
x86 Review | Intro
(choose your own adventure)

Martin Kellogg

Course Announcements

● the PA3c1 (codegen testing) deadline has already passed
○ if you forgot about it, we will still accept submissions (with a

penalty)

Course Announcements

● the PA3c1 (codegen testing) deadline has already passed
○ if you forgot about it, we will still accept submissions (with a

penalty)
● PA3c2 (TAC) is due later this week (“before spring break”)

○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short

extension on this assignment to e.g., Monday

Course Announcements

● the PA3c1 (codegen testing) deadline has already passed
○ if you forgot about it, we will still accept submissions (with a

penalty)
● PA3c2 (TAC) is due later this week (“before spring break”)

○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short

extension on this assignment to e.g., Monday
● I have become aware of a bug in the reference compiler’s x86-64

module; a fix will be forthcoming. For now, don’t trust it.

Course Announcements

● the PA3c1 (codegen testing) deadline has already passed
○ if you forgot about it, we will still accept submissions (with a

penalty)
● PA3c2 (TAC) is due later this week (“before spring break”)

○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short

extension on this assignment to e.g., Monday
● I have become aware of a bug in the reference compiler’s x86-64

module; a fix will be forthcoming. For now, don’t trust it.
● Don’t forget there is a midterm in this class the week after spring

break!

Agenda

● Overview of x86-64 architecture

Agenda

● Overview of x86-64 architecture
○ this might be a review of some things you learned in 350

Agenda

● Overview of x86-64 architecture
○ this might be a review of some things you learned in 350
○ it might also be new

■ either is fine! (but we’re going to go quickly…)

Agenda

● Overview of x86-64 architecture
○ this might be a review of some things you learned in 350
○ it might also be new

■ either is fine! (but we’re going to go quickly…)
○ my goal today: make sure you’re aware of the “usual traps” in

the x86-64 standard, and make sure you know where to go to
learn more
■ I am not trying to give you a detailed understanding of

each construct today (you’ll get that from doing PA3…)

Resources

● When you’re doing PA3, you’re going to want to refer to some
resources
○ there are many on the web

■ and I encourage you to explore

Resources

● When you’re doing PA3, you’re going to want to refer to some
resources
○ there are many on the web

■ and I encourage you to explore
■ I don’t suggest trusting ChatGPT or similar tools on this -

assembly programming requires getting all the details
right, and LLMs are very bad at being detail-oriented

Resources

● When you’re doing PA3, you’re going to want to refer to some
resources
○ there are many on the web

■ and I encourage you to explore
■ I don’t suggest trusting ChatGPT or similar tools on this -

assembly programming requires getting all the details
right, and LLMs are very bad at being detail-oriented

○ I have curated a few resources here:
https://kelloggm.github.io/martinjkellogg.com/teaching/cs48
5-sp25/languages/#x86-64

https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/languages/#x86-64
https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/languages/#x86-64

Resources

● When you’re doing PA3, you’re going to want to refer to some
resources
○ there are many on the web

■ and I encourage you to explore
■ I don’t suggest trusting ChatGPT or similar tools on this -

assembly programming requires getting all the details
right, and LLMs are very bad at being detail-oriented

○ I have curated a few resources here:
https://kelloggm.github.io/martinjkellogg.com/teaching/cs48
5-sp25/languages/#x86-64

Suggestions welcome!

https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/languages/#x86-64
https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/languages/#x86-64

x86 Story Time

x86 Story Time

● x86 is a very old assembly language
○ 8086 processor for which it was originally designed was

released in 1976…

x86 Story Time

● x86 is a very old assembly language
○ 8086 processor for which it was originally designed was

released in 1976…
○ microarchitecture has changed a lot since then: pipelining,

super-scalar, out-of-order, caching, multicore, …

x86 Story Time

● x86 is a very old assembly language
○ 8086 processor for which it was originally designed was

released in 1976…
○ microarchitecture has changed a lot since then: pipelining,

super-scalar, out-of-order, caching, multicore, …
● Modern x86 is still backward-compatible with 8086 code

○ You can get VisiCalc 1.0 on the web & run it!

x86 Story Time

● x86 is a very old assembly language
○ 8086 processor for which it was originally designed was

released in 1976…
○ microarchitecture has changed a lot since then: pipelining,

super-scalar, out-of-order, caching, multicore, …
● Modern x86 is still backward-compatible with 8086 code

○ You can get VisiCalc 1.0 on the web & run it!
● Intel’s descriptions of the architecture are engulfed with modes

and flags; the modern processor is fairly straightforward
○ Load/Store from memory
○ Register-register operations

x86: RISC or CISC?

x86: RISC or CISC?

● x86 is technically a CISC (complex instruction set computer)
architecture

x86: RISC or CISC?

● x86 is technically a CISC (complex instruction set computer)
architecture
○ key definitional feature of a CISC: there are instructions that

take more than one clock cycle to execute

x86: RISC or CISC?

● x86 is technically a CISC (complex instruction set computer)
architecture
○ key definitional feature of a CISC: there are instructions that

take more than one clock cycle to execute
● However, the parts of x86 that you should be using in your

compiler are actually closer to a traditional RISC architecture

x86: RISC or CISC?

● x86 is technically a CISC (complex instruction set computer)
architecture
○ key definitional feature of a CISC: there are instructions that

take more than one clock cycle to execute
● However, the parts of x86 that you should be using in your

compiler are actually closer to a traditional RISC architecture
○ RISC = “reduced instruction set computer”

x86: RISC or CISC?

● x86 is technically a CISC (complex instruction set computer)
architecture
○ key definitional feature of a CISC: there are instructions that

take more than one clock cycle to execute
● However, the parts of x86 that you should be using in your

compiler are actually closer to a traditional RISC architecture
○ RISC = “reduced instruction set computer”
○ most complex instructions exist for backward-compatibility

and can be slow

x86: RISC or CISC?

