
Linking, Loading,
and Shared Libraries

Martin Kellogg

Course Announcements

● PA4 leaderboard is up
○ current leader is (unsurprisingly) reference --opt
○ but things are starting to get competitive

Course Announcements

● PA4 leaderboard is up
○ current leader is (unsurprisingly) reference --opt
○ but things are starting to get competitive

● PA4c1 due in one week
○ this checkpoint is mostly optional
○ but you’re required to include a dataflow analysis for DCE in

your eventual PA4 submission, so we recommend using PA4c1
as an excuse to do it

Course Announcements

● PA4 leaderboard is up
○ current leader is (unsurprisingly) reference --opt
○ but things are starting to get competitive

● PA4c1 due in one week
○ this checkpoint is mostly optional
○ but you’re required to include a dataflow analysis for DCE in

your eventual PA4 submission, so we recommend using PA4c1
as an excuse to do it

● I will be around this afternoon ~4:30pm if you want to see a test
case
○ PA3 test case views can still be used

Agenda

● Review + finish global register allocation
● And then…

○ Object Files
○ Linking
○ Relocations
○ Shared Libraries
○ Separate Typechecking

Review: Register Allocation

Review: Register Allocation

● A register allocator creates a mapping from IR’s abstract registers
to physical registers
○ or, if that’s not possible, to memory locations

Review: Register Allocation

● A register allocator creates a mapping from IR’s abstract registers
to physical registers
○ or, if that’s not possible, to memory locations

● We saw two local allocators:

Review: Register Allocation

● A register allocator creates a mapping from IR’s abstract registers
to physical registers
○ or, if that’s not possible, to memory locations

● We saw two local allocators:
○ one simple one based on frequency count

Review: Register Allocation

● A register allocator creates a mapping from IR’s abstract registers
to physical registers
○ or, if that’s not possible, to memory locations

● We saw two local allocators:
○ one simple one based on frequency count
○ a more complex greedy algorithm that does much better

Review: Register Allocation

● A register allocator creates a mapping from IR’s abstract registers
to physical registers
○ or, if that’s not possible, to memory locations

● We saw two local allocators:
○ one simple one based on frequency count
○ a more complex greedy algorithm that does much better

● We noted that extending a local allocator into a regional register
allocation is not a good idea

Review: Register Allocation

● A register allocator creates a mapping from IR’s abstract registers
to physical registers
○ or, if that’s not possible, to memory locations

● We saw two local allocators:
○ one simple one based on frequency count
○ a more complex greedy algorithm that does much better

● We noted that extending a local allocator into a regional register
allocation is not a good idea
○ critical edges are one complication on basic block boundaries

Review: Register Allocation

● A register allocator creates a mapping from IR’s abstract registers
to physical registers
○ or, if that’s not possible, to memory locations

● We saw two local allocators:
○ one simple one based on frequency count
○ a more complex greedy algorithm that does much better

● We noted that extending a local allocator into a regional register
allocation is not a good idea
○ critical edges are one complication on basic block boundaries
○ instead, a global allocator can coordinate assignments across

basic blocks

Review: Global Register Allocation

Review: Global Register Allocation

● We’re covering one global register allocation
algorithm: reduction to vertex coloring

Review: Global Register Allocation

● We’re covering one global register allocation
algorithm: reduction to vertex coloring

● How do we map the global register allocation
problem to a graph coloring problem?

Review: Global Register Allocation

● We’re covering one global register allocation
algorithm: reduction to vertex coloring

● How do we map the global register allocation
problem to a graph coloring problem?
○ We extended our notion of liveness to live ranges, each of

which is a def-use closure

Review: Global Register Allocation

● We’re covering one global register allocation
algorithm: reduction to vertex coloring

● How do we map the global register allocation
problem to a graph coloring problem?
○ We extended our notion of liveness to live ranges, each of

which is a def-use closure
○ We used those live ranges to construct an interference graph

Review: Global Register Allocation

● We’re covering one global register allocation
algorithm: reduction to vertex coloring

● How do we map the global register allocation
problem to a graph coloring problem?
○ We extended our notion of liveness to live ranges, each of

which is a def-use closure
○ We used those live ranges to construct an interference graph

■ nodes in this graph are values, edges represent values
that are simultaneously live

Review: Global Register Allocation

● We’re covering one global register allocation
algorithm: reduction to vertex coloring

● How do we map the global register allocation
problem to a graph coloring problem?
○ We extended our notion of liveness to live ranges, each of

which is a def-use closure
○ We used those live ranges to construct an interference graph

■ nodes in this graph are values, edges represent values
that are simultaneously live

■ it is easy to construct this graph from live ranges

Review: Global Register Allocation

● We’re covering one global register allocation
algorithm: reduction to vertex coloring

● How do we map the global register allocation
problem to a graph coloring problem?
○ We extended our notion of liveness to live ranges, each of

which is a def-use closure
○ We used those live ranges to construct an interference graph

■ nodes in this graph are values, edges represent values
that are simultaneously live

■ it is easy to construct this graph from live ranges
● Next, we will actually color this graph

Global Reg. Alloc.: Coloring the Graph

● Graph coloring can be used to allocate registers to values by trying
to color the interference graph with as many colors as there are
registers in the target machine

Global Reg. Alloc.: Coloring the Graph

● Graph coloring can be used to allocate registers to values by trying
to color the interference graph with as many colors as there are
registers in the target machine
○ This is not always possible, in which case some values must be

spilled (i.e. stored in memory)

