed that to be a
reasonable indicator that the companies would
deliver a satisfactory system.

. Companies that proposed solutions that were based
on the use of existing systems for publishing
information on the Web were excluded. We wanted
to study software development projects that created
the entire source code from scratch, yet based on a
Web technology platform that was in widespread
use at the time (Autumn 2003).

. Companies that did not provide a time schedule or
sufficient information to calculate the effort that they
planned to expend on analysis and design were
excluded (see Table 12).

After these criteria had been applied, eight companies
remained. We decided to select four of them by maximizing
the variation in price. The companies were, respectively, 5,
13, 30, and 34 in Table 12. It turned out that there was also a
substantial spread among these companies with respect to
time schedule and planned effort on analysis and design.

Table 3 summarizes the four companies with respect to
nationality, ownership, location, and size at the time of the
study, as well as the firm price, agreed time schedule, and
the extent to which planned development process was
emphasized. All this information was provided in the bids.

Contract meetings were held with all the four companies.
For the most expensive company, the firm price was
renegotiated to a slightly lower value. The Simula contrac-
tor team considered, on the basis of their experience with
software bidding, that the bid included a margin for
bargaining and that, in order to behave as a realistic
contractor, it was necessary to negotiate that price. Many of
the companies included the company’s experience with
relevant technology and similar applications in their bids.
Our selected companies had sufficient experience, but we
also asked to see the curricula vitae of the potential

developers to verify that they had the necessary skills. We
required a minimum of three years of education in
computer science and a minimum of three years of
experience in industrial software development. For one of
the companies, we had to negotiate to get sufficiently
qualified developers. For all of the companies, detailed
plans were made for the start and delivery dates. Table 3
refers to the price and plans agreed in the contract meetings.
These differ somewhat from the price and planned time
schedule in the bids. The agreed time schedule was the
basis for calculating the overrun of the projects.

All four companies provided a detailed analysis and
design in their bids, but the effort that they planned to
expend on these process activities varied. Therefore, only
the planned effort is given below. The companies were
asked to follow their planned process within reason. They
were monitored closely during the development, both by
Simula’s contractor team (who received regular status
reports) and by the researchers (snapshots of all documents
were sent from the companies to the researchers on a
weekly basis, and the research team had weekly interviews
with the developers). Consequently, we were able to ensure
that the actual emphasis on analysis and design corre-
sponded to the planned emphasis.

6.2 The Project

Table 4 shows the overall outcomes from the four
development projects. Sections 6.2.1 and 6.2.2 provide
justifications for the scores of the three project dimensions,
while Sections 6.3.1, 6.3.2, and 6.3.3 describe the three
product dimensions.

6.2.1 Contractor-Related Costs

Contractor-related costs were measured in terms of the
numbers of hours spent by the contractor on each of the
projects (see Fig. 3). Table 5 shows how the effort was
expended. The contractor’s project manager spent time on
fulfilling the contracts, clarifying requirements, and testing
and installing the systems. The contractor’s user represen-
tative spent time on clarifying requirements and testing and
took part in design meetings. Technical support on the
contractor side was required during delivery and installa-
tion. The difference in the number of hours spent by the
different companies was validated by considering the
amount of e-mail exchange between the Simula project
manager and the development teams and by considering
the total number of issues recorded for each company.

416 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 3
Characteristics of the Companies

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

6.2.2 Actual Lead Time and Schedule Overrun

The actual lead time was measured in calendar days from the
start to the end date of the project. The overrun was measured
by the number of calendar days that the actual lead time
exceeded the planned time schedule, and in percentages:
((actual lead time � planned time schedule) � 100)/planned
time schedule}. Table 4 shows the actual lead times and
overruns.

6.3 The Product

6.3.1 Reliability

To measure software reliability, we used the number of
defects that were detected after the systems became
operational. We applied four levels of severity, as indicated
in the Orthogonal Defect Classification [18], [44], see Table 6.
To simplify the assessment of reproducibility, we aggre-
gated the number of defects in the various levels of severity
into a single scalar by giving weights to each level. We used
expert assessment to agree on the multiplier of 2 from one
level of severity to the next for this project, which is in
accordance with, for example, the practice of the SEI CMM
Level 5 company Syntel. Clearly, projects with different
priorities may need different weightings. For example,
projects that are concerned exclusively with the cost of
fixing defects may choose equal weighting (assuming that
each defect incurs, on average, the same fix costs). In
projects that are mostly concerned with the cost of

downtime, most of the weight may be placed on defects

that may cause outages.
Fig. 5 shows that Systems A and B had few defects at

severity levels 2 and 3; System C had many defects at these

two levels; and System D had many defects at level 3. The

overall reliability of the systems, calculated in terms of the

weighted defects, was in the range of 10 to 31. A 1/CV of 2.1

indicates low overall reproducibility. This is confirmed by

considering how many defects were detected in more than

one project. Only one common defect was reported for the

four systems; a defect of severity level 3 that was reported

for both Systems C and D. We conclude that System C had

poor reliability, System D had fair reliability, and Systems A

and B had good reliability.

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 417

TABLE 4
Quality of Project and Product

TABLE 6
Classification of Defects

Fig. 5. Defects detected in operational use.

TABLE 5
Contractor Effort in Hours

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

6.3.2 Usability

The usability of the four systems was evaluated in an
experiment. Details of the experimental design, variables,
and measures can be found in [34]. Three core user tasks
were identified for use in the experiment, using the
requirement specifications for the requirements and accep-
tance test as a basis. The tasks included predefined inputs
and covered tasks for the internal users (who may add
information) and for the external users (who seek informa-
tion). These tasks were chosen because they were judged to
be the most challenging from the perspective of usability.
The participants in the experiment were representative of
the system’s user population (17 PhD students and one
scientific programmer working at Simula). Thirteen had no
previous knowledge of the system, while five had super-
ficial knowledge without having tried any of the four
versions of the system beforehand.

Two compound usability measures, task usability and
global usability, were calculated as follows:

Task usability ¼Task completion� User error rate
� Task timeþ Satisfaction

Global usability ¼ðTask usability 1þ Task usability 2

þ Task usability 3Þ=3:

The global usability scores were, respectively, 113, 86, 84,
and 117 for Systems A to D.1 Higher scores indicate greater
usability. These scores were constructed from expert
opinions (assessed using a five-point Likert scale) that were
added over different dimensions, such as the time needed
for a user to complete a task and the number of defects.
Even though the global usability score may have a negative
value in theory, a constant can always be added so that our
formula can be used for the reproducibility measure.

The CV for the global usability score resulted in a value
of 0.17, which indicates high reproducibility. However, it is
worth noting that, although the differences in global
usability scores indicate overall reproducibility, there were
differences among the systems for the different tasks. For
example, although System D received a high global
usability score, it received poor task usability scores on
Task 2. Correspondingly, System C received a lower global
usability score because of a very low score on Task 1,
although the System C team did very well on Tasks 2 and 3.
We conclude that the usability of the systems from
Companies B and C was fair, while the usability of the
systems from Companies A and D was good.

6.3.3 Maintainability

The IEEE standard for SE terminology defines software
maintainability as “the ease with which a software system
or component can be modified to correct faults, improve
performance or other attributes, or to adapt to a changed
environment” [45]. The operationalization of this definition
remains a challenge. To the authors’ knowledge, there are
no empirically validated methods for assessing the main-
tainability of complete software systems that are generally
applicable and no studies that compare the maintainability
of different systems. However, the maintainability of (parts
of) individual systems has been studied extensively.
Maintainability may be affected by a large number of
factors in addition to properties of the code, such as the
qualifications of the maintainers, the maintenance tasks,
and the tools used. In this case, we wanted to assess
maintainability mainly on the basis of the code.

