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● the PA3c1 (codegen testing) deadline has already passed
○ if you forgot about it, we will still accept submissions (with a 

penalty)
● PA3c2 (TAC) is due later this week (“before spring break”)

○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short 

extension on this assignment to e.g., Monday
● I have become aware of a bug in the reference compiler’s x86-64 

module; a fix will be forthcoming. For now, don’t trust it.
● Don’t forget there is a midterm in this class the week after spring 

break!
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Agenda

● Overview of x86-64 architecture
○ this might be a review of some things you learned in 350
○ it might also be new

■ either is fine! (but we’re going to go quickly…)
○ my goal today: make sure you’re aware of the “usual traps” in 

the x86-64 standard, and make sure you know where to go to 
learn more
■ I am not trying to give you a detailed understanding of 

each construct today (you’ll get that from doing PA3…)
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Resources

● When you’re doing PA3, you’re going to want to refer to some 
resources
○ there are many on the web

■ and I encourage you to explore
■ I don’t suggest trusting ChatGPT or similar tools on this - 

assembly programming requires getting all the details 
right, and LLMs are very bad at being detail-oriented

○ I have curated a few resources here: 
https://kelloggm.github.io/martinjkellogg.com/teaching/cs48
5-sp25/languages/#x86-64

Suggestions welcome!

https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/languages/#x86-64
https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/languages/#x86-64
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x86 Story Time

● x86 is a very old assembly language
○ 8086 processor for which it was originally designed was 

released in 1976…
○ microarchitecture has changed a lot since then: pipelining, 

super-scalar, out-of-order, caching, multicore, …
● Modern x86 is still backward-compatible with 8086 code

○ You can get VisiCalc 1.0 on the web & run it!
● Intel’s descriptions of the architecture are engulfed with modes 

and flags; the modern processor is fairly straightforward
○ Load/Store from memory
○ Register-register operations
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x86: RISC or CISC?

● x86 is technically a CISC (complex instruction set computer) 
architecture
○ key definitional feature of a CISC: there are instructions that 

take more than one clock cycle to execute
● However, the parts of x86 that you should be using in your 

compiler are actually closer to a traditional RISC architecture
○ RISC = “reduced instruction set computer”
○ most complex instructions exist for backward-compatibility 

and can be slow
○ other complex instructions exist to take advantage of 

peculiar hardware
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x86-64 Main Features

● 16 64-bit general registers; 64-bit integers
○ but int is 32 bits usually; long is 64 bits

● 64-bit address space; pointers are 8 bytes
● 16 SSE registers for floating point, SIMD
● Register-based function call conventions
● Additional addressing modes (pc relative)
● 32-bit legacy mode
● Some pruning of old features



x86-64 Syntax

● Two main assembler languages for x86-64:



x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs



x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs
○ AT&T/GNU syntax: what we’re generating and what’s in the 

linked handouts, course webpage, etc.



x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs
○ AT&T/GNU syntax: what we’re generating and what’s in the 

linked handouts, course webpage, etc.
■ You can use  gcc –S  to generate AT&T-style assembly 

code from C/C++ code for more examples



x86-64 Syntax

● Two main assembler languages for x86-64:
○ Intel/Microsoft syntax: what’s in the Intel docs
○ AT&T/GNU syntax: what we’re generating and what’s in the 

linked handouts, course webpage, etc.
■ You can use  gcc –S  to generate AT&T-style assembly 

code from C/C++ code for more examples
○ I will always use AT&T/GNU syntax
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Intel vs AT&T Syntax

Intel/Microsoft AT&T/GNU

Operand order a = a op b (dst first) b = a op b (dst last)

Memory addresses [register+offset] offset(register)

Instruction mnemonics mov, add, push, … movq, addq, pushq (explicit 
operand size after op)

Register names rax, rbx, rbp, rsp, … %rax, %rbx, %rbp, %rsp, …

Constants 17, 42 $17, $42

Comments ; to end of line # to end of line or /* … */

Intel docs include many complex, 
historical instructions and artifacts 
that aren’t commonly used by 
modern compilers
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x86-64 Memory Model

● 8-bit bytes, byte-addressable
● 16-, 32-, 64-bit words, double words and quad words (Intel 

terminology)
○ That’s why the ‘q’ in 64-bit instructions like movq, addq, etc.

