
Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

1. (10pt) Name:

INSTRUCTIONS: Carefully read each question, and write the answer in the space provided. If answers

to free response questions are written obscurely, zero credit will be awarded. The correct answer to a

free response question with a short answer (i.e., one word or phrase) will never contain any significant

words used in the question itself (i.e., “crossword rules”). You are permitted to use two 8.5x11 inch

sheets of paper (double-sided) containing hand-written notes; all other aids (other than your brain) are

forbidden. Questions may be brought to the instructor.

This exam is designed to take 80 minutes (but you may take as much as 150 minutes, if you want

to). There are 800 points available on the exam, and most questions are worth a number of points that

is divisible by ten. These point values are a rough guide to how long I think you should spend on each

question.

For TRUE or FALSE and multiple choice questions, circle your answer.

On free response questions only, you will receive 20% credit for any question which you leave blank (i.e.,

do not attempt to answer). Do not waste your time or mine by making up an answer if you do not know.

(Note though that most questions offer partial credit, so if you know part of the answer, it is almost

always better to write something rather than nothing.)

To get credit for this question, you must:

• Print your name (e.g., “Martin Kellogg”) in the space provided on this page.

• Print your UCID (e.g., “mjk76”) in the space at the top of each page of the exam.

Point distribution (blanks for graders only):

Page 1: 10 / 10

Pages 2 and 3: 320 / 320

Pages 4 and 5: 260 / 260

Pages 6 and 7: 210 / 210

Extra Credit: 40 / 0

Total: 840 / 800

Page 1 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

I. Multiple Choice and Very Short Answer (120pts). In the following section, either circle your

answer (possible answers appear in bold) or write a very short (one word or one phrase) answer in the

space provided. No partial credit is possible in this section.

2. (20pt) A context-free grammar is the theoretical grounding for which of these? (Select all that apply.)

A typechecking

B lexing

C parsing

D dataflow analysis

3. (20pt) The dataflow analyses that we use for enabling optimizations should be: (Select all that apply.)

A sound

B complete

C conservative

D monotonic

4. (20pt) List scheduling does a topological sort of a precedence graph of operations to construct a sched-

ule, one cycle at a time.

5. (20pt) “If B is a subclass of A, then an object of class B can be used wherever an object of class A is

expected” is the statement of which of these:

A Liskov substitution principle

B Rice’s theorem

C Church-Turing thesis

D Curry-Howard correspondence

6. (20pt) Which of the following are advantages of using exceptions instead of error return codes in a

program? (Select all that apply.) Exceptions...

A ...avoid forgotten error checks.

B ...avoid choosing arbitrary error values.

C ...can carry detailed error information.

D ...enable separation of normal logic and error logic.

7. (10pt) TRUE or FALSE: regional optimizations are not used in production compilers, because each

extended basic block contains exponentially-many paths in the number of constituent basic blocks.

8. (10pt) TRUE or FALSE: abstract interpretation, dataflow analysis, and pluggable types are equivalently-

expressive formalisms. That is, there is nothing that you can express in one of them that you cannot

express in the other two.

Page 2 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

A. Stop and Copy B. Boolean Satisfiability C. Single-Static Assignment D. Basic Block
E. Stack Machine F. Peephole Optimization G. Global Optimization H. Duck Typing
I. Mark and Sweep J. Interprocedural Optimization K. Activation Record L. Header File
M. Spill N. Curry-Howard Correspondence O. Graph Coloring P. Symbol Table

II. Matching (200pts). This section contains a collection of terms discussed in class in an “Answer

Bank” (choices A. through P.). Each question in this section describes a situation associated with an

answer in the Answer Bank. Write the letter of the term in the Answer Bank that best describes each

situation. Each answer in the Answer Bank will be used at most once.

9. (20pt) J. Interprocedural Optimization Maria’s compiler does a whole-program analysis to determine

that it will be profitable to inline a function.

10. (20pt) N. Curry-Howard Correspondence Gottfried writes a program in F*, a language whose type

system allows him to encode the program’s full functional specification into its type.

11. (20pt) H. Duck Typing Bernhard’s programming language has made a design choice that favors ex-

pressiveness and flexibility over static safety.