Global Reg. Alloc.: Coloring the Graph

● Graph coloring can be used to allocate registers to values by trying
to color the interference graph with as many colors as there are
registers in the target machine
○ This is not always possible, in which case some values must be

spilled (i.e. stored in memory)
○ We can map “spilling a value” back into the graph to simplify

the interference graph (and therefore the graph coloring
problem)

Global Reg. Alloc.: Coloring the Graph

● Graph coloring can be used to allocate registers to values by trying
to color the interference graph with as many colors as there are
registers in the target machine
○ This is not always possible, in which case some values must be

spilled (i.e. stored in memory)
○ We can map “spilling a value” back into the graph to simplify

the interference graph (and therefore the graph coloring
problem)
■ To be clear: this approach is heuristic (graph coloring is

NP-complete). You could solve the graph coloring problem
here using any graph coloring algorithm.

Global Reg. Alloc.: Coloring by Simplification

● Assume we are coloring a graph G with K colors

Global Reg. Alloc.: Coloring by Simplification

● Assume we are coloring a graph G with K colors
● Coloring by simplification works as follows:

Global Reg. Alloc.: Coloring by Simplification

● Assume we are coloring a graph G with K colors
● Coloring by simplification works as follows:

○ as long as the graph G has at least one node n with less than K
neighbors, n is removed from G, and coloring proceeds with
that simplified graph

Global Reg. Alloc.: Coloring by Simplification

● Assume we are coloring a graph G with K colors
● Coloring by simplification works as follows:

○ as long as the graph G has at least one node n with less than K
neighbors, n is removed from G, and coloring proceeds with
that simplified graph
■ we assign n a specific color later; we remove it here because

we know that coloring it is possible

Global Reg. Alloc.: Coloring by Simplification

● Assume we are coloring a graph G with K colors
● Coloring by simplification works as follows:

○ as long as the graph G has at least one node n with less than K
neighbors, n is removed from G, and coloring proceeds with
that simplified graph
■ we assign n a specific color later; we remove it here because

we know that coloring it is possible
● More formally, if the simplified graph is K-colorable, then so is G:

since n has less than K neighbors, those use at most K-1 colors, and
there is therefore at least one color available for n.

Global Reg. Alloc.: Coloring by Simplification

● During simplification, it is possible to reach a point where all nodes
have at least K neighbors

Global Reg. Alloc.: Coloring by Simplification

● During simplification, it is possible to reach a point where all nodes
have at least K neighbors
○ When this occurs, a node must be chosen and its value must be

spilled

Global Reg. Alloc.: Coloring by Simplification

● During simplification, it is possible to reach a point where all nodes
have at least K neighbors
○ When this occurs, a node must be chosen and its value must be

spilled
○ Then, we can remove its node from the graph

Global Reg. Alloc.: Coloring by Simplification

● During simplification, it is possible to reach a point where all nodes
have at least K neighbors
○ When this occurs, a node must be chosen and its value must be

spilled
○ Then, we can remove its node from the graph

● When colors are assigned to nodes after simplification is complete,
it can happen that a node initially designated as spilled can be
colored because its neighbors do not use all available colors

Global Reg. Alloc.: Coloring by Simplification

● During simplification, it is possible to reach a point where all nodes
have at least K neighbors
○ When this occurs, a node must be chosen and its value must be

spilled
○ Then, we can remove its node from the graph

● When colors are assigned to nodes after simplification is complete,
it can happen that a node initially designated as spilled can be
colored because its neighbors do not use all available colors
○ When this happens, the potential spill is not turned into an

actual spill

Global Reg. Alloc.: Coloring by Simplification

● During simplification, it is possible to reach a point where all nodes
have at least K neighbors
○ When this occurs, a node must be chosen and its value must be

spilled
○ Then, we can remove its node from the graph

● When colors are assigned to nodes after simplification is complete,
it can happen that a node initially designated as spilled can be
colored because its neighbors do not use all available colors
○ When this happens, the potential spill is not turned into an

actual spill
○ This technique is known as optimistic coloring

Global Reg. Alloc.: Coloring by Simplification

● During simplification, it is possible to reach a point where all nodes
have at least K neighbors
○ When this occurs, a node must be chosen and its value must be

spilled
○ Then, we can remove its node from the graph

● When colors are assigned to nodes after simplification is complete,
it can happen that a node initially designated as spilled can be
colored because its neighbors do not use all available colors
○ When this happens, the potential spill is not turned into an

actual spill
○ This technique is known as optimistic coloring

When a node is really spilled, the program has to
be rewritten, which changes the interference
graph. When this happens, the allocation process
must be restarted completely. In practice, it
converges in one or two iterations in most cases.

Coloring by Simplification Example

Consider the graph from earlier:

x

y

z

t u

Coloring by Simplification Example

Consider the graph from earlier:

x

y

z

t u

Let’s try to fit these
values into 3 registers:
● r1
● r2
● r3

Coloring by Simplification Example

Consider the graph from earlier:

x

y

z

t u

Let’s try to fit these
values into 3 registers:
● r1
● r2
● r3

Coloring by Simplification Example

Consider the graph from earlier:

x

y

z

t u

Let’s try to fit these
values into 3 registers:
● r1
● r2
● r3

Coloring by Simplification Example

Consider the graph from earlier:

x

y

z

t u

Let’s try to fit these
values into 3 registers:
● r1
● r2
● r3

Coloring by Simplification Example

Consider the graph from earlier:

x

y

z

t u

Let’s try to fit these
values into 3 registers:
● r1
● r2
● r3

Coloring by Simplification Example

Consider the graph from earlier:

x

y

z

t u

Let’s try to fit these
values into 3 registers:
● r1
● r2
● r3

Global Reg. Alloc.: Coloring Complications

Global Reg. Alloc.: Coloring Complications

● It is sometimes useful to coalesce two SSA names that do not share
an edge into a single name (and then put them in the same register)