● x86 is technically a CISC (complex instruction set computer)
architecture
○ key definitional feature of a CISC: there are instructions that

take more than one clock cycle to execute
● However, the parts of x86 that you should be using in your

compiler are actually closer to a traditional RISC architecture
○ RISC = “reduced instruction set computer”
○ most complex instructions exist for backward-compatibility

and can be slow
○ other complex instructions exist to take advantage of

peculiar hardware

x86-64 Main Features

x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

● 64-bit address space; pointers are 8 bytes

x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

● 64-bit address space; pointers are 8 bytes
● 16 SSE registers for floating point, SIMD

x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

● 64-bit address space; pointers are 8 bytes
● 16 SSE registers for floating point, SIMD
● Register-based function call conventions

x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

● 64-bit address space; pointers are 8 bytes
● 16 SSE registers for floating point, SIMD
● Register-based function call conventions
● Additional addressing modes (pc relative)

x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

● 64-bit address space; pointers are 8 bytes
● 16 SSE registers for floating point, SIMD
● Register-based function call conventions
● Additional addressing modes (pc relative)
● 32-bit legacy mode

x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

● 64-bit address space; pointers are 8 bytes
● 16 SSE registers for floating point, SIMD
● Register-based function call conventions
● Additional addressing modes (pc relative)
● 32-bit legacy mode
● Some pruning of old features

x86-64 Syntax

● Two main assembler languages for x86-64:

x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs

x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs
○ AT&T/GNU syntax: what we’re generating and what’s in the

linked handouts, course webpage, etc.

x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs
○ AT&T/GNU syntax: what we’re generating and what’s in the

linked handouts, course webpage, etc.
■ You can use gcc –S to generate AT&T-style assembly

code from C/C++ code for more examples

x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs
○ AT&T/GNU syntax: what we’re generating and what’s in the

linked handouts, course webpage, etc.
■ You can use gcc –S to generate AT&T-style assembly

code from C/C++ code for more examples
○ I will always use AT&T/GNU syntax

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel docs include many complex,
historical instructions and artifacts
that aren’t commonly used by
modern compilers

x86-64 Memory Model

x86-64 Memory Model

● 8-bit bytes, byte-addressable

x86-64 Memory Model

● 8-bit bytes, byte-addressable
● 16-, 32-, 64-bit words, double words and quad words (Intel

terminology)

x86-64 Memory Model

● 8-bit bytes, byte-addressable
● 16-, 32-, 64-bit words, double words and quad words (Intel

terminology)
○ That’s why the ‘q’ in 64-bit instructions like movq, addq, etc.

x86-64 Memory Model

● 8-bit bytes, byte-addressable
● 16-, 32-, 64-bit words, double words and quad words (Intel

terminology)
○ That’s why the ‘q’ in 64-bit instructions like movq, addq, etc.

● Data should normally be aligned on “natural” boundaries

x86-64 Memory Model

● 8-bit bytes, byte-addressable
● 16-, 32-, 64-bit words, double words and quad words (Intel

terminology)
○ That’s why the ‘q’ in 64-bit instructions like movq, addq, etc.

● Data should normally be aligned on “natural” boundaries
○ unaligned accesses are generally supported, but with a big

performance penalty on modern machines

x86-64 Memory Model

● 8-bit bytes, byte-addressable
● 16-, 32-, 64-bit words, double words and quad words (Intel

terminology)
○ That’s why the ‘q’ in 64-bit instructions like movq, addq, etc.

● Data should normally be aligned on “natural” boundaries
○ unaligned accesses are generally supported, but with a big

performance penalty on modern machines
○ though function calls into e.g., glibc need to have the stack

16-bit aligned (ask me how I know)

x86-64 Memory Model

● 8-bit bytes, byte-addressable
● 16-, 32-, 64-bit words, double words and quad words (Intel

terminology)
○ That’s why the ‘q’ in 64-bit instructions like movq, addq, etc.

● Data should normally be aligned on “natural” boundaries
○ unaligned accesses are generally supported, but with a big

performance penalty on modern machines
○ though function calls into e.g., glibc need to have the stack

16-bit aligned (ask me how I know)
● Little-endian: address of a multi-byte integer is address of

low-order byte

x86-64 Registers

x86-64 Registers

● 16 64-bit general registers
○ %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8-%r15

x86-64 Registers

● 16 64-bit general registers
○ %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8-%r15

● Registers can be used as 64-bit integers or pointers, or as 32-bit
ints

x86-64 Registers

● 16 64-bit general registers
○ %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8-%r15

● Registers can be used as 64-bit integers or pointers, or as 32-bit
ints
○ Also possible to reference low-order 16- and 8-bit chunks

■ (for the most part you shouldn’t need to)

x86-64 Registers

● 16 64-bit general registers
○ %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8-%r15

● Registers can be used as 64-bit integers or pointers, or as 32-bit
ints
○ Also possible to reference low-order 16- and 8-bit chunks

■ (for the most part you shouldn’t need to)
● To simplify your project, all Cool types have the same size (ints,

pointers, even booleans!)

x86-64 Registers

● 16 64-bit general registers
○ %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8-%r15

● Registers can be used as 64-bit integers or pointers, or as 32-bit
ints
○ Also possible to reference low-order 16- and 8-bit chunks

■ (for the most part you shouldn’t need to)
● To simplify your project, all Cool types have the same size (ints,

pointers, even booleans!)
○ I suggest you use 64 bits to store them to make your life easy