Three principal strategies for measuring maintainability
are 1) the calculation of structural measures based on static
analysis, 2) expert assessments, and 3) the use of benchmarks,
although none of these strategies are well established or have
been evaluated empirically in a multisystem context.

In the benchmark strategy, a set of “representative”
changes is defined and performed on the different systems
[4]. The effort required to implement the changes is then an
indicator of the maintainability of each of the system. We
are not aware of any reports of the application of such a
benchmark to evaluate maintainability, but a “maintenance
benchmark” was used to evaluate various development
tools [51]. For the purpose of this study, we decided to
assess maintainability using a combination of structural
measures and expert assessments. A justification for this
approach can be found in [2], [9].

Assessment based on structural properties. Several sets
of structural measures have been proposed to assess code
maintainability. The most common ones are the CK metrics
[17]. It has been determined that this set can be used to predict
the maintainability of individual classes in object-oriented
systems [27]. We decided to use an adapted version of a
subset of the CK metrics that we found most suitable for our
study. Table 7 shows the mean and standard deviation for the
metrics WMC1 (number of methods per class, each method
has a weight of 1), OMMIC (call to methods in unrelated
class), and tight class cohesion (TCC), as well as lines of code
(LOC) and number of classes (NOC) for the four systems. The
depth of inheritance is not included, because Company C did
not use inheritance at all and the other systems mostly used
only one level of inheritance.

418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

1. Note that, in the report [34], Company B is called Company C and vice
versa.

TABLE 7
Summary Statistics for the Systems (Mean and Standard Deviation Shown for WMC1, OMMIC, and TCC)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

Table 7 shows that the systems were substantially
different in terms of LOC, numbers of classes and the
distribution of functionality over the classes (as can be seen
from the large differences in the values for WMC1).
Furthermore, the values for OMMIC and TCC show that
the developers of the systems chose different trade-offs with
respect to a focus on good coupling versus good cohesion.

There are few empirical studies on the effects of these
trade-offs in object-oriented design. Therefore, it is difficult
to combine the metrics in Table 7 into one overall measure
of the maintainability of a complete system. If we assume
that the system with the best mean and standard deviation
for the class-level measures is also the most maintainable,
we arrive at the following ranking: System D appears to
have good maintainability; Systems A and B have fair
maintainability; while System C is assessed to have poor
maintainability due to high values and large standard
deviations for the size of classes and coupling of classes.

However, if we take the size of the systems into account,
it may be reasonable to assume that System B will be more
difficult to maintain than is indicated by its class level
values, due to its large size, while System C may be easier to
maintain.

The Maintainability Index (MI) has been proposed for
assessing the maintainability of complete systems [69]. The
MI uses a polynomial to combine the average per class of
four traditional code measures (lines of code, number of
comments, cyclomatic complexity, and Halstead Volume)
into a single-valued indicator of maintainability. Although
the use of the MI has been reported for several projects,
there are no indications in the literature that this formula is
generally applicable. Consequently, we decided to use the
measures shown in Table 7, which had greater empirical
support, and to combine them in a more flexible way.

Expert assessment. The experts chose their own criteria
for evaluation, using as a basis their experience in software
development. The first expert had 25 years of experience,
including 10 years with Java development. He was hired for
60 hours to inspect the code of the four systems. The second
expert had 10 years of experience, including six years with
Java. He was hired for 16 hours. The high costs of hiring
these experts prevented us from having two equally

thorough evaluations. Due to the simplicity of the four
systems, the experts were also asked to attempt to foresee
the consequences of design decisions for larger mainte-
nance tasks and for longer term maintenance. The first
expert considered the 11 characteristics listed in Table 8 to
be indicators of the maintainability of these systems.

The second expert gave each system a score and
provided a brief motivation for the score given. The
motivations contained some of the same characteristics as
those that had been identified by the first expert. Although
the two experts did not communicate in any way, their
conclusions were similar. Consequently, the opinions of the
second expert were used to supplement the detailed
insights of the first.

Table 8 shows the first expert’s assessment of the four
systems. For each of the characteristics, the experts
commented on whether it was handled in a satisfactory
manner (score 1), to some extent satisfactory (score 0.5), or
unsatisfactory (score 0). The overall measure for maintain-
ability was obtained by adding the values for the different
scores, with all the characteristics being given equal weight.

Both experts assessed the maintainability of Systems A
and D to be good. System A was ranked to be the best.
However, the experts commented that the developers of
Company D had implemented a much larger system
because they, presumably, had started the project with
high ambitions of building a system that would be easy to
maintain. These ambitions were not fulfilled, which
resulted in a low score for some of the characteristics.
Nevertheless, for large changes, System D is likely to be
more maintainable than System A.

The maintainability of Systems B and C was assessed as
low in each case. Again, the experts commented that it was
likely that the degree of maintainability would depend on
the types of changes that were required. The design of
System B was too complex and comprehensive for the
application that was ordered. It may have been more
appropriate for a larger product. The developers of
Company C had not emphasized good design, but, because
their system was small, it may be easy to perform small
maintenance tasks on it. However, it may be difficult to
make larger extensions.

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 419

TABLE 8
Expert’s Characteristics and Assessments

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

Overall assessment. The CV for the total score in Table 8
is 0.46, which indicates low reproducibility of maintain-
ability. We supplement the results in Table 8 with those in
Table 7. This combination yields an overall assessment of
maintainability of the systems as follows (summarized in
Table 4):

. We consider System D to have good maintainability,
judging from both the expert opinions and the
structural measures.

. We consider System A to have good maintainability,
judging from the expert opinions. The structural
measures indicate that System A is slightly less
maintainable than System D if the size of the systems
is not considered. However, we assume that the
relatively small size of System A would give it an
advantage in the maintenance phase.

. We consider System B to have poor maintainability,
judging from the expert opinions. The structural
measures of coupling and cohesion are relatively
good, which indicates a maintainable system. How-
ever, the system is relatively large and we assume that
size will have a negative impact on maintainability.

. We consider System C to have poor maintainability,
judging from both the expert opinions and the
structural measures.

7 EXPECTATIONS VERSUS OBSERVATIONS

As shown in the previous section, we found that several of
the project and product dimensions had low reproducibility
overall. However, we deliberately selected four companies
to develop the system that exhibited large variations with
respect to required resources and planned development
process. In order to have reproducibility, these variations
should lead to some predictable and tangible differences in
the projects or products (see Section 3.3). Nevertheless, we
are not aware of any established model that uses resources
and planned development process to predict project and
product outcomes. Existing prediction models in SE
typically have a very fine granularity. For example, models
have been proposed for predicting the reliability of software
architectures on the basis of structural design information
[78] and for predicting maintenance performance on the
basis of specific object-oriented metrics [8]. However, such
prediction models require much more detailed information
about the systems than is usually available in bids, which
means that such models are unsuitable for making predic-
tions at the time that bids are evaluated.

Instead, we used pattern matching, where theoretical
propositions are compared with the outcome of a study.
This technique is commonly used in case studies in the
social sciences. In our study, we applied a visual approach to
pattern matching [90]. Ideally, the propositions should be
based on well-founded theories. However, given that there
are no SE theories relevant to the topics of this paper [35],
our propositions (or the term that we find more suitable
here, expectations) are based on our interpretation of SE
folklore (common and often unstated assumptions).

