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Course Announcements
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Semi-review: Assignment Rule

Γ ⊢ e
1

 : T
1

  Γ(id) = T
0  

   T
1

 ≤ T
0

           Γ ⊢ id <- e
1

 : T
1

[Assign]

● How do I read this rule?
● What is “Γ”? “⊢”? “≤”?
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Examples of Wrong Let Rule (1)

● Now consider a hypothetical wrong let rule:

● How is it different from the correct rule?
● The following program does not typecheck:

let x : Int <- 0 in x + 1
● Why not? Typing environment hasn’t been updated!

Γ ⊢ e
0

 : T T
 
≤ T

0
 Γ ⊢ e

1
 : T

1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]



Examples of Wrong Let Rule (2)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
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Examples of Wrong Let Rule (2)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
● The following bad program (!) is well-typed:

let x : B <- new A in x.b()
● Why is this program bad?
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Examples of Wrong Let Rule (3)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
● This “good” program is not well-typed:

let x : A <- new B in { … x <- new A ; x.a(); }
● Why isn’t this program well-typed?
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Γ ⊢ let x : T
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 in e
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1

[Let-Init]
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Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected
● But no matter how well we choose the type rules, some good 

programs will be rejected anyway
○ Rice’s Theorem strikes again: typechecking is undecidable



Agenda

● Finish discussion of subtyping/let from last class
● More type rules
● Method dispatch rules

○ static
○ dynamic

● SELF_TYPE
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Attribute Initialization

● Let Γ
C

(x) = T for each attribute x : T in class C
○ Γ

C
 represents the class-wide scope

■ we “preload” the environment Γ with all attributes
● Attribute initialization is like let, except for the scope of names:

Γ
C

(id) = T
0

   Γ
C

 ⊢ e
1

 : T
1

T
1 

≤ T
0

 

            Γ
C

 ⊢ id <- e
1

 : T
0

 ;
[Attr-Init]
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If-Then-Else

● Consider how to type the expression: if e
0

 then e
1

 else e
2

 fi
● The result can be either e

1
 or e

2

○ i.e., the dynamic type is either e
1

‘s type or e
2

‘s type
● The best we can do statically is the closest supertype of e

1
‘s type 

and e
2

‘s type
● E.g., consider the class hierarchy:

○ if A is the type of e
1

 and B 
is the type of  e

2
…

○ …then we want to type 

the whole expression as P

A B

P

(note the arrows here 
mean inheritance)
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Least Upper Bounds

Definition: the least upper bound or lub over some relation ≤ of two 
elements of ≤’s domain X and Y is Z if:
● X ≤ Z /\ Y ≤ Z

○ “Z is an upper bound”
● X ≤ Z’ /\ Y ≤ Z’ => Z ≤ Z’

○ “Z is least among upper bounds”

● In Cool, the least upper bound of two types is their closest 
common ancestor in the inheritance tree (= type hierarchy)
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If-Then-Else Rule

Γ⊢ e
0 

: Bool    Γ ⊢ e
1

 : T
1

Γ ⊢ e
2

 : T
2

Γ ⊢ if e
0

 then e
1

 else e
2

 fi : lub(T
1

, T
2

)
[If-Then-Else]
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Case

● The rule for case expressions takes a lub over all branches:

Γ⊢ e
0 

: T
0

   Γ[T
1

/x
1

] ⊢ e
1

 : T
1

’ … Γ[T
n
/x

n
] ⊢ e

n
 : T

n
’

Γ ⊢ case e
0

 of x
1

 : T
1

 => e
1

 ; … ; x
n
 : T

n
 => e

n
 ; esac: lub(T

1
’, …, T

n
’)

[Case]
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● There is a problem with typechecking method calls
● Naïvely, we might want a rule like this:
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Method Dispatch

● There is a problem with typechecking method calls
● Naïvely, we might want a rule like this:

● We need information about the formal parameter types and 
return type of f, but Γ doesn’t contain that information!

Γ⊢ e
0 

: T
0

   Γ⊢ e
1 

: T
1

… Γ⊢ e
n 

: T
n

Γ ⊢ e
0

.f(e
1

, …, e
n
) : ?