■ 32 bits is okay too, but it’s your funeral

Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

 while (running) {

Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

 while (running) {
fetch instruction beginning at rip address

Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

 while (running) {
fetch instruction beginning at rip address
rip <- rip + instruction length

Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

 while (running) {
fetch instruction beginning at rip address
rip <- rip + instruction length
execute instruction

}

Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

 while (running) {
fetch instruction beginning at rip address
rip <- rip + instruction length
execute instruction

}

● Sequential execution unless a jump stores a new “next
instruction” address in %rip

Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

 while (running) {
fetch instruction beginning at rip address
rip <- rip + instruction length
execute instruction

}

● Sequential execution unless a jump stores a new “next
instruction” address in %rip

○ %rip is a hidden register; cannot access directly as a register
from assembly code, change by sequential instruction
execution and jumps (including call and return)

Instruction Format

Instruction Format

● Typical data manipulation instruction:

opcode src, dst # comment

Instruction Format

● Typical data manipulation instruction:

opcode src, dst # comment

● Meaning is:

dst <- dst op src

Instruction Format

● Typical data manipulation instruction:

opcode src, dst # comment

● Meaning is:

dst <- dst op src
● Normally, one operand is a register; the other is a register,

memory location, or integer constant

Instruction Format

● Typical data manipulation instruction:

opcode src, dst # comment

● Meaning is:

dst <- dst op src
● Normally, one operand is a register; the other is a register,

memory location, or integer constant
○ Can’t have both operands in memory – can’t encode two

memory addresses in a single instruction (e.g., cmp, mov)

Instruction Format

● Typical data manipulation instruction:

opcode src, dst # comment

● Meaning is:

dst <- dst op src
● Normally, one operand is a register; the other is a register,

memory location, or integer constant
○ Can’t have both operands in memory – can’t encode two

memory addresses in a single instruction (e.g., cmp, mov)
● Language is free-form, comments and labels may appear on lines

by themselves (and can have multiple labels per line of code)

x86-64 Memory Stack

x86-64 Memory Stack

● Register %rsp points to the “top” of stack

x86-64 Memory Stack

● Register %rsp points to the “top” of stack
○ Dedicated for this use; don’t use for anything else!

x86-64 Memory Stack

● Register %rsp points to the “top” of stack
○ Dedicated for this use; don’t use for anything else!

● Points to the last 64-bit quadword pushed onto the stack (not
next “free” quadword)

x86-64 Memory Stack

● Register %rsp points to the “top” of stack
○ Dedicated for this use; don’t use for anything else!

● Points to the last 64-bit quadword pushed onto the stack (not
next “free” quadword)
○ Should always be quadword (8-byte) aligned

■ It will start out this way, and will stay aligned unless your
code does something bad

x86-64 Memory Stack

● Register %rsp points to the “top” of stack
○ Dedicated for this use; don’t use for anything else!

● Points to the last 64-bit quadword pushed onto the stack (not
next “free” quadword)
○ Should always be quadword (8-byte) aligned

■ It will start out this way, and will stay aligned unless your
code does something bad

● Should be 16-byte aligned on function calls

x86-64 Memory Stack

● Register %rsp points to the “top” of stack
○ Dedicated for this use; don’t use for anything else!

● Points to the last 64-bit quadword pushed onto the stack (not
next “free” quadword)
○ Should always be quadword (8-byte) aligned

■ It will start out this way, and will stay aligned unless your
code does something bad

● Should be 16-byte aligned on function calls
● Stack grows down (towards lower addresses)

Stack Instructions

Stack Instructions

● pushq src
○ %rsp <- %rsp – 8; memory[%rsp] <- src (e.g., push src onto the

stack)

Stack Instructions

● pushq src
○ %rsp <- %rsp – 8; memory[%rsp] <- src (e.g., push src onto the

stack)
● popq dst

○ dst <- memory[%rsp]; %rsp <- %rsp + 8
■ (e.g., pop top of stack into dst and logically remove it from

the stack)

Stack Frames

Stack Frames

● When a method is called, a stack frame is normally allocated on
the logical “top” of the stack to hold its local variables

Stack Frames

● When a method is called, a stack frame is normally allocated on
the logical “top” of the stack to hold its local variables
○ Stack actually grows down towards lower memory addresses

when a new stack frame is pushed (allocated)

Stack Frames

● When a method is called, a stack frame is normally allocated on
the logical “top” of the stack to hold its local variables
○ Stack actually grows down towards lower memory addresses

when a new stack frame is pushed (allocated)
● Frame is popped on method return

Stack Frames

● When a method is called, a stack frame is normally allocated on
the logical “top” of the stack to hold its local variables
○ Stack actually grows down towards lower memory addresses

when a new stack frame is pushed (allocated)
● Frame is popped on method return
● By convention, %rbp (base pointer) points to a known offset into

the current active stack frame

Stack Frames

● When a method is called, a stack frame is normally allocated on
the logical “top” of the stack to hold its local variables
○ Stack actually grows down towards lower memory addresses

when a new stack frame is pushed (allocated)
● Frame is popped on method return
● By convention, %rbp (base pointer) points to a known offset into

the current active stack frame
○ Local variables referenced relative to %rbp

Stack Frames

● When a method is called, a stack frame is normally allocated on
the logical “top” of the stack to hold its local variables
○ Stack actually grows down towards lower memory addresses

when a new stack frame is pushed (allocated)
● Frame is popped on method return
● By convention, %rbp (base pointer) points to a known offset into

the current active stack frame
○ Local variables referenced relative to %rbp
○ Base pointer common in 32-bit x86 code; less so in x86-64

code where push/pop used less & stack frame normally has
fixed size so locals can be referenced from %rsp easily

Operand Address Modes (1)

● These should cover most of what you’ll need:

Operand Address Modes (1)