7.1 Expectations

We started with the common-sense assumption that having
sufficient resources for a project should have a positive
impact on project and product outcomes. The concept of

“sufficient resources” includes an agreed schedule with
sufficient time for contingencies and a sufficiently high firm
price, which may allow for dedicated full-time project
participants. Furthermore, the quality of a software product
should be influenced (significantly) by the development
process. After all, a substantial part of SE is dedicated to the
design of software development processes that (presum-
ably) lead to better quality. An emphasis on development
processes should also have an impact on other project and
product outcomes, for example, through better control over
the project, which, in turn, should reduce the need for
contractor involvement and lead to lower overruns.

Using this assumption as a basis, the project dimensions
contractor-related costs and overrun were likely to be high, that
is, poor, for Project C (shown in Fig. 6 as an unfilled square
box and circle, respectively), because the project had few
resources and little emphasis on development process. The
same two dimensions were likely to be low, that is, good, for
Projects B and D, because they had the most resources and a
greater focus on development process. Company A had
relatively few resources but placed great emphasis on the
development process. Consequently, the contractor-related
costs and overrun were likely to be medium, that is, fair.

All companies agreed on a time schedule at the start of
the project (shown in Table 3) and, given the small size of
the system and the carefully controlled context, it was
reasonable to expect relatively small differences in the
actual lead time. (Indeed, the actual lead time was found to
have high reproducibility; see Table 1.) Moreover, given
that overruns on the time schedules were expected for the
companies with the lowest lead-time estimates and that
overrun seems intrinsic to most software projects, we
expected the lead-time dimension to be fair for all of the
companies.

The outcome values for the three product dimensions
were likely to be good for both Systems B and D because
both companies had ample resources for this project. They
also placed a similar emphasis on development processes.
The product outcomes of System A were likely to be fair
because, though their strong emphasis on development
process should improve product quality, their more limited

420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Fig. 6. Expectations versus observations.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

resources may not be sufficient to take advantage of the
better process. The product outcomes for System C were
likely to be poor, because of low resources and the lack of
emphasis on the development process.

7.2 Observations

This section discusses the observations for the project and
product quality relative to the expectations given above. We
first describe how we arrived at the scores for the various
dimensions and then we describe the actual performance of
the companies.

7.2.1 Scores

The observations for the product quality dimensions of
reliability, usability, and maintainability are shown in Fig. 6
as, respectively, filled rounded rectangles, stars, and
hexagons. The scores are taken directly from Table 4. On
the other hand, the results of the project quality dimensions
shown in Table 4 were measured in numbers. However, to
compare the observations with our expectations, we need to
describe the results at a more coarse-grained granularity,
because we had no underlying model that could support us
in indicating an accurate level of expectations. Therefore,
we decided to subjectively use the good-fair-poor scale also
for the project quality dimensions.

We arrived at the categories shown in Fig. 6 as follows:
Regarding contractor-related costs, Company C required 155 h
from Simula, which we consider poor for this relatively small
project. It should have been possible to develop this system
without too much intervention from us, so the values of the
other companies (85-108 hours) indicate a fair performance.
The average estimate of the 14 companies that estimated lead
time (see Table 11) was 54 days. Between 20 and 50 percent
more than this value, we find Companies D (65 days) and C
(79 days), which we thus find fair. Companies A and B have an
observed lead time that is over 50 percent more than those
54 days, which we consider to be poor. In a study of 42 software
development projects, the mean schedule overrun was 25 per-
cent [66]. Only two projects had overrun more than 58 percent
(Company A, Table 4). Comparing these results with the
results of our study, we consider Company D as good,
Company B as fair, and Companies A and C as poor on this
dimension.

7.2.2 Performance of the Companies

Fig. 6 shows that Company A performed better than
expected on the three product dimensions but had a longer
lead time and greater schedule overrun than expected.
Halfway through the project, the project manager told us
that he was tempted to cancel the project to avoid losing
more money. One reason why the project was under-
estimated may be that the consultant who provided the
estimate was not involved in any other aspects of the
project. Previous studies on the accuracy of software
estimates show that if estimators are not responsible for
the project, their estimates may be less accurate [61].
Nevertheless, Company A decided to complete the project
according to their usual standards to preserve their
reputation. Due to the fact that the agreed time to
completion was too short, Company A had to change
developers in the middle of the project because the
developer who was originally assigned to the project left
for a long vacation. This may have also contributed to a

large overrun. In this particular case, Simula obtained a
better product than expected because the company spent
much more resources than planned. Nevertheless, if this
had been a large project, it would probably have been
necessary to renegotiate the contract and, therefore, to pay a
higher price to complete the project.

Company B obtained lower scores than expected for
most of the dimensions. Investigating this project in more
detail did not give us a simple answer to why this
happened, but we identified two factors that may have
contributed:

. The developers of Company B, as well as of
Company C, were located in different offices and,
to some extent, worked only part time on the project.
(The developers of Company D worked full time on
the project and worked in the same room. Company
A had one developer working full time on the
project, but he was replaced during the project.)
According to CVS check-ins, two developers from
Company B committed their code at different times
and, consequently, may have cooperated very little.
Project organization may be an important contribu-
tor to project success or failure. For example, full-
time focus on one project at a time and colocated
team members are encouraged in the agile software
development method Scrum [82], and team coordi-
nation in distributed teams has been associated with
large delays on individual tasks [39].

. Company B derived the method for their analysis
and design from a book on SE [60]. We suspect that
this choice was motivated by their belief that Simula
expected them to use such a method, even though
we encouraged them to use the method that they
themselves found most suited to the project.
Furthermore, the developers may have used this
method too rigidly and may not have been suffi-
ciently qualified to use it.

The observed scores for Companies C and D on the quality
dimensions matched the expectations reasonably well.
Usability for Company C was fair in contrast to the expected
poor. The high overall reproducibility of the global usability
score indicates that this dimension is not strongly affected by
project resources and an emphasis on analysis and design.

Given the lack of theories in this area, the small sample
of projects, and that many aspects of software development
are not taken into account in this study, one cannot expect
an exact match between expectations and observations.
Nevertheless, at least in our opinion, the relatively good fit
of Companies C and D, and the fact that the exception for
Company A can be easily explained, indicate that the
variations to the inputs of software production are, to some
extent, mirrored in the outputs. Of course, the desirable
goal of constructing a reasonably accurate prediction model
that would be useful for decision making in the software
industry will require much more work (see Section 10).

8 VALIDITY OF RESULTS

This section discusses issues of the validity of this study,
divided into construct validity, internal validity, external
validity, and repeatability [56], [83], [93].

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 421

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

8.1 Construct Validity

Three issues concerning construct validity are 1) how
accurately the values of the variables are measured,
2) how different variables are aggregated to measure the
dimensions of software development that were considered
in our study, and 3) how well those dimensions represent
the constructs that they are supposed to operationalize.

The accuracy of the measurements was strengthened by
the implementation of several methods to control the
process of data collection. The companies were paid for
the extra effort needed to support the research (see
Section 5.4). The effort expended by the contractor and
the number and type of defects were easily measured,
because the contractor was a Simula team that also
performed the acceptance tests. Furthermore, the commu-
nication with the team was recorded in Bugzero and e-mail.

