
More Static Semantics
Martin Kellogg

Agenda

● Finish discussion of subtyping/let from last class
● More type rules
● Method dispatch rules

○ static
○ dynamic

● SELF_TYPE

Course Announcements

● Don’t ignore PA2!
○ Listen to the TAs when they tell you to start ASAP

Agenda

● Finish discussion of subtyping/let from last class
● More type rules
● Method dispatch rules

○ static
○ dynamic

● SELF_TYPE

Semi-review: Assignment Rule

Γ ⊢ e
1

 : T
1

 Γ(id) = T
0

 T
1

 ≤ T
0

 Γ ⊢ id <- e
1

 : T
1

[Assign]

Semi-review: Assignment Rule

Γ ⊢ e
1

 : T
1

 Γ(id) = T
0

 T
1

 ≤ T
0

 Γ ⊢ id <- e
1

 : T
1

[Assign]

● How do I read this rule?

Semi-review: Assignment Rule

Γ ⊢ e
1

 : T
1

 Γ(id) = T
0

 T
1

 ≤ T
0

 Γ ⊢ id <- e
1

 : T
1

[Assign]

● How do I read this rule?
● What is “Γ”? “⊢”? “≤”?

Examples of Wrong Let Rule (1)

Examples of Wrong Let Rule (1)

● Now consider a hypothetical wrong let rule:

● How is it different from the correct rule?

Γ ⊢ e
0

 : T T

≤ T

0
 Γ ⊢ e

1
 : T

1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]

Examples of Wrong Let Rule (1)

● Now consider a hypothetical wrong let rule:

● How is it different from the correct rule?
● The following program does not typecheck:

let x : Int <- 0 in x + 1
● Why not?

Γ ⊢ e
0

 : T T

≤ T

0
 Γ ⊢ e

1
 : T

1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]

Examples of Wrong Let Rule (1)

● Now consider a hypothetical wrong let rule:

● How is it different from the correct rule?
● The following program does not typecheck:

let x : Int <- 0 in x + 1
● Why not? Typing environment hasn’t been updated!

Γ ⊢ e
0

 : T T

≤ T

0
 Γ ⊢ e

1
 : T

1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]

Examples of Wrong Let Rule (2)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?

Γ ⊢ e
0

 : T T
0

≤ T Γ[T
0

/x] ⊢ e
1

 : T
1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]

Examples of Wrong Let Rule (2)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
● The following bad program (!) is well-typed:

let x : B <- new A in x.b()
● Why is this program bad?

Γ ⊢ e
0

 : T T
0

≤ T Γ[T
0

/x] ⊢ e
1

 : T
1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]

Examples of Wrong Let Rule (3)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?

Γ ⊢ e
0

 : T T

≤ T

0
 Γ[T/x] ⊢ e

1
 : T

1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]

Examples of Wrong Let Rule (3)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
● This “good” program is not well-typed:

let x : A <- new B in { … x <- new A ; x.a(); }
● Why isn’t this program well-typed?

Γ ⊢ e
0

 : T T

≤ T

0
 Γ[T/x] ⊢ e

1
 : T

1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]

Type Rule Notation

● The type rules use very concise notation

Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:

Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed

Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected

Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected
● But no matter how well we choose the type rules, some good

programs will be rejected anyway

Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected
● But no matter how well we choose the type rules, some good

programs will be rejected anyway
○ Rice’s Theorem strikes again: typechecking is undecidable

Agenda

● Finish discussion of subtyping/let from last class
● More type rules
● Method dispatch rules

○ static
○ dynamic

● SELF_TYPE

Attribute Initialization

Attribute Initialization

● Let Γ
C

(x) = T for each attribute x : T in class C
○ Γ

C
 represents the class-wide scope

Attribute Initialization

● Let Γ
C

(x) = T for each attribute x : T in class C
○ Γ

C
 represents the class-wide scope

■ we “preload” the environment Γ with all attributes

Attribute Initialization

● Let Γ
C

(x) = T for each attribute x : T in class C
○ Γ

C
 represents the class-wide scope

■ we “preload” the environment Γ with all attributes
● Attribute initialization is like let, except for the scope of names:

Attribute Initialization

● Let Γ
C

(x) = T for each attribute x : T in class C
○ Γ

C
 represents the class-wide scope

■ we “preload” the environment Γ with all attributes
● Attribute initialization is like let, except for the scope of names:

Γ
C

(id) = T
0

 Γ
C

 ⊢ e
1

 : T
1

T
1

≤ T
0

 Γ
C

 ⊢ id <- e
1

 : T
0

 ;
[Attr-Init]