12. (20pt) M. Spill Leonhard’s program has too many live variables at the same time to fit into the registers

on the machine.

13. (20pt) O. Graph Coloring Blaise’s compiler reduces the register allocation problem to a standard NP-

complete problem instead of solving it directly.

14. (20pt) L. Header File Srinivasa needs to typecheck object files that were compiled separately.

15. (20pt) C. Single-Static Assignment When proving the correctness of an optimization, Sofia relies on

the fact that each variable in the IR is referentially transparent.

16. (20pt) F. Peephole Optimization René’s compiler replaces an adjacent store and load of the same

value with a register move.

17. (20pt) E. Stack Machine In order to make it easier to show that his compiler is correct, Carl decides

to use a simple model of computation.

18. (20pt) I. Mark and Sweep Emmy is writing a garbage collector for a language that allows the program-

mer to store raw pointers.

Page 3 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

III. Short answer (470pts). Answer the questions in this section in at most three sentences, unless

the question gives other instructions (question-specific instructions have higher priority).

19. (100pt) Rewrite the following program using local optimizations, showing your work, until there are no

more local optimizations (from among those we discussed in-class) that you can safely apply. At each

step, apply only one optimization: do not mix optimizations. The first optimization has been applied for

you. After applying each optimization, rewrite only the lines that were changed by that optimization and

clearly label which optimization you have applied, as in the example.

1 a := 2 * x

2 b := 2 + 2

3 c := a * b

4 d := 6 + b

5 e := c

6 f := e + d

7 g := c + e

8 print g

Constant Folding
−−−−−−−−−−−−→

1

2 b := 4

3

4

5

6

7

8 ...

−−−−−−−−−−−−→

Best answer is the following:

1 DCE’d

2 DCE’d

3 DCE’d

4 DCE’d

5 DCE’d

6 DCE’d

7 g := x << 4

8 print g

Grading is based on whether you correctly labeled each step and whether you got to the end. Order

doesn’t matter. I was pretty generous here. A common mistake was to get nearly to the end, but then

leave line 7 as “g := x * 16”, which is almost certainly worse than a shift.

Page 4 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

20. Suppose that we want to add automatic memory management to Cool. We decide to use a reference

counting garbage collector.

(a) (20pt) Which two constructs’ operational semantics rules must we modify to support reference count-

ing? New and Assignment

(b) (50pt) Write the standard Cool operational semantics rule for ONE of these constructs. Circle the

construct that you use for this part in your answer to part a. Either of the following gets full

credit:

(c) (50pt) Write a modified operational semantics rule for the SAME construct you chose in part

b that adds support for reference counting. You may assume the existence of a free primitive that

takes a value as input. Either of the following gets full credit, as long as its the same one

that was used in part b (black text is new). It is an intentional exam design decision

that the new assign rule is significantly more complex than the new new rule, since

old assign rule (part b) is much simpler. I gave credit for alternative formalisms that

introduce a new environment (e.g., C) to each rule to hold the reference counts, as well.

(d) (40pt) Describe a direct impact of these modifications on code generation, from the perspective

of optimization. For example, you might describe an optimization that is easier (or harder) on the

resulting code, or an optimization that now more (or less) profitable. Manipulating the reference

count increases register pressure from assignments. Another sensible answer is that this

makes optimizations to increment and decrement especially valuable, but for full credit

I will require a specific example of how one might do this. Another good, common

answer was that reference counting makes DCE and copy prop. more important, since

you also save the overhead.

Page 5 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

21. (60pt) Show that an abstract interpretation I = (A,⊑, α, γ) terminates. If you rely on any standard

property of an abstract interpretation or one of its components that we discussed in class, you must give

a correct (mathematical) definition of what it means in the context of abstract interpretation.

We assume that the abstract domain A is a lattice of finite height, or wlog that widening

operators exist that allow us to treat it that way. Then, we rely on the monotonicity of ⊑ -

that is, that ⊑ obeys the following property: ∀a, b, c, d ∈ A.a ⊑ b∧ c ⊑ d → a⊔ c ⊑ b⊔d. Because

⊑ is monotonic, it can only ever cause us to move up in the lattice. Since the lattice is of

finite height, we can modify each location at most k − 1 times, where k is the height of the

lattice (or, if widening is in use, the effective height of the lattice afte the widening operator

has been applied). Thus, the algorithm must terminate.