Due to the exploratory nature of the study and the lack of
an established framework for measuring project and
product characteristics, there are challenges with many of
the measures that we used and with how these are
aggregated that may represent threats to the construct
validity. Our measures of emphasis on analysis and design,
reliability, usability, and maintainability rely, to some
extent, on expert assessment. Computing the sum and
calculating the mean of values on an ordinal scale obtained
through expert assessment may be questioned from a
measurement perspective (see, for example, [33]), but is a
common practice both in SE and in the social sciences.
Furthermore, our measures of emphasis on analysis and
design, and usability are the results of aggregating multiple
criteria on different scales. We chose to measure these
dimensions using aggregations instead of expert evaluation
because it provided more transparency on how the
measurements were derived and allowed the triangulation
and combination of different measures. The usability
evaluation was conducted by the HCI group of the research
institute SINTEF. The aggregation technique used to derive
the usability measure was their standard practice.

The operationalization of important dimensions of soft-
ware development used in our study, shown in Figs. 2, 3,
and 4, are, to some extent, pragmatic and chosen on the
basis of what could be measured in the projects. One
measure, development process, was particularly difficult to
operationalize. As described in Section 4.1, we chose
emphasis on analysis and design as described in the bids.
We followed the four projects closely during the develop-
ment phase and found that the actual effort on development
process activities, other than coding, to reflect the emphasis
on analysis and design in the bids. Nevertheless, it is a
threat to the validity of our results that emphasis on

analysis and design represents only one, although impor-
tant, aspect of development processes and that there are
challenges involved in the measurement of this dimension,
as described above.

8.2 Internal Validity

Threats to internal validity are not a major concern in our
study because most of the results are descriptive [93].
However, the discussion of expectations (Section 7) makes
some tentative assumptions and offers some explanations
for which internal validity is a concern.

There is also a challenge to the internal validity of the
results on the reproducibility of bidding information. The
bidding phase of the study reported herein was preceded
by another study on the same bids [52]. Due to the research
questions of that study, there were differences in the
conditions under which the bids were given. Half of the
companies, group 1, had taken part in a prestudy and had
also made an earlier bid for the system that was based on a
less comprehensive requirement specification, while the
other half, group 2, had only made one bid. Table 9
compares the relevant values for the two groups.

Several rounds of bidding are not common for projects of
this size. However, the variations are consistently lower for
the companies in group 1. Therefore, these results do not, in
our opinion, invalidate the results presented in Section 6.
Rather, they indicate that the reproducibility of bidding
information in practice may be slightly lower than that
reported in Table 1.

Companies B and D were in group 1, while Companies A
and C were in group 2. Having two companies in each
group was desired by the person responsible for the study
on bidding reported in [52]. This means that the higher firm
price and planned time schedule for Companies B and D
could, to some extent, be attributed to the fact that they bid
twice. However, we could have chosen four companies
from either of the two groups with approximately the same
bid characteristics as those of the four companies we
actually studied. For example, the most expensive company
belonged to group 2 (Table 9). Consequently, we do not
consider this difference in how the bids were produced to
be an important threat to internal validity.

In Section 7, we showed that the outcomes for project
and product quality matched, to some extent, our expecta-
tions, which were formulated on the basis of resources and
the planned development process. One alternative explana-
tion for the outcomes for project and product quality is the
variation in skills of the project participants. Therefore, we
selected teams with similar qualifications and inspected the
curricula vitae of the potential developers to ensure that

422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 9
Bidding Information from the Two Groups

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

they had the necessary skills. Nevertheless, it is still possible
that there could be smaller differences in qualifications
among the developers in the different companies than we
tested for. Such differences may explain some of the
differences in the outcome variables.

Development tools may also have an impact, but in our
study, the companies used similar tools. For example, all
companies used Ant for build management and CVS for
configuration management. Three out of four companies
used MS Visio for modeling, while the fourth, Company B,
used Poseidon. Another study showed no significant effects
of tools on project outcomes as long as the developers were
familiar with the tool that they used [3]. However, we
suspect that the fact that Company B used a more
specialized tool for design than the others contributed to
their making a more complex design.

Furthermore, we believe that the relatively few observed
defects may be a threat to our results regarding reliability.

8.3 External Validity

External validity refers to the issue of “establishing the
domain to which a study’s findings can be generalized”
[56]. Our call for tender was sent to a majority (81) of the
software development consultancy companies located in
Norway (some small Norwegian companies were omitted
to get a good distribution of small, medium-sized, and large
companies). Of the 81 companies, 35 responded (a response
rate of 43 percent). Consequently, we expect that a large
majority of Norwegian software development companies
that were interested in conducting this project responded.

This bidding process allowed us to select representative
projects in a top-down manner so that all cases had “equal
voice and the results [were] not skewed toward the most
prominent cases, the cases with the most or best data, or the
cases that the researchers simply [happened] to know best”
[76]. We observed large variations in the bids and we chose
four companies that represented the breadth of price, time
schedule, and development process. We had no previous
business or personal relationships with anyone in these
companies. Furthermore, an external consultant who has
many years of experience in industry was employed by
Simula to ensure that Simula behaved realistically as a
software contractor. He was involved in making the call for
tender, in the selection of companies, and in the contract
meetings. He also participated in all the project meetings at
Simula.

The requirement specification specified usability more
clearly than it did the nonfunctional requirements reliability
and maintainability, as explained in Section 5.3. This might
have contributed to higher reproducibility for usability than
for reliability and maintainability, although we believe this
to be typical for requirement specifications.

The fact that the companies were subjects of research
may represent a threat to the external validity of the results,
because the projects may have been conducted differently
from how projects in the companies were normally
conducted. However, the project members did not know
the research questions or how the data from the study
would be used. Therefore, they could not modify their
behavior intentionally in order to manipulate the results.
Interviews that were conducted regularly during the project
and other contact with the companies indicate that the
project teams were concerned primarily with the economic

aspects of the project and were not concerned with, or
influenced by, being a part of a research study. The only
exception was Company B, which we expect would have
followed a slightly different process, as explained in
Section 7.2.

Generalizing the results of this study and making claims
about reproducibility and variability of the development of
larger systems is difficult. This is because there may be
counteracting effects where on the one hand, larger scale
could mean larger variability, while on the other it could
mean better opportunities for adjusting the project out-
comes, which could lead to larger reproducibility. In the
studies on civil engineering referred to above, the larger
road construction projects showed much larger reproduci-
bility than did the smaller projects.

One particular challenge with generalizing the results of
our study to international software development is the fact
that none of the companies had been assessed according to
CMMI. CMMI level 2 should ensure repeatability within the
company, but CMMI is not common in Norway, as
commented in Section 3. Consequently, it was infeasible to
hire companies that had been subject to CMMI assessment.

Given the foregoing, we expect that it is possible to
generalize the results of our study to Norwegian and
international consultancy companies located in Norway
within the given scope [87]; that is, small but realistic Java
systems developed by small and reasonably qualified teams.

8.4 Repeatability

The repeatability (or reliability) of a study represents the
ability of other investigators (and even by the original
investigators themselves) to follow the same procedures, to
perform exactly the same study in relevant respects, and to
arrive at the same findings and conclusions [93]. Yin [93,
p. 38] claims that “in the past, case study research
procedures have been poorly documented.” A systematic
review confirms that this is also the case in SE [42]. In our
study, all the procedures and documents for collecting data
are available from the authors, and the analysis procedures
are well documented (Section 6). Therefore, we consider the
repeatability of the results of our study to be good.