If-Then-Else

● Consider how to type the expression: if e
0

 then e
1

 else e
2

 fi

If-Then-Else

● Consider how to type the expression: if e
0

 then e
1

 else e
2

 fi
● The result can be either e

1
 or e

2

○ i.e., the dynamic type is either e
1

‘s type or e
2

‘s type

If-Then-Else

● Consider how to type the expression: if e
0

 then e
1

 else e
2

 fi
● The result can be either e

1
 or e

2

○ i.e., the dynamic type is either e
1

‘s type or e
2

‘s type
● The best we can do statically is the closest supertype of e

1
‘s type

and e
2

‘s type

If-Then-Else

● Consider how to type the expression: if e
0

 then e
1

 else e
2

 fi
● The result can be either e

1
 or e

2

○ i.e., the dynamic type is either e
1

‘s type or e
2

‘s type
● The best we can do statically is the closest supertype of e

1
‘s type

and e
2

‘s type
● E.g., consider the class hierarchy:

A B

P

(note the arrows here
mean inheritance)

If-Then-Else

● Consider how to type the expression: if e
0

 then e
1

 else e
2

 fi
● The result can be either e

1
 or e

2

○ i.e., the dynamic type is either e
1

‘s type or e
2

‘s type
● The best we can do statically is the closest supertype of e

1
‘s type

and e
2

‘s type
● E.g., consider the class hierarchy:

○ if A is the type of e
1

 and B
is the type of e

2
… A B

P

(note the arrows here
mean inheritance)

If-Then-Else

● Consider how to type the expression: if e
0

 then e
1

 else e
2

 fi
● The result can be either e

1
 or e

2

○ i.e., the dynamic type is either e
1

‘s type or e
2

‘s type
● The best we can do statically is the closest supertype of e

1
‘s type

and e
2

‘s type
● E.g., consider the class hierarchy:

○ if A is the type of e
1

 and B
is the type of e

2
…

○ …then we want to type

the whole expression as P

A B

P

(note the arrows here
mean inheritance)

Least Upper Bounds

Definition: the least upper bound or lub over some relation ≤ of two
elements of ≤’s domain X and Y is Z if:

Least Upper Bounds

Definition: the least upper bound or lub over some relation ≤ of two
elements of ≤’s domain X and Y is Z if:
● X ≤ Z /\ Y ≤ Z

○ “Z is an upper bound”

Least Upper Bounds

Definition: the least upper bound or lub over some relation ≤ of two
elements of ≤’s domain X and Y is Z if:
● X ≤ Z /\ Y ≤ Z

○ “Z is an upper bound”
● X ≤ Z’ /\ Y ≤ Z’ => Z ≤ Z’

○ “Z is least among upper bounds”

Least Upper Bounds

Definition: the least upper bound or lub over some relation ≤ of two
elements of ≤’s domain X and Y is Z if:
● X ≤ Z /\ Y ≤ Z

○ “Z is an upper bound”
● X ≤ Z’ /\ Y ≤ Z’ => Z ≤ Z’

○ “Z is least among upper bounds”

● In Cool, the least upper bound of two types is their closest
common ancestor in the inheritance tree (= type hierarchy)

If-Then-Else Rule

[If-Then-Else]

If-Then-Else Rule

Γ⊢ e
0

: Bool Γ ⊢ e
1

 : T
1

Γ ⊢ e
2

 : T
2

Γ ⊢ if e
0

 then e
1

 else e
2

 fi : lub(T
1

, T
2

)
[If-Then-Else]

Case

● The rule for case expressions takes a lub over all branches:

Case

● The rule for case expressions takes a lub over all branches:

Γ⊢ e
0

: T
0

 Γ[T
1

/x
1

] ⊢ e
1

 : T
1

’ … Γ[T
n
/x

n
] ⊢ e

n
 : T

n
’

Γ ⊢ case e
0

 of x
1

 : T
1

 => e
1

 ; … ; x
n
 : T

n
 => e

n
 ; esac: lub(T

1
’, …, T

n
’)

[Case]

Method Dispatch

● There is a problem with typechecking method calls

Method Dispatch

● There is a problem with typechecking method calls
● Naïvely, we might want a rule like this:

Γ⊢ e
0

: T
0

 Γ⊢ e
1

: T
1

… Γ⊢ e
n

: T
n

Γ ⊢ e
0

.f(e
1

, …, e
n
) : ?

[Dispatch]

Method Dispatch

● There is a problem with typechecking method calls
● Naïvely, we might want a rule like this:

● We need information about the formal parameter types and
return type of f, but Γ doesn’t contain that information!

Γ⊢ e
0

: T
0

 Γ⊢ e
1

: T
1

… Γ⊢ e
n

: T
n

Γ ⊢ e
0

.f(e
1

, …, e
n
) : ?

[Dispatch]

Notes on Dispatch

Notes on Dispatch

● In Cool, method and object identifiers live in different name spaces
○ A method foo and a variable foo can coexist in the same scope

without any problems

Notes on Dispatch

● In Cool, method and object identifiers live in different name spaces
○ A method foo and a variable foo can coexist in the same scope

without any problems
● In the type rules, this needs to be reflected by separating the type

environments that contain information about methods and
variables

Notes on Dispatch

● In Cool, method and object identifiers live in different name spaces
○ A method foo and a variable foo can coexist in the same scope

without any problems
● In the type rules, this needs to be reflected by separating the type

environments that contain information about methods and
variables
○ Add a second type environment for methods 𝚳!