Rubric: -20 for a correct proof but no definition of monotonicity; -10 for an informal

definition. -10 for not mentioning that the lattice needs to be finite. -30 for “finite height

and monotonicity” and no actual proof. No penalty for unnecessarily complicated proof

structures (e.g., one of you proved this by contradiction) or unnecessary but true definitions

and facts.

22. (40pt) Support or refute the following claim: it is always profitable to unroll a loop if you can prove that

doing so is safe.

Should refute. Loop unrolling’s profitability depends a lot on indirect effects: it increases

program size (which can overflow the instruction cache), it changes caching behavior in

other ways, unrolled loop may use more registers; if that causes a value to spill, it’s almost

certainly not worth it, etc. A full credit answer needs to include at least one example of an

indirect effect to support the argument.

23. (40pt) Support or refute the following claim: a compiler can change the x86-64 calling convention for

methods that it generates. Support or refute answers are possible. A support answer must argue

that this is possible for internal methods: those that the compiler does not expect to be

visible beyond the code being compiled, because the calling convention is actually arbitrary.

A refute answer must argue that the compiler cannot change the calling convention for

methods that will be called by other programs, and that doing so would break separate

compilation. 30 points for either of these arguments; 40 points for explicitly noting both

sides; 20 points for “it can” without a good explanation of why or what the consequences

will be.

Page 6 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

24. (30pt) The goal of a register allocator is not just to map the v virtual registers used by a block to the k

physical registers that are actually present on the target machine, if the block uses more virtual registers

than are actually available (i.e., v > k). Why not? The intention of the question was to elicit

this answer: spilling a register takes one or more registers, so the allocator needs to reserve

space to actually do that.

However, the question was badly-worded, so I also gave full credit for “decide what registers

to spill” and similar correct claims about the register allocator. I only took off points here

for 1) saying false things, or 2) not actually saying anything of substance.

25. (40pt) Support or refute the following claim: it is sound for one pluggable type system to rely on type

qualifiers from a different pluggable type system as a premise in one of its typing judgments. Must

support. This is true as long as 1) both typecheckers are known to run, and 2) the reliance

only goes in one direction (that is, we avoid circular reasoning between the typecheckers;

equivalently, the typechecker must form a DAG). In other words, it’s sound if typechecker A

relies on some fact in a qualifier of typechecker B so long as B does not do the same with A. I

showed an example of this in class with the Nullness Checker and the Initialization Checker.

30 points for an otherwise correct answer that does not mention circular reasoning, DAGs,

or anything else restricting how the typecheckers rely on each other.

Page 7 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

IV. Extra Credit. Questions in this section do not count towards the denominator of the exam score.

26. (10pt) In section II (Matching), there is a theme to the names used in the situation descriptions. What

is the theme? Famous mathematicians

27. (10pt) Give the last name of any three of the people who inspired the names used in the situation descrip-

tions in section II (Matching). Maria Gaetana Agnesi, Gottfried Liebnitz, Bernhard Riemann,

Leonhard Euler, Blaise Pascal, Srinivasa Ramanujan, Sofia Kovalevskaya, Rene Descartes,

Carl Friedrich Gauss, and Emmy Noether.

28. (10pt) Suppose that we wanted to modify the PA3 and PA4 assignments so that it’s no longer necessary

to pass -no-pie -static to gcc when assembling your .s files. What would you, the student, need to do

differently in PA3 and PA4? You’d need to generate position-independent code.

29. (10pt) May I include your final PA4 submission as an anonymous “boss battle” in future iterations of the

PA4 leaderboard? (Answer “Yes” or “No”. Either of those strings receives full credit for this question;

any other string, including the empty string, recieves zero. If you are working with a partner, I will only

include your submission if you both answer “Yes”.) “Yes” or “No” gets full credit; any other string

gets nothing.

Page 8 of 9



Compilers Sp25 Final Exam 25 questions; 800 pts + 40 ec; 9 pgs. UCID:

This page intentionally left blank (you may use it as scratch paper, and the proctor will have more scratch

paper at the front if you need more).

Page 9 of 9