[Dispatch]
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Notes on Dispatch

● In Cool, method and object identifiers live in different name spaces
○ A method foo and a variable foo can coexist in the same scope 

without any problems
● In the type rules, this needs to be reflected by separating the type 

environments that contain information about methods and 
variables
○ Add a second type environment for methods 𝚳!

■ 𝚳 maps a (class, method) tuple to a method signature
■ e.g., 𝚳(C, f) = (T

1
, …, T

n
, T

ret
) means that there is a method in 

class C with the signature f(x
1

 : T
1

, …, x
n
 : T

n
) : T

ret
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An Extended Typing Judgment

● Now we have two type environments: Γ and 𝚳
● The form of the typing judgment then becomes:

Γ, 𝚳 ⊢ e
 
: T

● We read this as “with the assumptions that the free object 
identifiers in e have the types given by Γ and the method identifiers in 
e have the signatures given by 𝚳, the expression e has type T.”
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● The method environment needs to be added to all of our rules
● In most cases, 𝚳 is passed down but not actually used

○ for example, the Add rule does not use 𝚳:

Γ, 𝚳 ⊢ e
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 : Int Γ, 𝚳 ⊢ e
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 : Int
[Add]
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The Method Environment

● The method environment needs to be added to all of our rules
● In most cases, 𝚳 is passed down but not actually used

○ for example, the Add rule does not use 𝚳:

● Only the Dispatch rule actually uses 𝚳.

Γ, 𝚳 ⊢ e
1

 : Int Γ, 𝚳 ⊢ e
2

 : Int
[Add]
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Method Dispatch Revisited

Γ, 𝚳 ⊢ e
0 

: T
0

   

Γ, 𝚳 ⊢ e
1 

: T
1

…      
Γ, 𝚳 ⊢ e

n 
: T

n

Γ, 𝚳 ⊢ e
0

.f(e
1
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[Dispatch]

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

∀ i in (1…n), T
i
 ≤ T

i
’

…and check that each 
argument is a subtype of the 
corresponding formal 
parameter

next, look up method signature…then check actual 
arguments are well-typed

first check receiver object e
0

1.

2. 3.

4.

four steps!
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Static Dispatch

● The rule one previous slide is for dynamic dispatch
○ i.e., the method that gets called is based on the dynamic type of 

the receiver
● Cool also supports static dispatch

○ i.e., where the method to be called is chosen based on a class 
explicitly specified by the programmer

● The static dispatch rule is similar to the dynamic dispatch rule, but 
the inferred type of the receiver must conform to the type that the 
programmer specifies



Static Dispatch Rule

Γ, 𝚳 ⊢ e
0 

: T
0

   

Γ, 𝚳 ⊢ e
1 

: T
1

…      
Γ, 𝚳 ⊢ e

n 
: T

n

Γ, 𝚳 ⊢ e
0

@T.f(e
1

, …, e
n
) : T

n+1
’

[Static Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, T

n+1
’)

(new additions/changes from the 
regular Dispatch rule in purple)

T
0

 ≤ T
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Flexibility vs Soundness

● Recall that type systems have two conflicting goals:
○ give flexibility to the programmer

■ “allow more good programs”
■ completeness

○ prevent incorrect programs from being compiled
■ “don’t allow bad programs”
■ soundness

● An active line of research: inventing more flexible type systems 
while preserving soundness
○ SELF_TYPE is an “advanced” feature, to give you a taste of this
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Review: Cool Soundness

● Soundness theorem for the Cool type system:

for all expressions E, dynamic_type(E) ≤ static_type(E)

● Why is this ok?
○ For all E, the compiler allows only operations that 

static_type(E) permits
○ Liskov substitutability guarantees that any operation available 

on a supertype is also available on its subtypes
■ subclasses can only add attributes or methods
■ methods can be redefined, but only with the same types
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An Example

● This Count class implements a 
simple counter

● The inc method works for any 
subclass…
○ …or does it?