9 CONTRIBUTIONS

This section discusses the results with respect to methodo-
logical, scientific, and practical contributions.

9.1 Methodological Contributions

From the methodological perspective, we expect that this
work will serve as a basis for further studies. Few case
studies in SE have been conducted according Yin’s
principles [93]. Our study of real SE phenomena combines
comprehensiveness and detail with control over important
theoretical conditions (see Section 3.1). Furthermore, it is an
example of a multiple-case study, a research method that is
seldom used in SE.

Our attempts to operationalize fundamental SE concepts
to evaluate concrete complete systems revealed deficiencies
in the current state of how concepts in the field are
understood and employed. The product quality dimension
maintainability was particularly difficult to operationalize.
We proposed a number of concrete dimensions and
measures for use in descriptions of software practices and

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 423

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

product (Figs. 2, 3, and 4). Partially, the reproducibility of
SE projects and products may be improved by using
concepts that are directly related to project and product
outcomes when describing planned development processes.

The extensive use of diverse data sources exemplifies
how to integrate a variety of data and how to ensure the
quality of data from quantitative and qualitative sources
using triangulation, control, and validation (see Section 4).

9.2 Scientific Contributions

The extent of observed variability was great. Although
some of our measures showed high reproducibility and
some of the variability in the outcome measures can be
explained by the variations in the inputs, our study
indicates a lack of reproducibility in SE projects and
products, which is in contrast to other domains. For
example, in Norway, prices for the construction of roads,
for projects of approximately the same size as the software
projects that we studied, have higher reproducibility (see
Section 6.1.1). This lack of reproducibility should also be
taken into account in empirical SE studies. In particular, the
lack of reproducibility implies that greater efforts need to be
made in studies of software construction to ensure that the
contexts of study are well defined so that the theoretical
conditions will be stable and hence scientifically sound.

The observed differences in reproducibility means that
some outcome variables appear to be better candidate
variables for empirical studies of software technologies than
others, because higher reproducibility of outcome variables
makes it easier to observe whether the technology under
study has an effect. Outcome variables with low reprodu-
cibility, on the other hand, need either better control to
increase reproducibility or further clarification and better
operationalization.

The lack of reproducibility in the bidding process suggests
that there are important drivers of costs and effort that may
not be well described using current SE concepts. Even though
bidding is partly a business domain, the bids for software
projects contain a substantial SE component. This aspect of
the bids has, so far, received little attention in the SE literature.
A better conceptualization of the different aspects of the
bidding process, for example, including the business aspects,
may be necessary to improve reproducibility.

9.3 Practical Contributions

This study has quantified various aspects of software
construction and exemplified trade-offs between various
project and product dimensions when a software system is
bid for and built by an external software development
organization. Given the modest size of the systems and the
detailed description of the functional requirements, we
observed large variations in bids and project and product
outcomes.

The functional requirements were described well in the
call for tender, but the nonfunctional requirements were
described in less detail. The large variations in the design

decisions made by the various companies suggests that
nonfunctional requirements, especially requirements re-
lated to maintainability, should be specified in the call for
tender in order to help reduce the uncertainty in project and
product outcomes.

We would expect the firm price to capture the differ-
ences in requirements and work practices that, in turn, lead
to differences in the outcomes. In such situations, high
variability would be welcome because it would provide the
contractor with a wider choice of desired outcomes,
assuming that the developers deliver accordingly better
products or services. However, in our study, information
about work practices and ambitions regarding project and
product quality could only, to a limited extent, be derived
from the bids, and the outcomes were not monotonic in
price. Our recommendation is therefore that such informa-
tion is stated more explicitly in the bids and not just be an
implicit part of the firm price.

In our study, there were differences in the effort and
qualifications required from the contractor. This represents
an important additional cost of software projects. In our
case, the large variations in the firm price are substantially
reduced if the total costs of a project are used instead.
Assuming a reasonable internal cost of 60 euros/h, the
effort spent by the contractor can be converted into costs
shown in Table 10. The total cost for Company D is only
3.4 times more expensive than for Company C, while
Company D is 6.4 times more expensive than Company C if
only the firm price is taken into account (see Section 6.1.2).
This shows that the total costs of procuring a system may be
affected strongly by the contractor’s effort. Including such
costs may alter the differences in price among bidders and
may affect the outcome of procurement decisions.

Even after taking into account the contractor’s effort, the
system from Company C was by far the cheapest.
Consequently, this system may represent the best choice
for a contractor that is tolerant to delays, that has sufficient
qualifications, and that places lower demands on certain
quality aspects.

Note also that the case of Company B shows that having
sufficient resources is not, in itself, enough to ensure the
quality of software development projects and products. The
development team must also have sufficient focus on this
project and be able to choose the right method for the
specific project.

A measure that remained relatively constant among the
projects was the actual lead time. This is somewhat
surprising, because all the projects were delivered late
and the amount of time that the developer was told to
spend on our project ranged from full-time work in
Company D to only part-time work in the remaining
companies. An intuitive expectation regarding actual lead
time would, in our opinion, be that if it differed among the
companies, it would be shorter for the companies that have
a shorter agreed time schedule than for the companies that
have a longer agreed time to completion. However, the

424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 10
Costs Including Contractor’s Effort

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

results show no correlation between the agreed time to
completion and actual lead time, and the shortest actual
lead time was spent by Company D, which had the second
longest agreed time to completion.

10 CONCLUSIONS AND FUTURE WORK

The primary goal of SE research is to study and improve the
way software is produced. To achieve this goal, it is crucial
to quantify the impact that various aspects of software
production have on the success and quality of software
projects and products. There are numerous assumptions
and a lot of folklore that purport to explain how software
production works, but a deep and detailed understanding
of the relationships is absent, due to a lack of studies that
quantify the effects of software technology under realistic
and rapidly changing circumstances. Most studies con-
ducted in SE are relatively small and investigate only
isolated aspects of software production in experimental
settings that cannot capture the complexity of how software
is developed in practice.

We have reported a study of 35 bids and four complete
commercial projects that built functionally equivalent soft-
ware products. To gather detailed information on the
software production, we collected and analyzed manage-
ment information and software development documents
and conducted extensive interviews with developers and

project managers. Considerable effort was put into the
conceptual definition and operationalization of fundamen-
tal SE terms. Factors that are known to affect software
productivity and quality, including team size, developer
skills, development technology, and interaction with the
customer were controlled to be similar. Many of the
remaining factors varied substantially. We found little
reproducibility in the firm price of bids, and in particular,
we showed that the variation in firm price was about three
times greater than in the more mature domain of road
construction. The study shows that these variations in both
firm price and variations in schedule and planned devel-
opment process can, to some extent, be used to predict
project and product outcomes, although these outcomes
were not monotonic with respect to the resources used. We
speculate that the lack of reproducibility of bids, plans, and
project and product outcomes may be due partly to the
paucity of standards for describing process and product
quality.

Given the exploratory nature of our study, the findings
should be interpreted as hypotheses to be investigated
further. Studies should be conducted that involve more
companies and that investigate substantially different con-
texts of software production, for example, in much larger
projects, in different application domains, or in projects that
use different development technology or have different
organizational structures. Furthermore, reproducibility in

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 425

TABLE 11
Data Sources

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

the maintenance phase should be studied, because to do
so would complete the picture of the entire life cycle. This
is something that we plan to do for the four systems in
this study.