● These should cover most of what you’ll need:

movq $17,%rax # store 17 in %rax

Operand Address Modes (1)

● These should cover most of what you’ll need:

movq $17,%rax # store 17 in %rax
movq %rcx,%rax # copy %rcx to %rax

Operand Address Modes (1)

● These should cover most of what you’ll need:

movq $17,%rax # store 17 in %rax
movq %rcx,%rax # copy %rcx to %rax
movq 16(%rbp),%rax # copy memory to %rax

Operand Address Modes (1)

● These should cover most of what you’ll need:

movq $17,%rax # store 17 in %rax
movq %rcx,%rax # copy %rcx to %rax
movq 16(%rbp),%rax # copy memory to %rax
movq %rax,-24(%rbp) # copy %rax to memory

Operand Address Modes (1)

● These should cover most of what you’ll need:

movq $17,%rax # store 17 in %rax
movq %rcx,%rax # copy %rcx to %rax
movq 16(%rbp),%rax # copy memory to %rax
movq %rax,-24(%rbp) # copy %rax to memory

● References to object fields work similarly – put the object’s
memory address in a register and use that address plus an offset

Operand Address Modes (1)

● These should cover most of what you’ll need:

movq $17,%rax # store 17 in %rax
movq %rcx,%rax # copy %rcx to %rax
movq 16(%rbp),%rax # copy memory to %rax
movq %rax,-24(%rbp) # copy %rax to memory

● References to object fields work similarly – put the object’s
memory address in a register and use that address plus an offset

● Remember: can’t have two memory addresses in a single
instruction

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small

computations - if the compiler is clever

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small

computations - if the compiler is clever
● Example: suppose we have an array A of 8-byte ints with the

address of the array in %rcx and the index i in %rax.

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small

computations - if the compiler is clever
● Example: suppose we have an array A of 8-byte ints with the

address of the array in %rcx and the index i in %rax.
● Code to store %rbx in A[i]:

movq %rbx, 0(%rcx, %rax, 8)

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small

computations - if the compiler is clever
● Example: suppose we have an array A of 8-byte ints with the

address of the array in %rcx and the index i in %rax.
● Code to store %rbx in A[i]:

movq %rbx, 0(%rcx, %rax, 8)

base address

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small

computations - if the compiler is clever
● Example: suppose we have an array A of 8-byte ints with the

address of the array in %rcx and the index i in %rax.
● Code to store %rbx in A[i]:

movq %rbx, 0(%rcx, %rax, 8)

index register

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small

computations - if the compiler is clever
● Example: suppose we have an array A of 8-byte ints with the

address of the array in %rcx and the index i in %rax.
● Code to store %rbx in A[i]:

movq %rbx, 0(%rcx, %rax, 8)

scale

Operand Address Modes (2)

● A memory address can combine the contents of two registers
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small

computations - if the compiler is clever
● Example: suppose we have an array A of 8-byte ints with the

address of the array in %rcx and the index i in %rax.
● Code to store %rbx in A[i]:

movq %rbx, 0(%rcx, %rax, 8)

constant

Basic Data Movement/Arithmetic Instructions

Basic Data Movement/Arithmetic Instructions

movq src,dst
dst <- src

Basic Data Movement/Arithmetic Instructions

movq src,dst
dst <- src

addq src,dst
dst <- dst + src

Basic Data Movement/Arithmetic Instructions

movq src,dst
dst <- src

addq src,dst
dst <- dst + src

subq src,dst
dst <- dst–src

Basic Data Movement/Arithmetic Instructions

movq src,dst
dst <- src

addq src,dst
dst <- dst + src

subq src,dst
dst <- dst–src

incq dst
dst <- dst + 1

decq dst
dst <- dst - 1

Basic Data Movement/Arithmetic Instructions

movq src,dst
dst <- src

addq src,dst
dst <- dst + src

subq src,dst
dst <- dst–src

incq dst
dst <- dst + 1

decq dst
dst <- dst - 1

negq dst
dst <- -dst
(2’s complement arithmetic negation)

Integer Multiply and Divide

Integer Multiply and Divide

imulq src,dst
dst ⟵ dst * src
dst must be a register

Integer Multiply and Divide

imulq src,dst
dst ⟵ dst * src
dst must be a register

idivq src
Divide %rdx:%rax by src
(%rdx:%rax holds sign-
extended 128-bit value;
cannot use other registers
for division!)
%rax <- quotient
%rdx <- remainder

Integer Multiply and Divide

imulq src,dst
dst ⟵ dst * src
dst must be a register

cqto
%rdx:%rax <- 128-bit sign
extended copy of %rax
(why? To prep numerator for
idivq!)

idivq src
Divide %rdx:%rax by src
(%rdx:%rax holds sign-
extended 128-bit value;
cannot use other registers
for division!)
%rax <- quotient
%rdx <- remainder

Bitwise Operators

andq src,dst
dst <- src & dst

Bitwise Operators

andq src,dst
dst <- src & dst

orq src,dst
dst <- dst | src

xorq src,dst
dst <- dst ^ src

Bitwise Operators

andq src,dst
dst <- src & dst

orq src,dst
dst <- dst | src

xorq src,dst
dst <- dst ^ src

notq dst
dst <- ~dst
(1’s complement logical negation)

Bitwise Operators

andq src,dst
dst <- src & dst

orq src,dst
dst <- dst | src

xorq src,dst
dst <- dst ^ src

notq dst
dst <- ~dst
(1’s complement logical negation)

Note similarity between
notq and negq (a few slides
back). Difference is 1’s vs 2’s
complement negation.