■ 𝚳 maps a (class, method) tuple to a method signature

Notes on Dispatch

● In Cool, method and object identifiers live in different name spaces
○ A method foo and a variable foo can coexist in the same scope

without any problems
● In the type rules, this needs to be reflected by separating the type

environments that contain information about methods and
variables
○ Add a second type environment for methods 𝚳!

■ 𝚳 maps a (class, method) tuple to a method signature
■ e.g., 𝚳(C, f) = (T

1
, …, T

n
, T

ret
) means that there is a method in

class C with the signature f(x
1

 : T
1

, …, x
n
 : T

n
) : T

ret

An Extended Typing Judgment

● Now we have two type environments: Γ and 𝚳

An Extended Typing Judgment

● Now we have two type environments: Γ and 𝚳
● The form of the typing judgment then becomes:

Γ, 𝚳 ⊢ e

: T

An Extended Typing Judgment

● Now we have two type environments: Γ and 𝚳
● The form of the typing judgment then becomes:

Γ, 𝚳 ⊢ e

: T

● We read this as “with the assumptions that the free object
identifiers in e have the types given by Γ and the method identifiers in
e have the signatures given by 𝚳, the expression e has type T.”

The Method Environment

● The method environment needs to be added to all of our rules

The Method Environment

● The method environment needs to be added to all of our rules
● In most cases, 𝚳 is passed down but not actually used

Γ, 𝚳 ⊢ e
1

 + e
2

: Int

The Method Environment

● The method environment needs to be added to all of our rules
● In most cases, 𝚳 is passed down but not actually used

○ for example, the Add rule does not use 𝚳:

Γ, 𝚳 ⊢ e
1

 : Int Γ, 𝚳 ⊢ e
2

 : Int
[Add]

Γ, 𝚳 ⊢ e
1

 + e
2

: Int

The Method Environment

● The method environment needs to be added to all of our rules
● In most cases, 𝚳 is passed down but not actually used

○ for example, the Add rule does not use 𝚳:

● Only the Dispatch rule actually uses 𝚳.

Γ, 𝚳 ⊢ e
1

 : Int Γ, 𝚳 ⊢ e
2

 : Int
[Add]

Method Dispatch Revisited

Method Dispatch Revisited

Γ, 𝚳 ⊢ e
0

: T
0

Γ, 𝚳 ⊢ e
1

: T
1

…
Γ, 𝚳 ⊢ e

n
: T

n

Γ, 𝚳 ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

Method Dispatch Revisited

Γ, 𝚳 ⊢ e
0

: T
0

Γ, 𝚳 ⊢ e
1

: T
1

…
Γ, 𝚳 ⊢ e

n
: T

n

Γ, 𝚳 ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

first check receiver object e
0

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

Method Dispatch Revisited

Γ, 𝚳 ⊢ e
0

: T
0

Γ, 𝚳 ⊢ e
1

: T
1

…
Γ, 𝚳 ⊢ e

n
: T

n

Γ, 𝚳 ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

then check actual
arguments are well-typed

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

Method Dispatch Revisited

Γ, 𝚳 ⊢ e
0

: T
0

Γ, 𝚳 ⊢ e
1

: T
1

…
Γ, 𝚳 ⊢ e

n
: T

n

Γ, 𝚳 ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

next, look up method signature…

Method Dispatch Revisited

Γ, 𝚳 ⊢ e
0

: T
0

Γ, 𝚳 ⊢ e
1

: T
1

…
Γ, 𝚳 ⊢ e

n
: T

n

Γ, 𝚳 ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

…and check that each
argument is a subtype of the
corresponding formal
parameter

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

Method Dispatch Revisited

Γ, 𝚳 ⊢ e
0

: T
0

Γ, 𝚳 ⊢ e
1

: T
1

…
Γ, 𝚳 ⊢ e

n
: T

n

Γ, 𝚳 ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

∀ i in (1…n), T
i
 ≤ T

i
’

…and check that each
argument is a subtype of the
corresponding formal
parameter

next, look up method signature…then check actual
arguments are well-typed

first check receiver object e
0

1.

2. 3.

4.

four steps!

Static Dispatch

● The rule one previous slide is for dynamic dispatch

Static Dispatch

● The rule one previous slide is for dynamic dispatch
○ i.e., the method that gets called is based on the dynamic type of

the receiver

Static Dispatch

● The rule one previous slide is for dynamic dispatch
○ i.e., the method that gets called is based on the dynamic type of

the receiver
● Cool also supports static dispatch

Static Dispatch

● The rule one previous slide is for dynamic dispatch
○ i.e., the method that gets called is based on the dynamic type of

the receiver
● Cool also supports static dispatch

○ i.e., where the method to be called is chosen based on a class
explicitly specified by the programmer

Static Dispatch

● The rule one previous slide is for dynamic dispatch
○ i.e., the method that gets called is based on the dynamic type of

the receiver
● Cool also supports static dispatch

○ i.e., where the method to be called is chosen based on a class
explicitly specified by the programmer

● The static dispatch rule is similar to the dynamic dispatch rule, but
the inferred type of the receiver must conform to the type that the
programmer specifies