Global Reg. Alloc.: Coloring Complications

● It is sometimes useful to coalesce two SSA names that do not share
an edge into a single name (and then put them in the same register)
○ unfortunately, proving that this is safe is tough

Global Reg. Alloc.: Coloring Complications

● It is sometimes useful to coalesce two SSA names that do not share
an edge into a single name (and then put them in the same register)
○ unfortunately, proving that this is safe is tough

● Similarly, there are some situations where splitting a live range can
take a graph that is not K-colorable and make it K-colorable

Global Reg. Alloc.: Coloring Complications

● It is sometimes useful to coalesce two SSA names that do not share
an edge into a single name (and then put them in the same register)
○ unfortunately, proving that this is safe is tough

● Similarly, there are some situations where splitting a live range can
take a graph that is not K-colorable and make it K-colorable
○ “splitting a live range” = storing the value to memory and the

retrieving it later, effectively creating two new live ranges

Global Reg. Alloc.: Coloring Complications

● It is sometimes useful to coalesce two SSA names that do not share
an edge into a single name (and then put them in the same register)
○ unfortunately, proving that this is safe is tough

● Similarly, there are some situations where splitting a live range can
take a graph that is not K-colorable and make it K-colorable
○ “splitting a live range” = storing the value to memory and the

retrieving it later, effectively creating two new live ranges
○ again, no good, general-case heuristics :(

Global Reg. Alloc.: Coloring Complications

● It is sometimes useful to coalesce two SSA names that do not share
an edge into a single name (and then put them in the same register)
○ unfortunately, proving that this is safe is tough

● Similarly, there are some situations where splitting a live range can
take a graph that is not K-colorable and make it K-colorable
○ “splitting a live range” = storing the value to memory and the

retrieving it later, effectively creating two new live ranges
○ again, no good, general-case heuristics :(

● It’s common that you may need to put some values in specific
registers, e.g. to adhere to calling conventions

Global Reg. Alloc.: Coloring Complications

● It is sometimes useful to coalesce two SSA names that do not share
an edge into a single name (and then put them in the same register)
○ unfortunately, proving that this is safe is tough

● Similarly, there are some situations where splitting a live range can
take a graph that is not K-colorable and make it K-colorable
○ “splitting a live range” = storing the value to memory and the

retrieving it later, effectively creating two new live ranges
○ again, no good, general-case heuristics :(

● It’s common that you may need to put some values in specific
registers, e.g. to adhere to calling conventions
○ this is easy to handle: just pre-color those nodes in the graph

Global Register Allocation: Summary

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator
○ This justifies significant investment into solving the hard

problem of global register allocation

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator
○ This justifies significant investment into solving the hard

problem of global register allocation
● The traditional technique is reduction to graph coloring:

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator
○ This justifies significant investment into solving the hard

problem of global register allocation
● The traditional technique is reduction to graph coloring:

○ compute live ranges

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator
○ This justifies significant investment into solving the hard

problem of global register allocation
● The traditional technique is reduction to graph coloring:

○ compute live ranges
○ construct an interference graph

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator
○ This justifies significant investment into solving the hard

problem of global register allocation
● The traditional technique is reduction to graph coloring:

○ compute live ranges
○ construct an interference graph
○ use simplification to color the graph, decide what to spill, and

then assign physical registers

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator
○ This justifies significant investment into solving the hard

problem of global register allocation
● The traditional technique is reduction to graph coloring:

○ compute live ranges
○ construct an interference graph
○ use simplification to color the graph, decide what to spill, and

then assign physical registers
● Implementing a global register allocator correctly is a challenge

Global Register Allocation: Summary

● A global register allocator can do much better than a local allocator
○ This justifies significant investment into solving the hard

problem of global register allocation
● The traditional technique is reduction to graph coloring:

○ compute live ranges
○ construct an interference graph
○ use simplification to color the graph, decide what to spill, and

then assign physical registers
● Implementing a global register allocator correctly is a challenge

○ I don’t expect all (or even most) of you to succeed at this, and it
is not required for PA4

Agenda

● Review + finish global register allocation
● And then…

○ Object Files
○ Linking
○ Relocations
○ Shared Libraries
○ Separate Typechecking

Motivation: Separate Compilation

Motivation: Separate Compilation

● Separate compilation is the ability to compile different parts of
your program at different times
○ And then link them together later

Motivation: Separate Compilation

● Separate compilation is the ability to compile different parts of
your program at different times
○ And then link them together later

● This is a big win. Why?