● Data should normally be aligned on “natural” boundaries
○ unaligned accesses are generally supported, but with a big 

performance penalty on modern machines
○ though function calls into e.g., glibc need to have the stack 

16-bit aligned (ask me how I know)
● Little-endian: address of a multi-byte integer is address of 

low-order byte
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● 16 64-bit general registers
○ %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8-%r15

● Registers can be used as 64-bit integers or pointers, or as 32-bit 
ints
○ Also possible to reference low-order 16- and 8-bit chunks

■ (for the most part you shouldn’t need to)
● To simplify your project, all Cool types have the same size (ints, 

pointers, even booleans!)
○ I suggest you use 64 bits to store them to make your life easy

■ 32 bits is okay too, but it’s your funeral
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Processor Fetch-Execute Cycle

● Basic cycle (same as every processor you’ve ever seen):

 while (running) {
fetch instruction beginning at rip address 
rip <- rip + instruction length
execute instruction

}

● Sequential execution unless a jump stores a new “next 
instruction” address in %rip

○ %rip is a hidden register; cannot access directly as a register 
from assembly code, change by sequential instruction 
execution and jumps (including call and return)
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Instruction Format

● Typical data manipulation instruction:

opcode src, dst # comment

● Meaning is:

dst <- dst op src
● Normally, one operand is a register; the other is a register, 

memory location, or integer constant
○ Can’t have both operands in memory – can’t encode two 

memory addresses in a single instruction (e.g., cmp, mov)
● Language is free-form, comments and labels may appear on lines 

by themselves (and can have multiple labels per line of code)
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x86-64 Memory Stack

● Register %rsp points to the “top” of stack
○ Dedicated for this use; don’t use for anything else!

● Points to the last 64-bit quadword pushed onto the stack (not 
next “free” quadword)
○ Should always be quadword (8-byte) aligned

■ It will start out this way, and will stay aligned unless your 
code does something bad

● Should be 16-byte aligned on function calls
● Stack grows down (towards lower addresses)
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Stack Instructions

● pushq src
○ %rsp <- %rsp – 8; memory[%rsp] <- src (e.g., push src onto the 

stack)
● popq dst

○ dst <- memory[%rsp]; %rsp <- %rsp + 8
■ (e.g., pop top of stack into dst and logically remove it from 

the stack)
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Stack Frames

● When a method is called, a stack frame is normally allocated on 
the logical “top” of the stack to hold its local variables
○ Stack actually grows down towards lower memory addresses 

when a new stack frame is pushed (allocated)
● Frame is popped on method return
● By convention, %rbp (base pointer) points to a known offset into 

the current active stack frame
○ Local variables referenced relative to %rbp
○ Base pointer common in 32-bit x86 code; less so in x86-64 

code where push/pop used less & stack frame normally has 
fixed size so locals can be referenced from %rsp easily
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Operand Address Modes (1)

● These should cover most of what you’ll need:

movq $17,%rax   # store 17 in %rax
movq %rcx,%rax # copy %rcx to %rax
movq 16(%rbp),%rax # copy memory to %rax
movq %rax,-24(%rbp) # copy %rax to memory

● References to object fields work similarly – put the object’s 
memory address in a register and use that address plus an offset

● Remember: can’t have two memory addresses in a single 
instruction
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● A memory address can combine the contents of two registers 
(with one optionally multiplied by 2, 4, or 8) plus a constant:

base address + (index register * scale) + constant
● Main use of general form is for array subscripting or small 

computations - if the compiler is clever
● Example: suppose we have an array A of 8-byte ints with the 

address of the array in %rcx and the index i in %rax.
● Code to store %rbx in A[i]:

movq %rbx, 0(%rcx, %rax, 8)

constant
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Basic Data Movement/Arithmetic Instructions

movq src,dst 
dst <- src

addq src,dst
dst <- dst + src

subq src,dst 
dst <- dst–src

incq dst
dst <- dst + 1

decq dst
dst <- dst - 1

negq dst
dst <-  -dst
(2’s complement arithmetic negation)
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Integer Multiply and Divide

imulq src,dst 
dst ⟵ dst * src
dst must be a register

cqto
%rdx:%rax <- 128-bit sign 
extended copy of %rax
(why? To prep numerator for 
idivq!)

idivq src
Divide %rdx:%rax by src 
(%rdx:%rax holds sign- 
extended 128-bit value; 
cannot use other registers 
for division!)
%rax <- quotient 
%rdx <- remainder
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Bitwise Operators

andq src,dst 
dst <- src & dst

orq src,dst
dst <- dst | src

xorq src,dst 
dst <- dst ^ src

notq dst
dst <- ~dst
(1’s complement logical negation)