Static Dispatch Rule

Γ, 𝚳 ⊢ e
0

: T
0

Γ, 𝚳 ⊢ e
1

: T
1

…
Γ, 𝚳 ⊢ e

n
: T

n

Γ, 𝚳 ⊢ e
0

@T.f(e
1

, …, e
n
) : T

n+1
’

[Static Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, T

n+1
’)

(new additions/changes from the
regular Dispatch rule in purple)

T
0

 ≤ T

Agenda

● Finish discussion of subtyping/let from last class
● More type rules
● Method dispatch rules

○ static
○ dynamic

● SELF_TYPE

Flexibility vs Soundness

● Recall that type systems have two conflicting goals:

Flexibility vs Soundness

● Recall that type systems have two conflicting goals:
○ give flexibility to the programmer

■ “allow more good programs”
■ completeness

Flexibility vs Soundness

● Recall that type systems have two conflicting goals:
○ give flexibility to the programmer

■ “allow more good programs”
■ completeness

○ prevent incorrect programs from being compiled
■ “don’t allow bad programs”
■ soundness

Flexibility vs Soundness

● Recall that type systems have two conflicting goals:
○ give flexibility to the programmer

■ “allow more good programs”
■ completeness

○ prevent incorrect programs from being compiled
■ “don’t allow bad programs”
■ soundness

● An active line of research: inventing more flexible type systems
while preserving soundness

Flexibility vs Soundness

● Recall that type systems have two conflicting goals:
○ give flexibility to the programmer

■ “allow more good programs”
■ completeness

○ prevent incorrect programs from being compiled
■ “don’t allow bad programs”
■ soundness

● An active line of research: inventing more flexible type systems
while preserving soundness
○ SELF_TYPE is an “advanced” feature, to give you a taste of this

Review: Dynamic and Static Types

● Define the dynamic type of an object as ??? the class C that is used
in the “new C” expression that creates the object in some
execution
○ run-time notion, present even in languages without static types

● Define the static type of an expression as ??? the least upper bound
of the dynamic types that the expression can take on, in some
execution
○ cf. static vs dynamic semantics

Review: Dynamic and Static Types

● Define the dynamic type of an object as the class C that is used in
the “new C” expression that creates the object in some execution
○ run-time notion, present even in languages without static types

● Define the static type of an expression as the least upper bound of
the dynamic types that the expression can take on, in some
execution
○ cf. static vs dynamic semantics

Review: Cool Soundness

● Soundness theorem for the Cool type system:

Review: Cool Soundness

● Soundness theorem for the Cool type system:

for all expressions E, dynamic_type(E) ≤ static_type(E)

Review: Cool Soundness

● Soundness theorem for the Cool type system:

for all expressions E, dynamic_type(E) ≤ static_type(E)

● Why is this ok?

Review: Cool Soundness

● Soundness theorem for the Cool type system:

for all expressions E, dynamic_type(E) ≤ static_type(E)

● Why is this ok?
○ For all E, the compiler allows only operations that

static_type(E) permits

Review: Cool Soundness

● Soundness theorem for the Cool type system:

for all expressions E, dynamic_type(E) ≤ static_type(E)

● Why is this ok?
○ For all E, the compiler allows only operations that

static_type(E) permits
○ Liskov substitutability guarantees that any operation available

on a supertype is also available on its subtypes

Review: Cool Soundness

● Soundness theorem for the Cool type system:

for all expressions E, dynamic_type(E) ≤ static_type(E)

● Why is this ok?
○ For all E, the compiler allows only operations that

static_type(E) permits
○ Liskov substitutability guarantees that any operation available

on a supertype is also available on its subtypes
■ subclasses can only add attributes or methods

Review: Cool Soundness

● Soundness theorem for the Cool type system:

for all expressions E, dynamic_type(E) ≤ static_type(E)

● Why is this ok?
○ For all E, the compiler allows only operations that

static_type(E) permits
○ Liskov substitutability guarantees that any operation available

on a supertype is also available on its subtypes
■ subclasses can only add attributes or methods
■ methods can be redefined, but only with the same types

An Example

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

An Example

● This Count class implements a
simple counter

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

An Example

● This Count class implements a
simple counter

● The inc method works for any
subclass…

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

An Example

● This Count class implements a
simple counter

● The inc method works for any
subclass…
○ …or does it?

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

An Example

● This Count class implements a
simple counter

● The inc method works for any
subclass…
○ …or does it?

● There is a problem lurking
here!