Motivation: Separate Compilation

● Separate compilation is the ability to compile different parts of
your program at different times
○ And then link them together later

● This is a big win. Why?
○ Faster compile times on small changes
○ For software engineering reasons (modularity, team

organization, etc - take 490 with me in the fall!)
○ Independently develop different parts (libraries)

Motivation: Separate Compilation

● Separate compilation is the ability to compile different parts of
your program at different times
○ And then link them together later

● This is a big win. Why?
○ Faster compile times on small changes
○ For software engineering reasons (modularity, team

organization, etc - take 490 with me in the fall!)
○ Independently develop different parts (libraries)

● All major languages and big projects use it

Motivation: Separate Compilation

● Separate compilation is the ability to compile different parts of
your program at different times
○ And then link them together later

● This is a big win. Why?
○ Faster compile times on small changes
○ For software engineering reasons (modularity, team

organization, etc - take 490 with me in the fall!)
○ Independently develop different parts (libraries)

● All major languages and big projects use it
○ Compilers/languages that do not support separate

compilation are not useful in practice (RIP Cool)

Pieces of Programs

● A compiled program fragment is called an object file. It contains:

Pieces of Programs

● A compiled program fragment is called an object file. It contains:
○ Code (for methods, etc.)

Pieces of Programs

● A compiled program fragment is called an object file. It contains:
○ Code (for methods, etc.)
○ Variables (e.g., values for global variables)

Pieces of Programs

● A compiled program fragment is called an object file. It contains:
○ Code (for methods, etc.)
○ Variables (e.g., values for global variables)
○ Debugging information

Pieces of Programs

● A compiled program fragment is called an object file. It contains:
○ Code (for methods, etc.)
○ Variables (e.g., values for global variables)
○ Debugging information
○ References to code/data that appears elsewhere (e.g., printf)

Pieces of Programs

● A compiled program fragment is called an object file. It contains:
○ Code (for methods, etc.)
○ Variables (e.g., values for global variables)
○ Debugging information
○ References to code/data that appears elsewhere (e.g., printf)
○ Tables for organizing the above

Pieces of Programs

● A compiled program fragment is called an object file. It contains:
○ Code (for methods, etc.)
○ Variables (e.g., values for global variables)
○ Debugging information
○ References to code/data that appears elsewhere (e.g., printf)
○ Tables for organizing the above

● The job of the linker is to combine one or more object files into a
single executable

Pieces of Programs

● A compiled program fragment is called an object file. It contains:
○ Code (for methods, etc.)
○ Variables (e.g., values for global variables)
○ Debugging information
○ References to code/data that appears elsewhere (e.g., printf)
○ Tables for organizing the above

● The job of the linker is to combine one or more object files into a
single executable
○ compiler : source code -> assembly
○ assembler : assembly -> object file
○ linker : object files -> binary

Linking: Two Big Tasks

Linking: Two Big Tasks

● Recall that the operating system uses virtual memory so every
program starts at a standard [virtual] address (e.g., address 0)

Linking: Two Big Tasks

● Recall that the operating system uses virtual memory so every
program starts at a standard [virtual] address (e.g., address 0)
○ As a result, each program has its own virtual address space

Linking: Two Big Tasks

● Recall that the operating system uses virtual memory so every
program starts at a standard [virtual] address (e.g., address 0)
○ As a result, each program has its own virtual address space

● Linking involves two tasks:

Linking: Two Big Tasks

● Recall that the operating system uses virtual memory so every
program starts at a standard [virtual] address (e.g., address 0)
○ As a result, each program has its own virtual address space

● Linking involves two tasks:
○ Relocating the code and data from each object file to a

particular fixed virtual address

Linking: Two Big Tasks

● Recall that the operating system uses virtual memory so every
program starts at a standard [virtual] address (e.g., address 0)
○ As a result, each program has its own virtual address space

● Linking involves two tasks:
○ Relocating the code and data from each object file to a

particular fixed virtual address
○ Resolving references (e.g., to variable locations or jump-target

labels) so that they point to concrete and correct virtual
addresses in the New World Order program’s virtual address
space

Relocatable Object Files
For this to work, a relocatable object file must have three tables:

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs
○ One external_symbol_name may come up many times!

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs
○ One external_symbol_name may come up many times!

● Export Table: points to symbol definitions in the code that are
exported for use by others

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs
○ One external_symbol_name may come up many times!

● Export Table: points to symbol definitions in the code that are
exported for use by others
○ List of (internal_symbol_name, where_in_code) pairs

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs
○ One external_symbol_name may come up many times!

● Export Table: points to symbol definitions in the code that are
exported for use by others
○ List of (internal_symbol_name, where_in_code) pairs

● Relocation Table: points to places in the code where local symbols
are referenced

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs
○ One external_symbol_name may come up many times!

● Export Table: points to symbol definitions in the code that are
exported for use by others
○ List of (internal_symbol_name, where_in_code) pairs

● Relocation Table: points to places in the code where local symbols
are referenced
○ List of (internal_symbol_name, where_in_code) pairs

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs
○ One external_symbol_name may come up many times!

● Export Table: points to symbol definitions in the code that are
exported for use by others
○ List of (internal_symbol_name, where_in_code) pairs

● Relocation Table: points to places in the code where local symbols
are referenced
○ List of (internal_symbol_name, where_in_code) pairs
○ One internal_symbol may come up many times!

Relocatable Object Files
For this to work, a relocatable object file must have three tables:
● Import Table: points to places in the code where an external

symbol (variable or method) is references
○ List of (external_symbol_name, where_in_code) pairs
○ One external_symbol_name may come up many times!

● Export Table: points to symbol definitions in the code that are
exported for use by others
○ List of (internal_symbol_name, where_in_code) pairs

● Relocation Table: points to places in the code where local symbols
are referenced
○ List of (internal_symbol_name, where_in_code) pairs
○ One internal_symbol may come up many times!