Note similarity between 
notq and negq (a few slides 
back). Difference is 1’s vs 2’s 
complement negation.
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Shifts and Rotates

shlq dst,count 
dst <- dst shifted left count bits

shrq dst,count
dst <- dst shifted right count 
bits (0 fill)

sarq dst,count
dst <- dst shifted right count 
bits (sign bit fill)

rolq dst,count
dst <- dst rotated left 
count bits

rorq dst,count
dst <- dst rotated right 
count bits
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divide for negative numbers (why?)
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Load Effective Address (lea)

● The unary & operator in C/C++
leaq src,dst # dst <- address of src

● Things to note:
○ dst must be a register
○ Address of src includes any address arithmetic or indexing
○ Useful to capture addresses for pointers, reference 

parameters, etc.
○ Also useful for computing arithmetic expressions of the form 

const + r1 + scale * r2



Trivia Break: Computer Science

This Dutch computer scientist won the 1972 Turing Award for 
fundamental contributions to developing structured programming 
languages. Some of his other important contributions include 
formulating and solving the shortest-path problem in graph theory 
and co-developing the first Algol 60 compiler. He also famously 
authored a long, eponymous series of technical reports on various 
topics both within and without computer science. If you took 490 with 
me, you might remember his famous aphorism: “tests can only show 
the presence of bugs, never their absence”.
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Control Flow: GOTO

● At the assembly level, all we 
have is goto and conditional 
goto

● Loops and conditional 
statements are built from 
these

● Note: random jumps play 
havoc with pipeline efficiency; 
much work is done in modern 
compilers and processors to 
minimize this impact
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Unconditional Jumps

● dst is usually a label in the code (which can be on a line by itself)
○ “labels” are just arbitrary named instructions chosen by the 

compiler (i.e., you)
● dst address can also be indirect using the address in a register or 

memory location ( *reg or *(reg) )
○ useful for method calls, case, etc.

jmp dst 
%rip <- address of dst
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Conditional Jumps

● Most arithmetic instructions set “condition code” bits to record 
information about the result (zero, non-zero, >0, etc. - read the 
docs for an instruction before you rely on this behavior)
○ true of: addq, subq, andq, orq
○ but not: imulq, idivq, leaq

● Other instructions can set condition codes. E.g.,:
○ cmpq src,dst # compare dst to src (e.g., dst-src) 
○ testq src,dst # calculate dst & src (logical and)

■ These do not alter src or dst, but then do impact jump 
targets of conditional jumps
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jz label
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jnglabel
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jnge label
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jnle label
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Conditional Jumps: Examples

jz label
jnz label
jg label
jnglabel
jgelabel
jnge label
jl label
jnllabel
jlelabel
jnle label

# jump if result  == 0
# jump if result != 0
# jump if result > 0
# jump if result  <= 0
# jump if result >= 0
# jump if result < 0
# jump if result < 0
# jump if result >= 0
# jump if result <= 0
# jump if result > 0

note: the assembler is 
mapping multiple 
mnemonics to a single 
actual instruction
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Compare and Jump

● Common desire: compare two operands and jump if a 
relationship holds between them
○ in other words, we want an instruction like this:

jumpcond op1, op2, label

● However, we can’t have this instruction: x86-64 cannot support 
3-operand instructions
○ (also true of most other practical machines)

● What should we do instead?
cmpq op1, op2 # compute op2 - op1, set condition code
jcc label

j
cc

 is a conditional jump that’s taken if 
comparison result matches cc

Special conditional jump 
instructions like je, jne are useful 
mnemonics here; you can also use 
the ones on the last slide
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Function Calls and Returns

● The x86-64 instruction set itself only provides for transfer of 
control (via jump) and return

● Stack is used to capture return address and recover it
● Everything else–parameter passing, stack frame organization, 

register usage – is a matter of convention
○ Follow the conventions even if you write all the code!