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

Co(u)ntinuing the Example

● Consider a subclass Stock of Count:

class Stock inherits Count {
 name() : String { … }; --name of item
 };

Co(u)ntinuing the Example

● Consider a subclass Stock of Count:

class Stock inherits Count {
 name() : String { … }; --name of item
 };

● And the following use of Stock:
class Main {

 a : Stock <- (new Stock).inc();
 … a.name() …

 };

Co(u)ntinuing the Example

● Consider a subclass Stock of Count:

class Stock inherits Count {
 name() : String { … }; --name of item
 };

● And the following use of Stock:
class Main {

 a : Stock <- (new Stock).inc();
 … a.name() …

 };

our current rules will cause a
typechecking error here, because
inc() returns a Count (not a Stock)

Postmortem

Postmortem

● (new Stock).inc()has dynamic type Stock

Postmortem

● (new Stock).inc()has dynamic type Stock

○ So, it’s legitimate to write:

a : Stock <- (new Stock).inc()

Postmortem

● (new Stock).inc()has dynamic type Stock

○ So, it’s legitimate to write:

a : Stock <- (new Stock).inc()

● But this is not well-typed, because (new Stock).inc() has static
type Count

Postmortem

● (new Stock).inc()has dynamic type Stock

○ So, it’s legitimate to write:

a : Stock <- (new Stock).inc()

● But this is not well-typed, because (new Stock).inc() has static
type Count

● The typechecker has “lost” information

Trivia Break: History

This city on the Danube river famously was the home of a number of
influential figures of the 20th century for a short time in 1913,
including Leon Trotsky, Joseph Stalin, Adolf Hitler, Sigmund Freud,
and Josip Broz Tito. It was the seat of the Holy Roman Emperors of
the Habsburg dynasty from the 16th-century until the empire’s
dissolution in 1806 (with only brief interruptions). Afterward, it was
the seat of Austria-Hungary until the dissolution of that empire
following the first World War. It is now the capital of Austria.

Trivia Break: Computer Science

This American computer scientist and mathematician was the
recipient of the 1974 Turing Award. He has been called the "father of
the analysis of algorithms". He is the author of the multi-volume
work The Art of Computer Programming. In addition to his work in
theoretical computer science, he is the creator of the TeX computer
typesetting system, the related METAFONT font definition language
and rendering system, and the Computer Modern family of
typefaces.

SELF_TYPE to the Rescue

● We will extend the type system

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count
○ In the case of (new Stock).inc() , the type is Stock

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count
○ In the case of (new Stock).inc() , the type is Stock

● We introduce the keyword SELF_TYPE to use for the return value
of such functions

SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count
○ In the case of (new Stock).inc() , the type is Stock

● We introduce the keyword SELF_TYPE to use for the return value
of such functions
○ We will need to modify the type rules to handle SELF_TYPE

SELF_TYPE to the Rescue (2)

● SELF_TYPE allows the return type of inc to change when inc is
inherited

SELF_TYPE to the Rescue (2)

● SELF_TYPE allows the return type of inc to change when inc is
inherited

● Modify the declaration of inc to read
inc() : SELF_TYPE { ... }

SELF_TYPE to the Rescue (2)

● SELF_TYPE allows the return type of inc to change when inc is
inherited

● Modify the declaration of inc to read
inc() : SELF_TYPE { ... }

● The typechecker can now prove:

SELF_TYPE to the Rescue (2)

● SELF_TYPE allows the return type of inc to change when inc is
inherited

● Modify the declaration of inc to read
inc() : SELF_TYPE { ... }

● The typechecker can now prove:
Γ, 𝚳 ⊢(new Count).inc() : Count

SELF_TYPE to the Rescue (2)

● SELF_TYPE allows the return type of inc to change when inc is
inherited

● Modify the declaration of inc to read
inc() : SELF_TYPE { ... }

● The typechecker can now prove:
Γ, 𝚳 ⊢(new Count).inc() : Count
Γ, 𝚳 ⊢(new Stock).inc() : Stock

SELF_TYPE to the Rescue (2)

● SELF_TYPE allows the return type of inc to change when inc is
inherited

● Modify the declaration of inc to read
inc() : SELF_TYPE { ... }

● The typechecker can now prove:
Γ, 𝚳 ⊢(new Count).inc() : Count
Γ, 𝚳 ⊢(new Stock).inc() : Stock

● The program from before is now well typed

What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type

What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type

What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type

● It helps the typechecker to keep better track of types

What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type

● It helps the typechecker to keep better track of types
● It enables the typechecker to accept more correct programs

What does SELF_TYPE do?

● SELF_TYPE is not a dynamic type
○ SELF_TYPE is a static type

● It helps the typechecker to keep better track of types
● It enables the typechecker to accept more correct programs
● In short, having SELF_TYPE increases the expressive power of the

type system

SELF_TYPE and Dynamic Types (Example)

● What can be the dynamic type of the object returned by inc?

SELF_TYPE and Dynamic Types (Example)

● What can be the dynamic type of the object returned by inc?
○ Answer: whatever could be the type of “self”!

SELF_TYPE and Dynamic Types (Example)

● What can be the dynamic type of the object returned by inc?
○ Answer: whatever could be the type of “self”!
○ Equally-valid answer: Count or any subclass of Count!

SELF_TYPE and Dynamic Types (Example)

● What can be the dynamic type of the object returned by inc?
○ Answer: whatever could be the type of “self”!
○ Equally-valid answer: Count or any subclass of Count!