So Many Tables!
● these tables contain a lot of information…
● tables also must be easy to understand…
● maybe an example will help

Relocatable Object Files: Example
● Consider this C program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b – 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
return (–b + sqrt(temp)) / (2.0*a);

}

Relocatable Object Files: Example
● Consider this C program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b – 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
return (–b + sqrt(temp)) / (2.0*a);

}

0x1000 …
0x1004 push r1
0x1008 call loc

sqrt

Relocatable Object Files: Example
● Consider this C program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b – 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
return (–b + sqrt(temp)) / (2.0*a);

}

0x1000 …
0x1004 push r1
0x1008 call loc

sqrt

Import Table:
Replace address used at 0x1008 with the
final location of sqrt

Relocatable Object Files: Example
● Consider this C program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b – 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
return (–b + sqrt(temp)) / (2.0*a);

}

0x0200 r1 = b
0x0204 r1 = r1 * r1
0x0208 r2 = 4.0
0x020c r2 = r2 * a

Relocatable Object Files: Example
● Consider this C program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b – 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
return (–b + sqrt(temp)) / (2.0*a);

}

0x0200 r1 = b
0x0204 r1 = r1 * r1
0x0208 r2 = 4.0
0x020c r2 = r2 * a

Export Table:
We provide quadratic. If others want it, they can
figure out where 0x0200 is finally relocated to.
Call that new location R. They then replace all of
their references to loc

quadratic
 with R.

Relocatable Object Files: Example
● Consider this C program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b – 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
return (–b + sqrt(temp)) / (2.0*a);

}

0x0600 r1 = ld loc
temp

0x0604 jgz r1 loc
has_roots

Relocatable Object Files: Example
● Consider this C program:

extern double sqrt(double x);

static double temp = 0.0;

double quadratic(double a, b, c) {
temp = b*b – 4.0*a*c;
if (temp >= 0.0) { goto has_roots; }
throw Invalid_Argument;

has_roots:
return (–b + sqrt(temp)) / (2.0*a);

}

0x0600 r1 = ld loc
temp

0x0604 jgz r1 loc
has_roots

Relocation Table:
Find final relocated address of
temp. Call that R

temp
. Find final

relocated address of 0x0600. Call
that R

0x0600
. Replace address

referenced at R
0x0600

 with R
temp

.

Big Linking Example (On Paper w/ a Friend)

?

?

?

?

?

Big Linking Example (Answers)

Relocatable Object Files: Summary

Relocatable Object Files: Summary
● Your relocatable object file: main.o

○ Exports main(), imports sqrt(), relocations ...

Relocatable Object Files: Summary
● Your relocatable object file: main.o

○ Exports main(), imports sqrt(), relocations ...
● Your math library: math.o

○ Exports sqrt(), relocations

Relocatable Object Files: Summary
● Your relocatable object file: main.o

○ Exports main(), imports sqrt(), relocations ...
● Your math library: math.o

○ Exports sqrt(), relocations
○ Libraries themselves can have imports: example?

Relocatable Object Files: Summary
● Your relocatable object file: main.o

○ Exports main(), imports sqrt(), relocations ...
● Your math library: math.o

○ Exports sqrt(), relocations
○ Libraries themselves can have imports: example?
○ In Unix, math.o lives in libmath.a and –lmath on the command

line will find it

Relocatable Object Files: Summary
● Your relocatable object file: main.o

○ Exports main(), imports sqrt(), relocations ...
● Your math library: math.o

○ Exports sqrt(), relocations
○ Libraries themselves can have imports: example?
○ In Unix, math.o lives in libmath.a and –lmath on the command

line will find it
● The linker reads them in, picks a fixed final relocation address for

all code and data (1st pass) and then goes through and modifies
every instruction with a symbol reference (2nd pass)

Trivia Break: Philosophy

This Athenian philosopher authored no texts and is known mainly
through the posthumous accounts of classical writers, particularly his
students Plato and Xenophon. These accounts are written as
dialogues, in which this philosopher and his interlocutors examine a
subject in the style of question and answer. He was a polarizing figure
in the Athenian society of the day; in 399 BC, he was accused of
impiety and corrupting the youth. After a trial that lasted a day, he
was sentenced to death. He spent his last day in prison, refusing
offers to help him escape. Despite this, he has exerted a strong
influence on philosophers in later antiquity and has continued to do
so in the modern era.

Trivia Break: Philosophy

This family of normative ethical theories prescribes actions that
maximize happiness and well-being for the affected individuals. In
other words, these theories encourage actions that lead to the
greatest good for the greatest number. The seeds of the theory can
be found in the hedonists Aristippus and Epicurus (who viewed
happiness as the only good), the state consequentialism of the
ancient Chinese philosopher Mozi (who developed a theory to
maximize benefit and minimize harm), and in the work of the
medieval Indian philosopher Shantideva. Modern proponents include
Jeremy Bentham, John Stuart Mill, Henry Sidgwick, R. M. Hare, and
Peter Singer.

Sharing is Caring

● Relocatable object files are fine, but if two programs both use
math.o they will each get a copy of it

Sharing is Caring

● Relocatable object files are fine, but if two programs both use
math.o they will each get a copy of it
○ You can optimize this a bit by only linking and copying in the

parts of a library that you really need (transitive closure of
dependencies)

Sharing is Caring

● Relocatable object files are fine, but if two programs both use
math.o they will each get a copy of it
○ You can optimize this a bit by only linking and copying in the

parts of a library that you really need (transitive closure of
dependencies)
■ But that’s just a band-aid over the real problem

Sharing is Caring

● Relocatable object files are fine, but if two programs both use
math.o they will each get a copy of it
○ You can optimize this a bit by only linking and copying in the

parts of a library that you really need (transitive closure of
dependencies)
■ But that’s just a band-aid over the real problem

● If we run both programs, we will load
both copies of math.o into memory –
wasting memory (recall: they’re
identical)!