Our results suggest that making SE processes, projects,
and products more reproducible is a challenge for SE
research, education, and industry practice. Future research
on reproducibility and fundamental relationships in SE will
require that comprehensive comparative studies are con-
ducted with a certain level of scientific rigor. Such studies
may require more resources than are available in most SE
research groups. At Simula, we have explicitly chosen to
use our research funds to support realistic empirical
studies, such as the one reported in this paper, rather than
to maximize the number of research staff. Moreover, one
approach to increasing the research output from a given
amount of resources is to outsource the participation in

studies to professionals in countries with lower costs. For
example, in an estimation study being conducted by Magne
Jørgensen at the time of writing this paper, 40 companies
from Eastern Europe estimated the effort to develop the
system that was the object of the study reported in this
paper. Hiring these 40 companies to develop the system
will cost approximately the same as that which we paid the
four companies in our study (130,000 euros). Another
possibility for reducing the costs of such a study would be
to use teams of students.

Nevertheless, we believe that investment in adequate
empirical studies will ultimately yield economic gains for
the software industry. Our vision is that research funding in
SE should reflect the importance of software in modern
society, which means that the funding should be at a level
comparable to that which is found in other disciplines, such
as physics and medicine.

426 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 12
Bid Information

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

APPENDIX

Data sources are summarized in Table 11 and bid
information is contained in Table 12.

ACKNOWLEDGMENTS

Conducting such a large case study would not have been
possible without contributions from a large number of
people. The authors would like to thank M. Jørgensen for
his effort made in the bidding phase and for insightful
comments on the research; P.E. Arnstad, S. Amundsen, and
J. Dzidek for input on evaluating the quality of the code;
H.C. Benestad and E. Arisholm for support on the analysis
of code structure; C. Mallows for discussion on measuring
reproducibility; H.C. Benestad for managing the contractor
project; G. Carelius for support on requirements and
technical issues; G. Farley for support on requirements
and advice during the project; A. Følstad, J. Heim, and
J.H. Skjetne for evaluating the usability; S. Grimstad for
acting as contractor representative; S.E. Hove for conduct-
ing interviews and validating all data received from the
development projects; V.B. Kampenes for help with the
interviews; B. Manum and T. Gruschke for support
regarding data from the Norwegian Public Roads Admin-
istration; and the four companies for their effort made in
this project. The authors would also like to thank B.
Kitchenham and J. Hannay for comments on an earlier
version of this paper, the anonymous referees for valuable
comments, and C. Wright for proofreading this paper.

REFERENCES

[1] M. Agrawal and K. Chari, “Software Effort, Quality, and Cycle
Time: A Study of CMM Level 5 Projects,” IEEE Trans. Software
Eng., vol. 33, no. 3, pp. 145-156, Mar. 2007.

[2] B. Anda, “Assessing Software System Maintainability Using
Structural Measures and Expert Assessments,” Proc. 23rd Int’l
Conf. Software Maintenance, pp. 204-213, 2007.

[3] E. Arisholm and D.I.K. Sjøberg, “Evaluating the Effect of a
Delegated versus Centralized Control Style on the Maintainability
of Object-Oriented Software,” IEEE Trans. Software Eng., vol. 30,
no. 8, pp. 521-534, Aug. 2004.

[4] E. Arisholm and D.I.K. Sjøberg, “Towards a Framework for
Empirical Assessment of Changeability Decay,” J. Systems and
Software, vol. 53, no. 1, pp. 3-14, 2000.

[5] H. Atmanspacher and R.G. Jahn, “Problems of Reproducibility
Complex Mind-Matter Systems,” J. Scientific Exploration, vol. 17,
no. 2, pp. 243-270, 2003.

[6] A.A. Avi�zienis and L. Chen, “On the Implementation of
N-Version Programming for Software Fault Tolerance during
Execution,” Proc. IEEE Int’l Computer Software and Applications
Conf., pp. 149-155, Nov. 1977.

[7] A.A. Avi�zienis, “The Methodology of N-Version Programming,”
Software Fault Tolerance, M. Lyu, ed., John Wiley & Sons, 1995.

[8] R.K. Bandi, V.K. Vaishnavi, and D.E. Turk, “Predicting Main-
tenance Performance Using Object-Oriented Design Complexity
Metrics,” IEEE Trans. Software Eng., vol. 29, no. 1, pp. 11-87, Jan.
2003.

[9] H.C. Benestad, B. Anda, and E. Arisholm, “Assessing Software
Product Maintainability Based on Class-Level Structural Mea-
sures,” Proc. Seventh Int’l Conf. Product-Focused Software Process
Improvement, pp. 94-111, 2006.

[10] J.D. Blackburn, G.D. Scudder, and L.N. Van Wassenhove,
“Improving Speed and Productivity of Software Development:
A Global Survey of Software Developers,” IEEE Trans. Software
Eng., vol. 22, no. 12, pp. 875-885, Dec. 1996.

[11] J.M. Bland and D.G. Altman, “Statistical Methods for Assessing
Agreement between Two Methods of Clinical Measurement,” The
Lancet, vol. 327, no. 8476, pp. 307-310, 1986.

[12] B.W. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[13] B.W. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby, “Cost Models for Future Software Life Cycle Processes:
COCOMO 2.0,” Annals of Software Eng., vol. 1, no. 1, pp. 1-24, 1995.

[14] S.S. Brilliant, J.C. Knight, and N.G. Leveson, “Analysis of Faults in
an N-Version Software Experiment,” IEEE Trans. Software Eng.,
vol. 16, no. 2, pp. 238-247, Feb. 1990.

[15] L.C. Briand, J. Daly, and J. Wuest, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems,” IEEE Trans.
Software Eng., vol. 25, no. 1, pp. 91-121, Jan./Feb. 1999.

[16] R.E. Brooks, “Studying Programmer Behavior Experimentally:
The Problems of Proper Methodology,” Human Aspects of
Computing, vol. 23, no. 4, pp. 207-213, 1980.

[17] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[18] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B.
Ray, and M.Y. Wong, “Orthogonal Defect Classification—A
Concept for In-Process Measurement,” IEEE Trans. Software Eng.,
vol. 18, no. 11, pp. 943-956, Nov. 1992.

[19] B.K. Clark, “Quantifying the Effects of Process Improvement on
Effort,” IEEE Software, vol. 17, no. 6, pp. 65-70, Nov./Dec. 2000.

[20] CMMI Maturity Profile September 2006, Software Eng. Inst., 2006.
[21] A. Cockburn, “Selecting a Project’s Methodology,” IEEE Software,

vol. 17, no. 4, pp. 64-71, July/Aug. 2000.
[22] B.P. Cohen, Developing Sociological Knowledge: Theory and Method,

second ed., 1989.
[23] K. Cox and K. Phalp, “Replicating the CREWS Use Case

Authoring Guidelines Experiment,” Empirical Software Eng.,
vol. 5, no. 3, pp. 245-267, 2000.

[24] L.J. Cronbach, Designing Evaluations of Educational and Social
Programs. Jossey-Bass, 1983.

[25] B. Curtis, “Substantiating Programmer Variability,” Proc. IEEE,
vol. 69, no. 7, p. 846, 1981.

[26] B. Curtis, “By the Way, Did Anyone Study Any Real Program-
mers,” Empirical Studies of Programmers, E. Soloway and S. Iyengar,
eds., pp. 256-262, 1986.

[27] D. Darcy and C.F. Kemerer, “OO Metrics in Practice,” IEEE
Software, vol. 22, no. 6, pp. 17-19, Nov./Dec. 2005.