■ Helps anyone reading your code figure out what’s 
happening

■ Lets standard tools like gdb work successfully with your 
code (in the unlikely event that you have to debug 
something...)
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call and ret Instructions

call label
● Push address of next instruction and jump
● %rsp <- %rsp – 8; memory[%rsp] <- %rip; %rip <- address of label
● Address can also be in a register or memory as with jmp – we’ll 

use these for dynamic dispatch of method calls (more later)
ret
● Pop address from top of stack and jump
● %rip <- memory[%rsp]; %rsp <- %rsp + 8
● WARNING! The word on the top of the stack had better be the 

address we want and not some leftover data
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Register Usage

● %rax – function result
● First six arguments passed in these registers, in this order:

○ %rdi, %rsi, %rdx, %rcx, %r8, %r9
○ For Java/C++ “this” pointer is first argument, in %rdi

■ you may want to do the same for your Cool programs
● %rsp – stack pointer;value must be 8-byte aligned always and 

16-byte aligned when calling a function
● %rbp – frame pointer (optional use)
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Register Saving Conventions

● A called function must preserve these registers(or save/restore 
them if it wants to use them):
○ %rbx, %rbp, %r12-%r15
○ %rsp isn't officially on this “callee save list”, but needs to be 

properly restored for return
● All other registers can change across a function call

○ Debugging/correctness note: always assume every called 
function will change all registers it is allowed to
■ including registers containing function parameters!

● for debugging, you may want to deliberately clobber 
them!
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x86-64 Function Call

● Caller places up to 6 arguments in registers, rest on stack, then 
executes call instruction (which pushes 8- byte return address)

● On entry, called function prologue sets up the stack frame:

pushq %rbp # save old frame ptr
movq %rsp,%rbp # new frame ptr is top of

# stack after ret addr and 
# old rbp pushed

subq $framesize,%rsp # allocate stack frame
# (size should be multiple
# of 16 normally)



Stack Frame Layout



x86-64 Function Return



x86-64 Function Return

● Called function puts result (if any) in %rax and restores any 
callee-save registers if needed



x86-64 Function Return

● Called function puts result (if any) in %rax and restores any 
callee-save registers if needed

● Called function returns with:

movq %rbp,%rsp # or can use “leave” 
popq %rbp # instead of movq/popq



x86-64 Function Return

● Called function puts result (if any) in %rax and restores any 
callee-save registers if needed

● Called function returns with:

movq %rbp,%rsp # or can use “leave” 
popq %rbp # instead of movq/popq

● If caller allocated space for arguments (beyond the 6 in regs) it 
deallocates as needed
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Caller Example

n = sumOf(17,42)

movq $42,%rsi # load arguments in
movq $17,%rdi # either order, but use 

# correct registers
call sumOf # jump & push ret addr
movq %rax,offsetn(%rbp) # store result



Example Function Body

int sumOf(int x, int y) {
int a, int b; 
a = x;
b = a + y; 
return b;

}
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int sumOf(int x, int y) {
int a, int b; 
a = x;
b = a + y; 
return b;

}

sumOf:
pushq %rbp # prologue
movq %rsp,%rbp
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Example Function Body

int sumOf(int x, int y) {
int a, int b; 
a = x;
b = a + y; 
return b;

}

sumOf:
pushq %rbp # prologue
movq %rsp,%rbp
subq $16,%rsp
movq %rdi,-8(%rbp)
movq -8(%rbp),%rax
addq %rsi,%rax 
movq %rax,-16(%rbp)
movq -16(%rbp),%rax
movq %rbp,%rsp
popq %rbp
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Example Stack Frame for sumOf
17 4259

59

(caller sets 
n to %rax)



The Nice Thing About Standards…



The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI 
convention (used by Linux, MacOS X)



The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI 
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)



The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI 
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)
○ First four parameters in registers %rcx, %rdx, %r8, %r9; rest 

on the stack



The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI 
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)
○ First four parameters in registers %rcx, %rdx, %r8, %r9; rest 

on the stack
○ Called function stack frame must include empty space for 

called function to save values passed in parameter registers if 
desired



The Nice Thing About Standards…

● The convention I’ve just shown is the System V/AMD64 ABI 
convention (used by Linux, MacOS X)

● Microsoft’s calling conventions are slightly different (of course)
○ First four parameters in registers %rcx, %rdx, %r8, %r9; rest 

on the stack
○ Called function stack frame must include empty space for 

called function to save values passed in parameter registers if 
desired

● Not relevant for us, but worth being aware of it
○ (except that providing space in each stack frame to save 

parameter registers will be handy for our simple code gen)



Course Announcements

● the PA3c1 (codegen testing) deadline has already passed
○ if you forgot about it, we will still accept submissions (with a 

penalty)
● PA3c2 (TAC) is due later this week (“before spring break”)

○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short 

extension on this assignment to e.g., Monday
● I have become aware of a bug in the reference compiler’s x86-64 

module; a fix will be forthcoming. For now, don’t trust it.
● Don’t forget there is a midterm in this class the week after spring 

break!