Shifts and Rotates

Shifts and Rotates

shlq dst,count
dst <- dst shifted left count bits

Shifts and Rotates

shlq dst,count
dst <- dst shifted left count bits

shrq dst,count
dst <- dst shifted right count
bits (0 fill)

Shifts and Rotates

shlq dst,count
dst <- dst shifted left count bits

shrq dst,count
dst <- dst shifted right count
bits (0 fill)

sarq dst,count
dst <- dst shifted right count
bits (sign bit fill)

Shifts and Rotates

shlq dst,count
dst <- dst shifted left count bits

shrq dst,count
dst <- dst shifted right count
bits (0 fill)

sarq dst,count
dst <- dst shifted right count
bits (sign bit fill)

rolq dst,count
dst <- dst rotated left
count bits

rorq dst,count
dst <- dst rotated right
count bits

Uses for Shifts and Rotates

Uses for Shifts and Rotates

● Very fast and can often be used to optimize multiplication and
division by small constants
○ If you’re interested, look at “Hacker’s Delight” by Henry

Warren

Uses for Shifts and Rotates

● Very fast and can often be used to optimize multiplication and
division by small constants
○ If you’re interested, look at “Hacker’s Delight” by Henry

Warren
● Lots of very cool bit fiddling and other algorithms

○ But be careful in the project: be sure semantics are OK

Uses for Shifts and Rotates

● Very fast and can often be used to optimize multiplication and
division by small constants
○ If you’re interested, look at “Hacker’s Delight” by Henry

Warren
● Lots of very cool bit fiddling and other algorithms

○ But be careful in the project: be sure semantics are OK
● Example: right shift is not the same as Java/C/C++/etc. integer

divide for negative numbers (why?)

Uses for Shifts and Rotates

● Very fast and can often be used to optimize multiplication and
division by small constants
○ If you’re interested, look at “Hacker’s Delight” by Henry

Warren
● Lots of very cool bit fiddling and other algorithms

○ But be careful in the project: be sure semantics are OK
● Example: right shift is not the same as Java/C/C++/etc. integer

divide for negative numbers (why?)
● There are additional instructions that shift and rotate double

words, use a calculated shift amount instead of a constant, etc.

Uses for Shifts and Rotates

● Very fast and can often be used to optimize multiplication and
division by small constants
○ If you’re interested, look at “Hacker’s Delight” by Henry

Warren
● Lots of very cool bit fiddling and other algorithms

○ But be careful in the project: be sure semantics are OK
● Example: right shift is not the same as Java/C/C++/etc. integer

divide for negative numbers (why?)
● There are additional instructions that shift and rotate double

words, use a calculated shift amount instead of a constant, etc.

Should you use any of
these tricks in PA3? NO!
(encouraged in PA4!)

Uses for Shifts and Rotates

● Very fast and can often be used to optimize multiplication and
division by small constants
○ If you’re interested, look at “Hacker’s Delight” by Henry

Warren
● Lots of very cool bit fiddling and other algorithms

○ But be careful in the project: be sure semantics are OK
● Example: right shift is not the same as Java/C/C++/etc. integer

divide for negative numbers (why?)
● There are additional instructions that shift and rotate double

words, use a calculated shift amount instead of a constant, etc.

Should you use any of
these tricks in PA3? NO!
(encouraged in PA4!)

Load Effective Address (lea)

Load Effective Address (lea)

● The unary & operator in C/C++

Load Effective Address (lea)

● The unary & operator in C/C++
leaq src,dst # dst <- address of src

Load Effective Address (lea)

● The unary & operator in C/C++
leaq src,dst # dst <- address of src

● Things to note:

Load Effective Address (lea)

● The unary & operator in C/C++
leaq src,dst # dst <- address of src

● Things to note:
○ dst must be a register

Load Effective Address (lea)

● The unary & operator in C/C++
leaq src,dst # dst <- address of src

● Things to note:
○ dst must be a register
○ Address of src includes any address arithmetic or indexing

Load Effective Address (lea)

● The unary & operator in C/C++
leaq src,dst # dst <- address of src

● Things to note:
○ dst must be a register
○ Address of src includes any address arithmetic or indexing
○ Useful to capture addresses for pointers, reference

parameters, etc.

Load Effective Address (lea)

● The unary & operator in C/C++
leaq src,dst # dst <- address of src

● Things to note:
○ dst must be a register
○ Address of src includes any address arithmetic or indexing
○ Useful to capture addresses for pointers, reference

parameters, etc.
○ Also useful for computing arithmetic expressions of the form

const + r1 + scale * r2

Trivia Break: Computer Science

This Dutch computer scientist won the 1972 Turing Award for
fundamental contributions to developing structured programming
languages. Some of his other important contributions include
formulating and solving the shortest-path problem in graph theory
and co-developing the first Algol 60 compiler. He also famously
authored a long, eponymous series of technical reports on various
topics both within and without computer science. If you took 490 with
me, you might remember his famous aphorism: “tests can only show
the presence of bugs, never their absence”.

Control Flow: GOTO

Control Flow: GOTO

Control Flow: GOTO

● At the assembly level, all we
have is goto and conditional
goto

Control Flow: GOTO

● At the assembly level, all we
have is goto and conditional
goto

● Loops and conditional
statements are built from
these

Control Flow: GOTO

● At the assembly level, all we
have is goto and conditional
goto

● Loops and conditional
statements are built from
these

● Note: random jumps play
havoc with pipeline efficiency;
much work is done in modern
compilers and processors to
minimize this impact

Unconditional Jumps

Unconditional Jumps

jmp dst
%rip <- address of dst

Unconditional Jumps

● dst is usually a label in the code (which can be on a line by itself)

jmp dst
%rip <- address of dst

Unconditional Jumps

● dst is usually a label in the code (which can be on a line by itself)
○ “labels” are just arbitrary named instructions chosen by the

compiler (i.e., you)

jmp dst
%rip <- address of dst

Unconditional Jumps

● dst is usually a label in the code (which can be on a line by itself)
○ “labels” are just arbitrary named instructions chosen by the

compiler (i.e., you)
● dst address can also be indirect using the address in a register or

memory location (*reg or *(reg))
○ useful for method calls, case, etc.