● There is a problem lurking 
here!

class Count {
  i : Int <- 0;
  inc() : Count {
    {
      i <- i + 1;
      self;
    }
  };
};
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Co(u)ntinuing the Example

● Consider a subclass Stock of Count:

class Stock inherits Count {
     name() : String { … }; --name of item
   };

● And the following use of Stock:
class Main {

     a : Stock <- (new Stock).inc();
 … a.name() …

   };

our current rules will cause a 
typechecking error here, because 
inc() returns a Count (not a Stock)
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Postmortem

● (new Stock).inc()has dynamic type Stock

○ So, it’s legitimate to write:

a : Stock <- (new Stock).inc()

● But this is not well-typed, because (new Stock).inc() has static 
type Count

● The typechecker has “lost” information



Trivia Break: History

This city on the Danube river famously was the home of a number of 
influential figures of the 20th century for a short time in 1913, 
including Leon Trotsky, Joseph Stalin, Adolf Hitler, Sigmund Freud, 
and Josip Broz Tito. It was the seat of the Holy Roman Emperors of 
the Habsburg dynasty from the 16th-century until the empire’s 
dissolution in 1806 (with only brief interruptions). Afterward, it was 
the seat of Austria-Hungary until the dissolution of that empire 
following the first World War. It is now the capital of Austria.



Trivia Break: Computer Science

This American computer scientist and mathematician was the 
recipient of the 1974 Turing Award. He has been called the "father of 
the analysis of algorithms". He is the author of the multi-volume 
work The Art of Computer Programming. In addition to his work in 
theoretical computer science, he is the creator of the TeX computer 
typesetting system, the related METAFONT font definition language 
and rendering system, and the Computer Modern family of 
typefaces.
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SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count
○ In the case of (new Stock).inc() , the type is Stock

● We introduce the keyword SELF_TYPE to use for the return value 
of such functions
○ We will need to modify the type rules to handle SELF_TYPE
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SELF_TYPE to the Rescue (2)

● SELF_TYPE allows the return type of inc to change when inc is 
inherited

● Modify the declaration of inc to read 
inc() : SELF_TYPE { ... }

● The typechecker can now prove:
Γ, 𝚳 ⊢(new Count).inc() : Count 
Γ, 𝚳 ⊢(new Stock).inc() : Stock

● The program from before is now well typed



What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type



What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type



What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type

● It helps the typechecker to keep better track of types



What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type

● It helps the typechecker to keep better track of types
● It enables the typechecker to accept more correct programs



What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type

● It helps the typechecker to keep better track of types
● It enables the typechecker to accept more correct programs
● In short, having SELF_TYPE increases the expressive power of the 

type system
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SELF_TYPE and Dynamic Types (Example)

● What can be the dynamic type of the object returned by inc?
○ Answer: whatever could be the type of “self”!
○ Equally-valid answer: Count or any subclass of Count!

● In general, if SELF_TYPE appears textually in the class C as the 
declared type of E then it denotes the dynamic type of the “self” 
expression:

dynamic_type(E) = dynamic_type(self) ≤ C
● Note: The meaning of SELF_TYPE depends on where it appears

○ We write SELF_TYPE
C

 to refer to an occurrence of SELF_TYPE 
in the body of some specific class C
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Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for 
SELF_TYPE:

SELF_TYPE
C

 ≤ C
● This rule has an important consequence:

○ In typechecking, it is always safe to replace SELF_TYPE
C

 by C
● This suggests one way to handle SELF_TYPE in a typechecker 

implementation: 
○ replace all occurrences of SELF_TYPE

C
 with C

● What’s wrong with this?
○ It’s sound, but it’s like not having SELF_TYPE at all (oops)
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Typechecking SELF_TYPE (properly)

● Recall the operations that we’ve defined over types:
○ subtyping: T

1
 ≤ T

2

○ least upper bound: lub(T
1

, T
2

)
● To handle SELF_TYPE properly, we need to extend these 

operations to handle it
○ doing so is surprisingly involved…
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Extending ≤ 

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

1. SELF_TYPE
C

 ≤ T if C ≤ T
- SELF_TYPE

C
 can be any subtype of C, including C itself

- Thus this is the most flexible rule we can allow
2. SELF_TYPE

C
 ≤ SELF_TYPE

C

- recall that SELF_TYPE
C

 is the type of the “self” expression
- In Cool we never need to compare SELF_TYPEs coming 

from different classes (why? left as an exercise…)



Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. 



Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why?



Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…



Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’ 



Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’ 
- according to the rules from before



Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’ 
- according to the rules from before

● Note these rules covered every combination + order of Ts and 
SELF_TYPE

C
s 



Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’ 
- according to the rules from before

● Note these rules covered every combination + order of Ts and 
SELF_TYPE

C
s 

● Using these rules, we can extend lub too…
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Extending lub
● Again, let  T and T’ be any types except SELF_TYPE
● Again, there are four cases:

1. lub(SELF_TYPE
C

, SELF_TYPE
C

) = SELF_TYPE
C

2. lub(SELF_TYPE
C

, T) = lub(C, T)
- this is the best we can do because SELF_TYPE

C
 ≤ C

3. lub(T, SELF_TYPE
C

) = lub(C, T)
- bonus question: why is this the same as case 2?

4. lub(T, T’) defined the same as before
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Where can SELF_TYPE Appear in Cool?

● The parser checks that SELF_TYPE only appears in locations where 
a type is permitted
○ But SELF_TYPE isn’t allowed everywhere that a type is!
○ For example, in class T inherits T’ {...}:

■ neither T nor T’ can be SELF_TYPE
● because SELF_TYPE is never a dynamic type

● On the other hand, in an attribute declaration x : T,
○ T can be SELF_TYPE

■ it means the attribute’s type is SELF_TYPE
C
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● What about let expressions? Can the variable be SELF_TYPE?
○ Yes: in let x : T in E, if T is SELF_TYPE, then x has the 

type SELF_TYPE
C

● What about new expressions?
○ Yes: in new T, if T is SELF_TYPE, then the expression evaluates 

to a value of type SELF_TYPE
C

● What about static dispatch? E.g., in m@T(E1,...,En), can T be 
SELF_TYPE?
○ No: the T in static dispatch needs to refer to a specific, dynamic 

type
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Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we 
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

● This leads to a new typing judgment form:

Γ, 𝚳, C ⊢ e
 
: T

● Read as “An expression e occurring in the body of C has static type 
T given a variable type environment Γ and method signatures 𝚳”
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Changing the Type Rules for SELF_TYPE

● The next step is to design type rules that account for SELF_TYPE 
for each language construct

● Most of these rules are the same as the rules without SELF_TYPE, 
except that ≤ and lub are the new versions with SELF_TYPE 
support; only change is to pass through the enclosing class

● E.g.,:

Γ, 𝚳, C ⊢ e
1

 : T
1

  Γ(id) = T
0  

   T
1

 ≤ T
0

           Γ, 𝚳, C ⊢ id <- e
1

 : T
1

[Assign]
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● The rules for dispatch need to change. We modify the old dispatch 
rule:

Γ, 𝚳, C ⊢ e
0 

: T
0
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1 

: T
1

…
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n 
: T

n
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0

.f(e
1

, …, e
n
) : T
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[Dispatch]
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i
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Changes to Dispatch Rules

● The rules for dispatch need to change. We modify the old dispatch 
rule:

Γ, 𝚳, C ⊢ e
0 

: T
0

   Γ, 

𝚳, C ⊢ e
1 

: T
1

…
Γ, 𝚳, C ⊢ e

n 
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

T
n+1

’ ≠ SELF_TYPE
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○ (changes in pink)
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● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)
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Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T, 

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the 

class in which the method body appears
○ Note: not the class in which the call site appears!

● The static dispatch class cannot be SELF_TYPE
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New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

● There are a number of other places in the rules where SELF_TYPE 
appears - read the CRM carefully

           Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

         Γ, 𝚳, C ⊢ new SELF_TYPE : SELF_TYPE
C

[New-Self]



Where is SELF_TYPE illegal in Cool?



Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!



Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!
○ What would go wrong if T were SELF_TYPE?



Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!
○ What would go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; }; 
class B inherits A {
  b() : int { ... };
  comp(y : SELF_TYPE) : Bool { ... y.b() ...}; }; 
...
let x : A  new B in ... x.comp(new A); ... 
...
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Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work. 
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used 
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current 
class
○ The exception is the typechecking of dispatch.
○ SELF_TYPE as the return type in an invoked method might have 

nothing to do with the current class
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Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any 

“bad” programs
○ but at the cost of additional complexity

● SELF_TYPE itself isn’t that important
○ although you have to get it right for PA2…

● But it is illustrative of a class of ideas that trade-off expressiveness 
for complexity
○ and gives you a taste of how this works in practice!
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Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment
○ There is a tradeoff between safety and flexibility
○ There is another tradeoff between expressiveness and 

complexity