● In general, if SELF_TYPE appears textually in the class C as the
declared type of E then it denotes the dynamic type of the “self”
expression:

dynamic_type(E) = dynamic_type(self) ≤ C

SELF_TYPE and Dynamic Types (Example)

● What can be the dynamic type of the object returned by inc?
○ Answer: whatever could be the type of “self”!
○ Equally-valid answer: Count or any subclass of Count!

● In general, if SELF_TYPE appears textually in the class C as the
declared type of E then it denotes the dynamic type of the “self”
expression:

dynamic_type(E) = dynamic_type(self) ≤ C
● Note: The meaning of SELF_TYPE depends on where it appears

○ We write SELF_TYPE
C

 to refer to an occurrence of SELF_TYPE
in the body of some specific class C

Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for
SELF_TYPE:

Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for
SELF_TYPE:

SELF_TYPE
C

 ≤ C

Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for
SELF_TYPE:

SELF_TYPE
C

 ≤ C
● This rule has an important consequence:

○ In typechecking, it is always safe to replace SELF_TYPE
C

 by C

Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for
SELF_TYPE:

SELF_TYPE
C

 ≤ C
● This rule has an important consequence:

○ In typechecking, it is always safe to replace SELF_TYPE
C

 by C
● This suggests one way to handle SELF_TYPE in a typechecker

implementation:

Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for
SELF_TYPE:

SELF_TYPE
C

 ≤ C
● This rule has an important consequence:

○ In typechecking, it is always safe to replace SELF_TYPE
C

 by C
● This suggests one way to handle SELF_TYPE in a typechecker

implementation:
○ replace all occurrences of SELF_TYPE

C
 with C

Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for
SELF_TYPE:

SELF_TYPE
C

 ≤ C
● This rule has an important consequence:

○ In typechecking, it is always safe to replace SELF_TYPE
C

 by C
● This suggests one way to handle SELF_TYPE in a typechecker

implementation:
○ replace all occurrences of SELF_TYPE

C
 with C

● What’s wrong with this?

Typechecking SELF_TYPE

● The example on the previous slide suggests a type rule for
SELF_TYPE:

SELF_TYPE
C

 ≤ C
● This rule has an important consequence:

○ In typechecking, it is always safe to replace SELF_TYPE
C

 by C
● This suggests one way to handle SELF_TYPE in a typechecker

implementation:
○ replace all occurrences of SELF_TYPE

C
 with C

● What’s wrong with this?
○ It’s sound, but it’s like not having SELF_TYPE at all (oops)

Typechecking SELF_TYPE (properly)

Typechecking SELF_TYPE (properly)

● Recall the operations that we’ve defined over types:

Typechecking SELF_TYPE (properly)

● Recall the operations that we’ve defined over types:
○ subtyping: T

1
 ≤ T

2

○ least upper bound: lub(T
1

, T
2

)

Typechecking SELF_TYPE (properly)

● Recall the operations that we’ve defined over types:
○ subtyping: T

1
 ≤ T

2

○ least upper bound: lub(T
1

, T
2

)
● To handle SELF_TYPE properly, we need to extend these

operations to handle it
○ doing so is surprisingly involved…

Extending ≤

Extending ≤

● Let T and T’ be any types except SELF_TYPE

Extending ≤

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

Extending ≤

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

1. SELF_TYPE
C

 ≤ T if C ≤ T

Extending ≤

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

1. SELF_TYPE
C

 ≤ T if C ≤ T
- SELF_TYPE

C
 can be any subtype of C, including C itself

Extending ≤

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

1. SELF_TYPE
C

 ≤ T if C ≤ T
- SELF_TYPE

C
 can be any subtype of C, including C itself

- Thus this is the most flexible rule we can allow

Extending ≤

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

1. SELF_TYPE
C

 ≤ T if C ≤ T
- SELF_TYPE

C
 can be any subtype of C, including C itself

- Thus this is the most flexible rule we can allow
2. SELF_TYPE

C
 ≤ SELF_TYPE

C

- recall that SELF_TYPE
C

 is the type of the “self” expression

Extending ≤

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

1. SELF_TYPE
C

 ≤ T if C ≤ T
- SELF_TYPE

C
 can be any subtype of C, including C itself

- Thus this is the most flexible rule we can allow
2. SELF_TYPE

C
 ≤ SELF_TYPE

C

- recall that SELF_TYPE
C

 is the type of the “self” expression
- In Cool we never need to compare SELF_TYPEs coming

from different classes (why? left as an exercise…)

Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3.

Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why?

Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’

Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’
- according to the rules from before

Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’
- according to the rules from before

● Note these rules covered every combination + order of Ts and
SELF_TYPE

C
s

Extending ≤ (continued)

● Let T and T’ be any types except SELF_TYPE
● There are four cases in the definition of ≤:

3. T ≤ SELF_TYPE
C

 is always false
- Why? SELF_TYPE

C
 could be any subtype of C…

4. T ≤ T’
- according to the rules from before

● Note these rules covered every combination + order of Ts and
SELF_TYPE

C
s

● Using these rules, we can extend lub too…

Extending lub
● Again, let T and T’ be any types except SELF_TYPE

Extending lub
● Again, let T and T’ be any types except SELF_TYPE
● Again, there are four cases:

Extending lub
● Again, let T and T’ be any types except SELF_TYPE
● Again, there are four cases:

1. lub(SELF_TYPE
C

, SELF_TYPE
C

) = SELF_TYPE
C

Extending lub
● Again, let T and T’ be any types except SELF_TYPE
● Again, there are four cases:

1. lub(SELF_TYPE
C

, SELF_TYPE
C

) = SELF_TYPE
C

2. lub(SELF_TYPE
C

, T) = lub(C, T)
- this is the best we can do because SELF_TYPE

C
 ≤ C

Extending lub
● Again, let T and T’ be any types except SELF_TYPE
● Again, there are four cases:

1. lub(SELF_TYPE
C

, SELF_TYPE
C

) = SELF_TYPE
C

2. lub(SELF_TYPE
C

, T) = lub(C, T)
- this is the best we can do because SELF_TYPE

C
 ≤ C

3. lub(T, SELF_TYPE
C

) = lub(C, T)

Extending lub
● Again, let T and T’ be any types except SELF_TYPE
● Again, there are four cases:

1. lub(SELF_TYPE
C

, SELF_TYPE
C

) = SELF_TYPE
C

2. lub(SELF_TYPE
C

, T) = lub(C, T)
- this is the best we can do because SELF_TYPE

C
 ≤ C

3. lub(T, SELF_TYPE
C

) = lub(C, T)
- bonus question: why is this the same as case 2?

Extending lub
● Again, let T and T’ be any types except SELF_TYPE
● Again, there are four cases:

1. lub(SELF_TYPE
C

, SELF_TYPE
C

) = SELF_TYPE
C

2. lub(SELF_TYPE
C

, T) = lub(C, T)
- this is the best we can do because SELF_TYPE

C
 ≤ C

3. lub(T, SELF_TYPE
C

) = lub(C, T)
- bonus question: why is this the same as case 2?

4. lub(T, T’) defined the same as before

Where can SELF_TYPE Appear in Cool?

Where can SELF_TYPE Appear in Cool?

● The parser checks that SELF_TYPE only appears in locations where
a type is permitted

Where can SELF_TYPE Appear in Cool?

● The parser checks that SELF_TYPE only appears in locations where
a type is permitted
○ But SELF_TYPE isn’t allowed everywhere that a type is!

Where can SELF_TYPE Appear in Cool?

● The parser checks that SELF_TYPE only appears in locations where
a type is permitted
○ But SELF_TYPE isn’t allowed everywhere that a type is!
○ For example, in class T inherits T’ {...}:

■ neither T nor T’ can be SELF_TYPE
● because SELF_TYPE is never a dynamic type

Where can SELF_TYPE Appear in Cool?

● The parser checks that SELF_TYPE only appears in locations where
a type is permitted
○ But SELF_TYPE isn’t allowed everywhere that a type is!
○ For example, in class T inherits T’ {...}:

■ neither T nor T’ can be SELF_TYPE
● because SELF_TYPE is never a dynamic type

● On the other hand, in an attribute declaration x : T,
○ T can be SELF_TYPE

Where can SELF_TYPE Appear in Cool?

● The parser checks that SELF_TYPE only appears in locations where
a type is permitted
○ But SELF_TYPE isn’t allowed everywhere that a type is!
○ For example, in class T inherits T’ {...}:

■ neither T nor T’ can be SELF_TYPE
● because SELF_TYPE is never a dynamic type

● On the other hand, in an attribute declaration x : T,
○ T can be SELF_TYPE

■ it means the attribute’s type is SELF_TYPE
C

Where can SELF_TYPE Appear in Cool?

● What about let expressions? Can the variable be SELF_TYPE?

Where can SELF_TYPE Appear in Cool?

● What about let expressions? Can the variable be SELF_TYPE?
○ Yes: in let x : T in E, if T is SELF_TYPE, then x has the

type SELF_TYPE
C

Where can SELF_TYPE Appear in Cool?

● What about let expressions? Can the variable be SELF_TYPE?
○ Yes: in let x : T in E, if T is SELF_TYPE, then x has the

type SELF_TYPE
C

● What about new expressions?

Where can SELF_TYPE Appear in Cool?

● What about let expressions? Can the variable be SELF_TYPE?
○ Yes: in let x : T in E, if T is SELF_TYPE, then x has the

type SELF_TYPE
C

● What about new expressions?
○ Yes: in new T, if T is SELF_TYPE, then the expression evaluates

to a value of type SELF_TYPE
C

Where can SELF_TYPE Appear in Cool?

● What about let expressions? Can the variable be SELF_TYPE?
○ Yes: in let x : T in E, if T is SELF_TYPE, then x has the

type SELF_TYPE
C

● What about new expressions?
○ Yes: in new T, if T is SELF_TYPE, then the expression evaluates

to a value of type SELF_TYPE
C

● What about static dispatch? E.g., in m@T(E1,...,En), can T be
SELF_TYPE?