Sharing is Caring

● Relocatable object files are fine, but if two programs both use
math.o they will each get a copy of it
○ You can optimize this a bit by only linking and copying in the

parts of a library that you really need (transitive closure of
dependencies)
■ But that’s just a band-aid over the real problem

● If we run both programs, we will load
both copies of math.o into memory –
wasting memory (recall: they’re
identical)!

● How could we go about sharing math.o?

Dynamic Linking

● Idea: shared libraries (.so) or dynamically linked libraries (.dll,
.dylib) use virtual memory so that multiple programs can share
the same libraries in main memory

Dynamic Linking

● Idea: shared libraries (.so) or dynamically linked libraries (.dll,
.dylib) use virtual memory so that multiple programs can share
the same libraries in main memory
○ Load the library into physical memory once

Dynamic Linking

● Idea: shared libraries (.so) or dynamically linked libraries (.dll,
.dylib) use virtual memory so that multiple programs can share
the same libraries in main memory
○ Load the library into physical memory once
○ Each program using it has a virtual address V that points to it

Dynamic Linking

● Idea: shared libraries (.so) or dynamically linked libraries (.dll,
.dylib) use virtual memory so that multiple programs can share
the same libraries in main memory
○ Load the library into physical memory once
○ Each program using it has a virtual address V that points to it
○ During dynamic linking, resolve references to library symbols

using that virtual address V

Dynamic Linking

● Idea: shared libraries (.so) or dynamically linked libraries (.dll,
.dylib) use virtual memory so that multiple programs can share
the same libraries in main memory
○ Load the library into physical memory once
○ Each program using it has a virtual address V that points to it
○ During dynamic linking, resolve references to library symbols

using that virtual address V
● This is another example of the old adage: every problem in

computer science can be solved by either adding a cache or
another layer of abstraction

Dynamic Linking

● Idea: shared libraries (.so) or dynamically linked libraries (.dll,
.dylib) use virtual memory so that multiple programs can share
the same libraries in main memory
○ Load the library into physical memory once
○ Each program using it has a virtual address V that points to it
○ During dynamic linking, resolve references to library symbols

using that virtual address V
● This is another example of the old adage: every problem in

computer science can be solved by either adding a cache or
another layer of abstraction

● What could go wrong with this plan? Code? Security?

Relocations in the DLL

● Since we are sharing the code to math.dll, we cannot set its
relocations separately for each client

Relocations in the DLL

● Since we are sharing the code to math.dll, we cannot set its
relocations separately for each client

● So if math.dll has a jump to loc
math_label

, that must be resolved to
the same location (e.g., 0x1234) for all clients

Relocations in the DLL

● Since we are sharing the code to math.dll, we cannot set its
relocations separately for each client

● So if math.dll has a jump to loc
math_label

, that must be resolved to
the same location (e.g., 0x1234) for all clients
○ Because we can only patch the instruction once!

Relocations in the DLL

● Since we are sharing the code to math.dll, we cannot set its
relocations separately for each client

● So if math.dll has a jump to loc
math_label

, that must be resolved to
the same location (e.g., 0x1234) for all clients
○ Because we can only patch the instruction once!
○ And every thread/program shares that patched code!

Relocations in the DLL

● Since we are sharing the code to math.dll, we cannot set its
relocations separately for each client

● So if math.dll has a jump to loc
math_label

, that must be resolved to
the same location (e.g., 0x1234) for all clients
○ Because we can only patch the instruction once!
○ And every thread/program shares that patched code!

● So either:

Relocations in the DLL

● Since we are sharing the code to math.dll, we cannot set its
relocations separately for each client

● So if math.dll has a jump to loc
math_label

, that must be resolved to
the same location (e.g., 0x1234) for all clients
○ Because we can only patch the instruction once!
○ And every thread/program shares that patched code!

● So either:
○ Every program using math.dll agrees to put it at virtual

address location 0x1000 (what might go wrong?)

Relocations in the DLL

● Since we are sharing the code to math.dll, we cannot set its
relocations separately for each client

● So if math.dll has a jump to loc
math_label

, that must be resolved to
the same location (e.g., 0x1234) for all clients
○ Because we can only patch the instruction once!
○ And every thread/program shares that patched code!

● So either:
○ Every program using math.dll agrees to put it at virtual

address location 0x1000 (what might go wrong?)
○ math.dll uses no relocations in its code segment (how?)

Position-Independent Code

● Rather than “0x1000: jump to 0x1060”, use “jump to PC+0x60”

Position-Independent Code

● Rather than “0x1000: jump to 0x1060”, use “jump to PC+0x60”
○ This code can be relocated to any address

Position-Independent Code

● Rather than “0x1000: jump to 0x1060”, use “jump to PC+0x60”
○ This code can be relocated to any address
○ This is called position-independent code (“PIC”)

Position-Independent Code

● Rather than “0x1000: jump to 0x1060”, use “jump to PC+0x60”
○ This code can be relocated to any address
○ This is called position-independent code (“PIC”)

■ By default, Gradescope’s Ubuntu environment expects all
code to be position independent (for security reasons)
● This is why you compile with gcc -no-pie

Position-Independent Code

● Rather than “0x1000: jump to 0x1060”, use “jump to PC+0x60”
○ This code can be relocated to any address
○ This is called position-independent code (“PIC”)

■ By default, Gradescope’s Ubuntu environment expects all
code to be position independent (for security reasons)
● This is why you compile with gcc -no-pie

● OK, that works for branches.