[28] A. De Lucia, E. Pompella, and S. Stefanucci, “Assessing the
Maintenance Processes of a Software Organization: An Empirical
Analysis of a Large Industrial Project,” J. Systems and Software,
vol. 65, no. 2, pp. 87-103, 2003.

[29] T. DeMarco and T. Lister, Peopleware: Productive Projects and Teams.
Dorset House, 1987.

[30] H.F. Dingman, “Scientific Method and Reproducibility of Re-
sults,” Multivariate Behavioral Research, vol. 4, no. 4, pp. 517-522,
1969.

[31] T. Dybå, E. Arisholm, D.I.K. Sjøberg, J.E. Hannay, and F. Shull,
“Are Two Heads Better than One? On the Effectiveness of Pair
Programming,” IEEE Software, vol. 24, no. 6, pp. 10-13, Nov./Dec.
2007.

[32] E.F. Easton and D.R. Moodi, “Pricing and Lead-Time Decisions for
Make-to-Order Forms with Contingent Orders,” European J.
Operational Research, vol. 11, no. 3, pp. 57-67, 1997.

[33] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, second ed. PWS, 1998.

[34] A. Følstad and J. Heim, “Usability Evaluation of Four Functional
Identical Versions of DES (Database of Empirical Studies),”
SINTEF Report SINTEF_A309, 2006.

[35] J.E. Hannay, D.I.K. Sjøberg, and T. Dybå, “A Systematic Review of
Theory Use in Software Engineering Experiments,” IEEE Trans.
Software Eng., vol. 33, no. 2, pp. 87-107, Feb. 2007.

[36] D.E. Harter, M.S. Krishnan, and S.A. Slaughter, “Effects of Process
Maturity on Quality, Cycle Time, and Effort in Software Product
Development,” Management Science, vol. 46, no. 4, pp. 451-466,
2000.

[37] D.E. Harter and S.A. Slaughter, “Quality Improvement and
Infrastructure Activity Costs in Software Development: A Long-
itudinal Analysis,” Management Science, vol. 49, no. 6, pp. 784-800,
2003.

[38] L.V. Hedges and I. Olkin, Statistical Methods for Meta-Analysis.
Academic Press, 1985.

[39] J.D. Herbsleb and A. Mockus, “Formulation and Preliminary Test
of an Empirical Theory of Coordination in Software Engineering,”
ACM SIGSOFT Software Eng. Notes, vol. 28, no. 5, pp. 138-147,
2003.

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 427

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

[40] J.D. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, and M. Paulk,
“Software Quality and the Capability Maturity Model,” Comm.
ACM, vol. 40, no. 6, pp. 30-40, 1997.

[41] M. Holcombe, T. Cowling, and F. Macias, “Towards an Agile
Approach to Empirical Software Engineering,” Proc. Workshop
Empirical Studies in Software Eng., pp. 33-48, 2003.

[42] N.E. Holt, “A Systematic Review of Case Studies in Software
Engineering,” MSc thesis, Univ. of Oslo, 2006.

[43] J.S. Hunter, “The National System of Scientific Measurement,”
Science, vol. 210, no. 4472, pp. 869-874, 1980.

[44] IBM Software Support Handbook. IBM, Version 4.0.1, May 2008.
[45] IEEE Standard Glossary of Software Engineering Terminology. IEEE,

1990.
[46] ISO 5725-l first ed. 1994-I 2-15, Accuracy (Trueness and Precision)

of Measurement Methods and Results, 1994.
[47] IUPAC Compendium of Chemical Terminology, second ed.,

A.D. McNaught and A. Wilkinson, eds. (Royal Soc. Chemistry,
Cambridge, U.K.), http://www.iupac.org/publications/compen-
dium/index.html, 1997.

[48] A.M. Jenkins, J.D. Naumann, and J.C. Wetherbe, “Empirical
Investigation of Systems Development Practices and Results,”
Information and Management, vol. 7, no. 2, pp. 73-82, 1984.

[49] C.M. Judd, E.R. Smith, and L.H. Kidder, Research Methods in Social
Relations, sixth ed. Harcourt Brace Jovanovich, 1991.

[50] M. Jørgensen, “The Effects of the Format of Software Project
Bidding Processes,” Int’l J. Project Management, vol. 24, no. 6,
pp. 522-528, 2006.

[51] M. Jørgensen, S.S. Bygdås, and T. Lunde, “Efficiency Evaluation of
CASE Tools—Methods and Results,” TF R 38/95, Telenor FoU,
1995.

[52] M. Jørgensen and G.J. Carelius, “An Empirical Study of Software
Project Bidding,” IEEE Trans. Software Eng., vol. 30, no. 12, pp. 953-
969, Dec. 2004.

[53] M. Jørgensen and D.I.K. Sjøberg, “Impact of Experience on
Maintenance Skills,” Software Maintenance: Research and Practice,
vol. 14, no. 2, pp. 123-146, 2002.

[54] V.B. Kampenes, T. Dybå, J.E. Hannay, and D.I.K. Sjøberg, “A
Systematic Review of Effect Size in Software Engineering
Experiments,” Information and Software Technology, vol. 49,
nos. 11/12, pp. 1073-1086, 2007.

[55] K. Kelley, “Sample Size Planning for the Coefficient of Variation
from the Accuracy in Parameter Estimation Approach,” Behavior
Research Methods, vol. 39, pp. 755-766, 2007.

[56] L. Kidder and C.M. Judd, Research Methods in Social Relations, fifth
ed. Holt, Rinehart, and Winston, 1986.

[57] J.C. Knight and N.G. Leveson, “An Experimental Evaluation of
the Assumption of Independence in Multiversion Programming,”
IEEE Trans. Software Eng., vol. 12, no. 1, pp. 96-109, Jan. 1986.

[58] D.R. Krathwohl, Social and Behavioral Science Research. Jossey-Bass,
1985.

[59] M.S. Krishnan, C.H. Kriebel, S. Kekre, and T. Mukhopadhyay,
“An Empirical Analysis of Productivity and Quality in Software
Products,” Management Science, vol. 46, no. 6, pp. 745-759, 2000.

[60] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process, second ed.
Prentice Hall, 2001.

[61] A.L. Lederer and J. Prasad, “Software Management and Cost
Estimating Error,” J. Systems and Software, vol. 50, no. 19, pp. 33-42,
2000.

[62] E. Marshall, “Getting the Noise Out of Gene Arrays,” Science,
vol. 22, no. 306, pp. 630-631, 2004.

[63] K.D. Maxwell, L. Van Wassenhove, and S. Dutta, “Software
Development Productivity of European Space, Military, and
Industrial Applications,” IEEE Trans. Software Eng., vol. 22,
no. 10, pp. 706-718, Oct. 1996.

[64] S. McConnell, “I Know What I Know,” IEEE Software, vol. 19,
no. 3, pp. 5-7, May/June 2002.

[65] K. Milis and R. Mercken, “Success Factors Regarding the
Implementation of ICT Investment Projects,” Int’l J. Production
Economics, vol. 80, no. 1, pp. 105-117, 2002.

[66] K.J. Moløkken-Østvold, “Effort and Schedule Estimation of
Software Development Projects,” PhD thesis, Univ. of Oslo, 2004.

[67] K.J. Moløkken-Østvold and M. Jørgensen, “A Comparison of
Software Project Overruns—Flexible versus Sequential Develop-
ment Models,” IEEE Trans. Software Eng., vol. 31, no. 9, pp. 754-
766, Sept. 2005.