Where can SELF_TYPE Appear in Cool?

● What about let expressions? Can the variable be SELF_TYPE?
○ Yes: in let x : T in E, if T is SELF_TYPE, then x has the

type SELF_TYPE
C

● What about new expressions?
○ Yes: in new T, if T is SELF_TYPE, then the expression evaluates

to a value of type SELF_TYPE
C

● What about static dispatch? E.g., in m@T(E1,...,En), can T be
SELF_TYPE?
○ No: the T in static dispatch needs to refer to a specific, dynamic

type

Type Rules for SELF_TYPE

Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

● This leads to a new typing judgment form:

Γ, 𝚳, C ⊢ e

: T

Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

● This leads to a new typing judgment form:

Γ, 𝚳, C ⊢ e

: T

● Read as “An expression e occurring in the body of C has static type
T given a variable type environment Γ and method signatures 𝚳”

Changing the Type Rules for SELF_TYPE

● The next step is to design type rules that account for SELF_TYPE
for each language construct

Changing the Type Rules for SELF_TYPE

● The next step is to design type rules that account for SELF_TYPE
for each language construct

● Most of these rules are the same as the rules without SELF_TYPE,
except that ≤ and lub are the new versions with SELF_TYPE
support; only change is to pass through the enclosing class

Changing the Type Rules for SELF_TYPE

● The next step is to design type rules that account for SELF_TYPE
for each language construct

● Most of these rules are the same as the rules without SELF_TYPE,
except that ≤ and lub are the new versions with SELF_TYPE
support; only change is to pass through the enclosing class

● E.g.,:

Γ, 𝚳, C ⊢ e
1

 : T
1

 Γ(id) = T
0

 T
1

 ≤ T
0

 Γ, 𝚳, C ⊢ id <- e
1

 : T
1

[Assign]

Changes to Dispatch Rules

● The rules for dispatch need to change. We modify the old dispatch
rule:

Changes to Dispatch Rules

● The rules for dispatch need to change. We modify the old dispatch
rule:

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

Changes to Dispatch Rules

● The rules for dispatch need to change. We modify the old dispatch
rule:

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

T
n+1

’ ≠ SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● What about static dispatch? Does it need changes?

Changes to Dispatch Rules

● What about static dispatch? Does it need changes? Yes…

[Static Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, T

n+1
’)

T
0

 ≤ TΓ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

@T.f(e
1

, …, e
n
) : T

n+1
’

Changes to Dispatch Rules

● What about static dispatch? Does it need changes? Yes…

Γ, 𝚳, C ⊢ e
0

@T.f(e
1

, …, e
n
) : T

n+1
’

[Static Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, T

n+1
’)

T
0

 ≤ T T
n+1

’ ≠ SELF_TYPEΓ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Changes to Dispatch Rules

● And again we need a special rule for when the method’s return type
is SELF_TYPE:

Changes to Dispatch Rules

● And again we need a special rule for when the method’s return type
is SELF_TYPE: (changes again in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n
[St.-Dispatch-Self]

∀ i in (1…n), T
i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, SELF_TYPE)

Γ, 𝚳, C ⊢ e
0

@T.f(e
1

, …, e
n
) : T

0

T
0

 ≤ T

Static Dispatch Notes

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the

class in which the method body appears

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the

class in which the method body appears
○ Note: not the class in which the call site appears!

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the

class in which the method body appears
○ Note: not the class in which the call site appears!

● The static dispatch class cannot be SELF_TYPE

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

 Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

 Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

 Γ, 𝚳, C ⊢ new SELF_TYPE : SELF_TYPE
C

[New-Self]

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

● There are a number of other places in the rules where SELF_TYPE
appears - read the CRM carefully

 Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

 Γ, 𝚳, C ⊢ new SELF_TYPE : SELF_TYPE
C

[New-Self]

Where is SELF_TYPE illegal in Cool?

Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!

Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!
○ What would go wrong if T were SELF_TYPE?

Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!
○ What would go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; };
class B inherits A {
 b() : int { ... };
 comp(y : SELF_TYPE) : Bool { ... y.b() ...}; };
...
let x : A new B in ... x.comp(new A); ...
...

Summary of SELF_TYPE

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current
class

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current
class
○ The exception is the typechecking of dispatch.

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current
class
○ The exception is the typechecking of dispatch.
○ SELF_TYPE as the return type in an invoked method might have

nothing to do with the current class

Why Do We Cover SELF_TYPE?

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs
○ but at the cost of additional complexity

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs
○ but at the cost of additional complexity

● SELF_TYPE itself isn’t that important
○ although you have to get it right for PA2…

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs
○ but at the cost of additional complexity

● SELF_TYPE itself isn’t that important
○ although you have to get it right for PA2…

● But it is illustrative of a class of ideas that trade-off expressiveness
for complexity
○ and gives you a taste of how this works in practice!

Type Systems

● The rules in these lectures were Cool-specific

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment
○ There is a tradeoff between safety and flexibility

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment
○ There is a tradeoff between safety and flexibility
○ There is another tradeoff between expressiveness and

complexity