Position-Independent Code

● Rather than “0x1000: jump to 0x1060”, use “jump to PC+0x60”
○ This code can be relocated to any address
○ This is called position-independent code (“PIC”)

■ By default, Gradescope’s Ubuntu environment expects all
code to be position independent (for security reasons)
● This is why you compile with gcc -no-pie

● OK, that works for branches.
● But what about global variables?

Position-Independent Code

● Rather than “0x1000: jump to 0x1060”, use “jump to PC+0x60”
○ This code can be relocated to any address
○ This is called position-independent code (“PIC”)

■ By default, Gradescope’s Ubuntu environment expects all
code to be position independent (for security reasons)
● This is why you compile with gcc -no-pie

● OK, that works for branches.
● But what about global variables?

○ You tell me:
■ Where should they live?
■ Should they be shared?

Data Linkage Table

● Store shared-library global variable addresses starting at some
virtual address B

Data Linkage Table

● Store shared-library global variable addresses starting at some
virtual address B
○ This table of addresses is the linkage table

Data Linkage Table

● Store shared-library global variable addresses starting at some
virtual address B
○ This table of addresses is the linkage table

● Compile the PIC assuming that some distinguished register GP
(or R5 or ...) will hold the current value of B

Data Linkage Table

● Store shared-library global variable addresses starting at some
virtual address B
○ This table of addresses is the linkage table

● Compile the PIC assuming that some distinguished register GP
(or R5 or ...) will hold the current value of B
○ Problems? What might go wrong with this scheme?

Data Linkage Table

● Store shared-library global variable addresses starting at some
virtual address B
○ This table of addresses is the linkage table

● Compile the PIC assuming that some distinguished register GP
(or R5 or ...) will hold the current value of B
○ Problems? What might go wrong with this scheme?

● The entry point to a shared library (or the caller) sets register GP
to hold B

Data Linkage Table

● Store shared-library global variable addresses starting at some
virtual address B
○ This table of addresses is the linkage table

● Compile the PIC assuming that some distinguished register GP
(or R5 or ...) will hold the current value of B
○ Problems? What might go wrong with this scheme?

● The entry point to a shared library (or the caller) sets register GP
to hold B
○ Optimization: if the code and data live at fixed offsets, can do

e.g. GP = ((PC & 0xFF00)+0x0100)

Shared Library = Shared Data?
● Typically each client of a shared library X wants its own copies of

X’s globals

Shared Library = Shared Data?
● Typically each client of a shared library X wants its own copies of

X’s globals
○ Example: errno variable in libc (cf. Exceptions lecture later)

Shared Library = Shared Data?
● Typically each client of a shared library X wants its own copies of

X’s globals
○ Example: errno variable in libc (cf. Exceptions lecture later)

● When dynamically linking, you share the code segment but get
your own copy of the data segment

Shared Library = Shared Data?
● Typically each client of a shared library X wants its own copies of

X’s globals
○ Example: errno variable in libc (cf. Exceptions lecture later)

● When dynamically linking, you share the code segment but get
your own copy of the data segment
○ And thus your own base address B to put in GP

Shared Library = Shared Data?
● Typically each client of a shared library X wants its own copies of

X’s globals
○ Example: errno variable in libc (cf. Exceptions lecture later)

● When dynamically linking, you share the code segment but get
your own copy of the data segment
○ And thus your own base address B to put in GP
○ Optimization: use copy-on-write virtual memory

Shared Library = Shared Data?
● Typically each client of a shared library X wants its own copies of

X’s globals
○ Example: errno variable in libc (cf. Exceptions lecture later)

● When dynamically linking, you share the code segment but get
your own copy of the data segment
○ And thus your own base address B to put in GP
○ Optimization: use copy-on-write virtual memory

● Detail: use an extra level of indirection when the PIC shared
library code does callbacks to unshared main() or references
global variables from unshared main()
○ Allows the unshared non-PIC target address to be kept in the data

segment, which is private to each program

Example (Not As Bad As It Looks!)

Example (Not As Bad As It Looks!)

Fully Dynamic Linking

● So far this is all happening at load time when you start the
program

Fully Dynamic Linking

● So far this is all happening at load time when you start the
program

● Could we do it at run-time on demand?
○ Decrease load times with many libraries
○ Support dynamically-loaded code (e.g., Java)
○ Important for scripting languages

Fully Dynamic Linking

● So far this is all happening at load time when you start the
program

● Could we do it at run-time on demand?
○ Decrease load times with many libraries
○ Support dynamically-loaded code (e.g., Java)
○ Important for scripting languages

● Use linkage table as before

Fully Dynamic Linking

● So far this is all happening at load time when you start the
program

● Could we do it at run-time on demand?
○ Decrease load times with many libraries
○ Support dynamically-loaded code (e.g., Java)
○ Important for scripting languages

● Use linkage table as before
○ But instead loading the code for foo(), point to a special stub

procedure that loads foo() and all variables from the library
and then updates the linkage table to point to the
newly-loaded foo()

Typechecking

● So we have separate compilation and shared libraries

Typechecking

● So we have separate compilation and shared libraries
● But, do we have them safely?