[68] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, “Capability
Maturity Model for Software, Version 1.1,” Report CMU/SEI-93-
TR-24, Software Eng. Inst., Pittsburgh, 1993.

[69] P.W. Oman and J.R. Hagemeister, “Construction and Testing of
Polynomials Predicting Software Maintainability,” J. Systems and
Software, vol. 24, no. 3, pp. 251-266, 1994.

[70] H. Pedersen, “Tender Prices: Bridge, Tunnel, Electro and Road
Building and Maintenance 1998-2006,” Technology Report 2468,
Norwegian Public Roads Administration, 2006.

[71] L. Prechelt, “The 28:1 Grant/Sackman Legend Is Misleading, or:
How Large Is Interpersonal Variation Really?” Technical Report
1999-18, Universität Karlsruhe, Fakultät für Informatik, 1999.

[72] L. Prechelt, “An Empirical Comparison of C, C++, Java, Perl,
Python, Rexx, and Tcl for a Search/String-Processing Program,”
Technical Report 2000-5, Universität Karlsruhe, Fakultät für
Informatik, 2000.

[73] L. Prechelt, “An Empirical Comparison of Seven Programming
Languages,” Computer, vol. 33, no. 10, pp. 23-29, Oct. 2000.

[74] L. Prechelt, “Plat_Forms 2007: The Web Development Platform
Comparison—Evaluation and Results,” Technical Report B-07-10,
Freie Universität Berlin, Institut für Informatik, 2007.

[75] J.D. Procaccino, J.M. Verner, K.M. Shelfer, and D. Gefen, “What
Do Software Practitioners Really Think about Project Success: An
Exploratory Study,” J. Systems and Software, vol. 78, no. 2, pp. 194-
203, 2005.

[76] C.C. Ragin, “Case-Oriented Research,” Encyclopaedia of the Social
and Behavioural Sciences, vol. 3, pp. 1519-1525, 2001.

[77] G.F. Reed, F. Lynn, and B.D. Meade, “Use of Coefficient of
Variation in Assessing Variability of Quantitative Assays,” Clinical
and Diagnostic Laboratory Immunology, vol. 9, no. 6, pp. 1235-1239,
2002.

[78] R.H. Reussner, H.W. Schmidt, and I.H. Poernomo, “Reliability
Prediction for Component-Based Software Architecture,” The J.
Systems and Software, vol. 66, no. 3, pp. 241-252, 2003.

[79] L. Richards, Handling Qualitative Data—A Practical Guide. Sage
Publications, 2005.

[80] R. Rosenthal and M.R. DiMatteo, “Meta-Analysis: Recent Devel-
opment in Quantitative Methods for Literature Reviews,” Ann.
Rev. Psychology, vol. 52, pp. 59-82, 2001.

[81] T.P. Rout, K. El Emam, M. Fusani, D. Goldenson, and H.-W. Jung,
“SPICE in Retrospect: Developing a Standard for Process
Assessment,” J. Systems and Software, vol. 80, no. 9, pp. 1483-
1493, 2007.

[82] K. Schwaber, Agile Project Management with Scrum. Microsoft
Press, 2004.

[83] W.R. Shadish, T.D. Cook, and D.T. Campbell, Experimental and
Quasi-Experimental Designs for Generalized Causal Inference. Hought-
on-Mifflin, 2002.

[84] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort Estimation
Using Analogy,” Proc. 18th Int’l Conf. Software Eng., pp. 170-178,
1996.

[85] M. Sidman, Scientific Research. Basic, 1960.
[86] H.P. Siy, A. Mockus, J.D. Herbsleb, M. Krishnan, and G.T. Tucker,

“Making the Software Factory Work: Lessons from a Decade of
Experience,” Proc. Seventh Int’l Symp. Software Metrics, pp. 317-327,
2001.

[87] D.I.K. Sjøberg, T. Dybå, and M. Jørgensen, “The Future of
Empirical Methods in Software Engineering Research,” Future of
Software Eng., pp. 358-378, IEEE-CS Press, 2007.

[88] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.
Karahasanovic, N.-K. Liborg, and A.C. Rekdal, “A Survey of
Controlled Experiments in Software Engineering,” IEEE Trans.
Software Eng., vol. 31, no. 9, pp. 733-753, Sept. 2005.

[89] H. Tetens, “Reproducibility,” Enzyklopädie Philosophie und Wis-
senschaftstheorie, J. Mittelstrass et al., eds., pp. 593-594, Metzlersche
J.B., 2004.

[90] W. Trochim, “Outcome Pattern Matching and Program Theory,”
Evaluation and Program Planning, vol. 12, no. 4, pp. 355-366, 1989.

[91] D.G. Wagner, “The Growth of Theories,” Group Processes: Socio-
logical Analyses, M. Foschi and E.J. Lawler, eds., pp. 25-42, Nelson-
Hall, 1994.

[92] F. Walkerden and R. Jeffery, “An Empirical Study of Analogy-
Based Software Effort Estimation,” Empirical Software Eng., vol. 4,
no. 2, pp. 135-158, 1999.

[93] R.K. Yin, Case Study Research: Design and Methods, third ed. Sage
Publications, 2003.

428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

[94] R.K. Yin, P.G. Bateman, and G.B. Moore, “Case Studies and
Organizational Innovation: Strengthening the Connection,”
Science Comm., vol. 6, no. 3, pp. 249-260, 1985.

Bente C.D. Anda received the MSc and PhD
degrees from the University of Oslo in 1991 and
2003, respectively. From 2002 to 2008, she was
a research scientist at Simula Research Labora-
tory, Lysaker, Norway. She also has several
years of industry experience as a consultant. She
is currently a senior advisor and group manager
at the Norwegian Directorate of Taxes and an
associate professor in the Department of Infor-
matics at the University of Oslo. Her research

interests include empirical software engineering, software project
management, software quality, and software process improvement.

Dag I.K. Sjøberg received the MSc degree in
computer science from the University of Oslo in
1987 and the PhD degree in computing science
from the University of Glasgow in 1993. He has
five years of industry experience as a consultant
and group leader. He is a professor of software
engineering in the Department of Informatics at
the University of Oslo and founded the Software
Engineering Department at the Simula Research
Laboratory. Among his research interests are

research methods in empirical software engineering, software pro-
cesses, software process improvement, and most aspects of the
software life cycle. He is a member of the IEEE, the International
Software Engineering Research Network, and the editorial board of
Empirical Software Engineering.

Audris Mockus received the BS and MS
degrees in applied mathematics from Moscow
Institute of Physics and Technology in 1988 and
the MS and PhD degrees in statistics from
Carnegie Mellon University in 1991 and 1994,
respectively. He is interested in quantifying,
modeling, and improving software development.
He designs data mining methods to summarize
and augment software change data, interactive
visualization techniques to inspect, present, and

control the development process, and statistical models and optimiza-
tion techniques to understand the relationships among people,
organizations, and characteristics of a software product. He is with the
Software Technology Research Department at Avaya Labs. Previously,
he was with the Software Production Research Department at Bell Labs.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ANDA ET AL.: VARIABILITY AND REPRODUCIBILITY IN SOFTWARE ENGINEERING: A STUDY OF FOUR COMPANIES THAT DEVELOPED THE... 429

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on November 9, 2009 at 14:43 from IEEE Xplore. Restrictions apply.