jmp dst
%rip <- address of dst

Conditional Jumps

Conditional Jumps

● Most arithmetic instructions set “condition code” bits to record
information about the result (zero, non-zero, >0, etc. - read the
docs for an instruction before you rely on this behavior)

Conditional Jumps

● Most arithmetic instructions set “condition code” bits to record
information about the result (zero, non-zero, >0, etc. - read the
docs for an instruction before you rely on this behavior)
○ true of: addq, subq, andq, orq

Conditional Jumps

● Most arithmetic instructions set “condition code” bits to record
information about the result (zero, non-zero, >0, etc. - read the
docs for an instruction before you rely on this behavior)
○ true of: addq, subq, andq, orq
○ but not: imulq, idivq, leaq

Conditional Jumps

● Most arithmetic instructions set “condition code” bits to record
information about the result (zero, non-zero, >0, etc. - read the
docs for an instruction before you rely on this behavior)
○ true of: addq, subq, andq, orq
○ but not: imulq, idivq, leaq

● Other instructions can set condition codes. E.g.,:

Conditional Jumps

● Most arithmetic instructions set “condition code” bits to record
information about the result (zero, non-zero, >0, etc. - read the
docs for an instruction before you rely on this behavior)
○ true of: addq, subq, andq, orq
○ but not: imulq, idivq, leaq

● Other instructions can set condition codes. E.g.,:
○ cmpq src,dst # compare dst to src (e.g., dst-src)
○ testq src,dst # calculate dst & src (logical and)

Conditional Jumps

● Most arithmetic instructions set “condition code” bits to record
information about the result (zero, non-zero, >0, etc. - read the
docs for an instruction before you rely on this behavior)
○ true of: addq, subq, andq, orq
○ but not: imulq, idivq, leaq

● Other instructions can set condition codes. E.g.,:
○ cmpq src,dst # compare dst to src (e.g., dst-src)
○ testq src,dst # calculate dst & src (logical and)

■ These do not alter src or dst, but then do impact jump
targets of conditional jumps

Conditional Jumps: Examples

jz label # jump if result == 0

Conditional Jumps: Examples

jz label
jnz label

jump if result == 0
jump if result != 0

Conditional Jumps: Examples

jz label
jnz label
jg label

jump if result == 0
jump if result != 0
jump if result > 0

Conditional Jumps: Examples

jz label
jnz label
jg label
jnglabel
jgelabel
jnge label
jl label
jnllabel
jlelabel
jnle label

jump if result == 0
jump if result != 0
jump if result > 0
jump if result <= 0
jump if result >= 0
jump if result < 0
jump if result < 0
jump if result >= 0
jump if result <= 0
jump if result > 0

Conditional Jumps: Examples

jz label
jnz label
jg label
jnglabel
jgelabel
jnge label
jl label
jnllabel
jlelabel
jnle label

jump if result == 0
jump if result != 0
jump if result > 0
jump if result <= 0
jump if result >= 0
jump if result < 0
jump if result < 0
jump if result >= 0
jump if result <= 0
jump if result > 0

note: the assembler is
mapping multiple
mnemonics to a single
actual instruction

Compare and Jump

● Common desire: compare two operands and jump if a
relationship holds between them

Compare and Jump

● Common desire: compare two operands and jump if a
relationship holds between them
○ in other words, we want an instruction like this:

jumpcond op1, op2, label

Compare and Jump

● Common desire: compare two operands and jump if a
relationship holds between them
○ in other words, we want an instruction like this:

jumpcond op1, op2, label

● However, we can’t have this instruction: x86-64 cannot support
3-operand instructions
○ (also true of most other practical machines)

Compare and Jump

● Common desire: compare two operands and jump if a
relationship holds between them
○ in other words, we want an instruction like this:

jumpcond op1, op2, label

● However, we can’t have this instruction: x86-64 cannot support
3-operand instructions
○ (also true of most other practical machines)

● What should we do instead?

Compare and Jump

● Common desire: compare two operands and jump if a
relationship holds between them
○ in other words, we want an instruction like this:

jumpcond op1, op2, label

● However, we can’t have this instruction: x86-64 cannot support
3-operand instructions
○ (also true of most other practical machines)

● What should we do instead?
cmpq op1, op2 # compute op2 - op1, set condition code
jcc label

Compare and Jump

● Common desire: compare two operands and jump if a
relationship holds between them
○ in other words, we want an instruction like this:

jumpcond op1, op2, label

● However, we can’t have this instruction: x86-64 cannot support
3-operand instructions
○ (also true of most other practical machines)

● What should we do instead?
cmpq op1, op2 # compute op2 - op1, set condition code
jcc label

j
cc

 is a conditional jump that’s taken if
comparison result matches cc

Compare and Jump

● Common desire: compare two operands and jump if a
relationship holds between them
○ in other words, we want an instruction like this:

jumpcond op1, op2, label

● However, we can’t have this instruction: x86-64 cannot support
3-operand instructions
○ (also true of most other practical machines)

● What should we do instead?
cmpq op1, op2 # compute op2 - op1, set condition code
jcc label

j
cc

 is a conditional jump that’s taken if
comparison result matches cc

Special conditional jump
instructions like je, jne are useful
mnemonics here; you can also use
the ones on the last slide

Function Calls and Returns

Function Calls and Returns

● The x86-64 instruction set itself only provides for transfer of
control (via jump) and return

Function Calls and Returns

● The x86-64 instruction set itself only provides for transfer of
control (via jump) and return

● Stack is used to capture return address and recover it

Function Calls and Returns

● The x86-64 instruction set itself only provides for transfer of
control (via jump) and return

● Stack is used to capture return address and recover it
● Everything else–parameter passing, stack frame organization,

register usage – is a matter of convention

Function Calls and Returns

● The x86-64 instruction set itself only provides for transfer of
control (via jump) and return

● Stack is used to capture return address and recover it
● Everything else–parameter passing, stack frame organization,

register usage – is a matter of convention
○ Follow the conventions even if you write all the code!