Typechecking

● So we have separate compilation and shared libraries
● But, do we have them safely? Consider the following:

(* Main *)

extern string sqrt();
void main() {
 string str = sqrt();
 printf(“%s\n”,str);
 return;
}

(* math *)

export double sqrt(double a) {
return ...;

}

Header/Interface Files

● When we typecheck a piece of code we generate an interface file
(or header file)

Header/Interface Files

● When we typecheck a piece of code we generate an interface file
(or header file)
○ Listing all exported methods and their types

Header/Interface Files

● When we typecheck a piece of code we generate an interface file
(or header file)
○ Listing all exported methods and their types
○ Listing all exported globals and their types

Header/Interface Files

● When we typecheck a piece of code we generate an interface file
(or header file)
○ Listing all exported methods and their types
○ Listing all exported globals and their types
○ The imp map and class map from PA2 suffice perfectly: just

throw away the expression information

Header/Interface Files

● When we typecheck a piece of code we generate an interface file
(or header file)
○ Listing all exported methods and their types
○ Listing all exported globals and their types
○ The imp map and class map from PA2 suffice perfectly: just

throw away the expression information
● When we compile a client of a library we check the interface file

for the types of external symbols

Header/Interface Files

● When we typecheck a piece of code we generate an interface file
(or header file)
○ Listing all exported methods and their types
○ Listing all exported globals and their types
○ The imp map and class map from PA2 suffice perfectly: just

throw away the expression information
● When we compile a client of a library we check the interface file

for the types of external symbols
○ Can anything go wrong with this plan?

Header/Interface Files: Bait and Switch

● Cunning evil plan to deceive the user:

Header/Interface Files: Bait and Switch

● Cunning evil plan to deceive the user:
○ Write math.cl where sqrt() returns a string
○ Generate interface file
○ Give interface file to user

Header/Interface Files: Bait and Switch

● Cunning evil plan to deceive the user:
○ Write math.cl where sqrt() returns a string
○ Generate interface file
○ Give interface file to user
○ Write new math.cl: sqrt() returns a double
○ Compile source to relocatable object file
○ Give object file to user

Header/Interface Files: Bait and Switch

● Cunning evil plan to deceive the user:
○ Write math.cl where sqrt() returns a string
○ Generate interface file
○ Give interface file to user
○ Write new math.cl: sqrt() returns a double
○ Compile source to relocatable object file
○ Give object file to user
○ …
○ Profit?

Header/Interface Files: Bait and Switch

● Cunning evil plan to deceive the user:
○ Write math.cl where sqrt() returns a string
○ Generate interface file
○ Give interface file to user
○ Write new math.cl: sqrt() returns a double
○ Compile source to relocatable object file
○ Give object file to user
○ …
○ Profit? How might we prevent

this from happening
(even accidentally)?

Checksums and Name Mangling

● From the interface file, take all of the exported symbols and all
of their types and write them into a list, then hash (or
“checksum”) it

Checksums and Name Mangling

● From the interface file, take all of the exported symbols and all
of their types and write them into a list, then hash (or
“checksum”) it
○ Include this hash value in the relocatable object

Checksums and Name Mangling

● From the interface file, take all of the exported symbols and all
of their types and write them into a list, then hash (or
“checksum”) it
○ Include this hash value in the relocatable object

● Each library client also computes the hash value based on the
interface it was given

Checksums and Name Mangling

● From the interface file, take all of the exported symbols and all
of their types and write them into a list, then hash (or
“checksum”) it
○ Include this hash value in the relocatable object

● Each library client also computes the hash value based on the
interface it was given

● At link time, check to make sure the hash values are the same

Checksums and Name Mangling

● From the interface file, take all of the exported symbols and all
of their types and write them into a list, then hash (or
“checksum”) it
○ Include this hash value in the relocatable object

● Each library client also computes the hash value based on the
interface it was given

● At link time, check to make sure the hash values are the same
○ C++ name mangling is the same idea, but done on a per

symbol basis (rather than a per-interface basis)

Shared Libraries: Summary

● We wanted separate compilation for program pieces.

Shared Libraries: Summary

● We wanted separate compilation for program pieces.
○ So we must link those compiled pieces together later.

Shared Libraries: Summary

● We wanted separate compilation for program pieces.
○ So we must link those compiled pieces together later.
○ We must resolve references from one object to another.

■ This involves a copious number of tables

Shared Libraries: Summary

● We wanted separate compilation for program pieces.
○ So we must link those compiled pieces together later.
○ We must resolve references from one object to another.

■ This involves a copious number of tables
● We also wanted to share libraries between programs.

Shared Libraries: Summary

● We wanted separate compilation for program pieces.
○ So we must link those compiled pieces together later.
○ We must resolve references from one object to another.

■ This involves a copious number of tables
● We also wanted to share libraries between programs.

○ To do so, we used indirection to create
position-independent code

Shared Libraries: Summary

● We wanted separate compilation for program pieces.
○ So we must link those compiled pieces together later.
○ We must resolve references from one object to another.

■ This involves a copious number of tables
● We also wanted to share libraries between programs.

○ To do so, we used indirection to create
position-independent code

● We also wanted to typecheck separately-compiled modules.

Shared Libraries: Summary

● We wanted separate compilation for program pieces.
○ So we must link those compiled pieces together later.
○ We must resolve references from one object to another.

■ This involves a copious number of tables
● We also wanted to share libraries between programs.

○ To do so, we used indirection to create
position-independent code

● We also wanted to typecheck separately-compiled modules.
○ We distribute header files with typing information and a

checksum that ensures integrity