Function Calls and Returns

● The x86-64 instruction set itself only provides for transfer of
control (via jump) and return

● Stack is used to capture return address and recover it
● Everything else–parameter passing, stack frame organization,

register usage – is a matter of convention
○ Follow the conventions even if you write all the code!

■ Helps anyone reading your code figure out what’s
happening

■ Lets standard tools like gdb work successfully with your
code (in the unlikely event that you have to debug
something...)

call and ret Instructions

call and ret Instructions

call label
● Push address of next instruction and jump

call and ret Instructions

call label
● Push address of next instruction and jump
● %rsp <- %rsp – 8; memory[%rsp] <- %rip; %rip <- address of label

call and ret Instructions

call label
● Push address of next instruction and jump
● %rsp <- %rsp – 8; memory[%rsp] <- %rip; %rip <- address of label
● Address can also be in a register or memory as with jmp – we’ll

use these for dynamic dispatch of method calls (more later)

call and ret Instructions

call label
● Push address of next instruction and jump
● %rsp <- %rsp – 8; memory[%rsp] <- %rip; %rip <- address of label
● Address can also be in a register or memory as with jmp – we’ll

use these for dynamic dispatch of method calls (more later)
ret
● Pop address from top of stack and jump

call and ret Instructions

call label
● Push address of next instruction and jump
● %rsp <- %rsp – 8; memory[%rsp] <- %rip; %rip <- address of label
● Address can also be in a register or memory as with jmp – we’ll

use these for dynamic dispatch of method calls (more later)
ret
● Pop address from top of stack and jump
● %rip <- memory[%rsp]; %rsp <- %rsp + 8

call and ret Instructions

call label
● Push address of next instruction and jump
● %rsp <- %rsp – 8; memory[%rsp] <- %rip; %rip <- address of label
● Address can also be in a register or memory as with jmp – we’ll

use these for dynamic dispatch of method calls (more later)
ret
● Pop address from top of stack and jump
● %rip <- memory[%rsp]; %rsp <- %rsp + 8
● WARNING! The word on the top of the stack had better be the

address we want and not some leftover data

Register Usage

Register Usage

● %rax – function result

Register Usage

● %rax – function result
● First six arguments passed in these registers, in this order:

○ %rdi, %rsi, %rdx, %rcx, %r8, %r9

Register Usage

● %rax – function result
● First six arguments passed in these registers, in this order:

○ %rdi, %rsi, %rdx, %rcx, %r8, %r9
○ For Java/C++ “this” pointer is first argument, in %rdi

■ you may want to do the same for your Cool programs

Register Usage

● %rax – function result
● First six arguments passed in these registers, in this order:

○ %rdi, %rsi, %rdx, %rcx, %r8, %r9
○ For Java/C++ “this” pointer is first argument, in %rdi

■ you may want to do the same for your Cool programs
● %rsp – stack pointer;value must be 8-byte aligned always and

16-byte aligned when calling a function

Register Usage

● %rax – function result
● First six arguments passed in these registers, in this order:

○ %rdi, %rsi, %rdx, %rcx, %r8, %r9
○ For Java/C++ “this” pointer is first argument, in %rdi

■ you may want to do the same for your Cool programs
● %rsp – stack pointer;value must be 8-byte aligned always and

16-byte aligned when calling a function
● %rbp – frame pointer (optional use)

Register Saving Conventions

Register Saving Conventions

● A called function must preserve these registers(or save/restore
them if it wants to use them):
○ %rbx, %rbp, %r12-%r15

Register Saving Conventions

● A called function must preserve these registers(or save/restore
them if it wants to use them):
○ %rbx, %rbp, %r12-%r15
○ %rsp isn't officially on this “callee save list”, but needs to be

properly restored for return

Register Saving Conventions

● A called function must preserve these registers(or save/restore
them if it wants to use them):
○ %rbx, %rbp, %r12-%r15
○ %rsp isn't officially on this “callee save list”, but needs to be

properly restored for return
● All other registers can change across a function call

Register Saving Conventions

● A called function must preserve these registers(or save/restore
them if it wants to use them):
○ %rbx, %rbp, %r12-%r15
○ %rsp isn't officially on this “callee save list”, but needs to be

properly restored for return
● All other registers can change across a function call

○ Debugging/correctness note: always assume every called
function will change all registers it is allowed to

Register Saving Conventions

● A called function must preserve these registers(or save/restore
them if it wants to use them):
○ %rbx, %rbp, %r12-%r15
○ %rsp isn't officially on this “callee save list”, but needs to be

properly restored for return
● All other registers can change across a function call

○ Debugging/correctness note: always assume every called
function will change all registers it is allowed to
■ including registers containing function parameters!

Register Saving Conventions

● A called function must preserve these registers(or save/restore
them if it wants to use them):
○ %rbx, %rbp, %r12-%r15
○ %rsp isn't officially on this “callee save list”, but needs to be

properly restored for return
● All other registers can change across a function call

○ Debugging/correctness note: always assume every called
function will change all registers it is allowed to
■ including registers containing function parameters!

● for debugging, you may want to deliberately clobber
them!

x86-64 Function Call

x86-64 Function Call

● Caller places up to 6 arguments in registers, rest on stack, then
executes call instruction (which pushes 8- byte return address)

x86-64 Function Call

● Caller places up to 6 arguments in registers, rest on stack, then
executes call instruction (which pushes 8- byte return address)

● On entry, called function prologue sets up the stack frame:

x86-64 Function Call

● Caller places up to 6 arguments in registers, rest on stack, then
executes call instruction (which pushes 8- byte return address)

● On entry, called function prologue sets up the stack frame:

pushq %rbp # save old frame ptr

x86-64 Function Call

● Caller places up to 6 arguments in registers, rest on stack, then
executes call instruction (which pushes 8- byte return address)

● On entry, called function prologue sets up the stack frame:

pushq %rbp # save old frame ptr
movq %rsp,%rbp # new frame ptr is top of

stack after ret addr and
old rbp pushed

x86-64 Function Call

● Caller places up to 6 arguments in registers, rest on stack, then
executes call instruction (which pushes 8- byte return address)

● On entry, called function prologue sets up the stack frame:

pushq %rbp # save old frame ptr
movq %rsp,%rbp # new frame ptr is top of

stack after ret addr and
old rbp pushed

subq $framesize,%rsp # allocate stack frame
(size should be multiple
of 16 normally)

Stack Frame Layout

x86-64 Function Return

x86-64 Function Return

● Called function puts result (if any) in %rax and restores any
callee-save registers if needed

x86-64 Function Return

● Called function puts result (if any) in %rax and restores any
callee-save registers if needed

● Called function returns with:

movq %rbp,%rsp # or can use “leave”
popq %rbp # instead of movq/popq

x86-64 Function Return

● Called function puts result (if any) in %rax and restores any
callee-save registers if needed

● Called function returns with:

movq %rbp,%rsp # or can use “leave”
popq %rbp # instead of movq/popq

● If caller allocated space for arguments (beyond the 6 in regs) it
deallocates as needed

Caller Example

n = sumOf(17,42)

Caller Example

n = sumOf(17,42)

movq $42,%rsi # load arguments in

Caller Example

n = sumOf(17,42)

movq $42,%rsi # load arguments in
movq $17,%rdi # either order, but use

correct registers

Caller Example

n = sumOf(17,42)

movq $42,%rsi # load arguments in
movq $17,%rdi # either order, but use

correct registers
call sumOf # jump & push ret addr

Caller Example

n = sumOf(17,42)

movq $42,%rsi # load arguments in
movq $17,%rdi # either order, but use

correct registers
call sumOf # jump & push ret addr
movq %rax,offsetn(%rbp) # store result

Example Function Body

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

Example Function Body

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

sumOf:
pushq %rbp # prologue
movq %rsp,%rbp

Example Function Body

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

sumOf:
pushq %rbp # prologue
movq %rsp,%rbp
subq $16,%rsp

Example Function Body

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

sumOf:
pushq %rbp # prologue
movq %rsp,%rbp
subq $16,%rsp
movq %rdi,-8(%rbp)

Example Function Body

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

sumOf:
pushq %rbp # prologue
movq %rsp,%rbp
subq $16,%rsp
movq %rdi,-8(%rbp)
movq -8(%rbp),%rax
addq %rsi,%rax
movq %rax,-16(%rbp)

Example Function Body

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

sumOf:
pushq %rbp # prologue
movq %rsp,%rbp
subq $16,%rsp
movq %rdi,-8(%rbp)
movq -8(%rbp),%rax
addq %rsi,%rax
movq %rax,-16(%rbp)
movq -16(%rbp),%rax
movq %rbp,%rsp
popq %rbp

Example Stack Frame for sumOf

Example Stack Frame for sumOf

Example Stack Frame for sumOf

Example Stack Frame for sumOf

caller loads
argument
registers

17 42

Example Stack Frame for sumOf

caller calls,
jump here

17 42

Example Stack Frame for sumOf

save %rbp

17 42

Example Stack Frame for sumOf
17 42

Example Stack Frame for sumOf
17 42

Example Stack Frame for sumOf
17 42

17

Example Stack Frame for sumOf
17 42

17

17

Example Stack Frame for sumOf
17 42

17

17 59

Example Stack Frame for sumOf
17 42

17

17 59

59

Example Stack Frame for sumOf
17 42

17

59

59

Example Stack Frame for sumOf
17 42

17

59

59

Example Stack Frame for sumOf
17 42

17

59

59

Example Stack Frame for sumOf
17 42

17

59

59

Example Stack Frame for sumOf
17 4259

59

(caller sets
n to %rax)

The Nice Thing About Standards…

The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI
convention (used by Linux, MacOS X)

The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)

The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)
○ First four parameters in registers %rcx, %rdx, %r8, %r9; rest

on the stack

The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)
○ First four parameters in registers %rcx, %rdx, %r8, %r9; rest

on the stack
○ Called function stack frame must include empty space for

called function to save values passed in parameter registers if
desired

The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)
○ First four parameters in registers %rcx, %rdx, %r8, %r9; rest

on the stack
○ Called function stack frame must include empty space for

called function to save values passed in parameter registers if
desired

● Not relevant for us, but worth being aware of it
○ (except that providing space in each stack frame to save

parameter registers will be handy for our simple code gen)

Course Announcements

● the PA3c1 (codegen testing) deadline has already passed
○ if you forgot about it, we will still accept submissions (with a

penalty)
● PA3c2 (TAC) is due later this week (“before spring break”)

○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short

extension on this assignment to e.g., Monday
● I have become aware of a bug in the reference compiler’s x86-64

module; a fix will be forthcoming. For now, don’t trust it.
● Don’t forget there is a midterm in this class the week after spring

break!

