Typechecking and Static

Semantics
Martin Kellogg

Today’s Agenda

Typing Rules

Typing Environments
“Let” Rules
Subtyping

Wrong Rules

Today’'s Agenda

Typing Rules

Typing Environments
“Let” Rules
Subtyping

Wrong Rules

WEe'll start by reviewing
some of what we saw at the
end of the last lecture...

U

\

J

English to Inference Rules

If e, has type Int and e, has type Int,
thene, +e, has type Int

(Building blocks:
e /\is“and”
e ->is‘“if-then”

_

\

o x:Tis“xhastypeT”

J

English to Inference Rules

If e, has type Int and e, has type Int,
thene, +e, has type Int

'

(e, has type Int /\ e, has type Int) ->
e, +e, hastype Int

(Building blocks:
e /\is“and”
e ->is‘“if-then”

_

o x:Tis“xhastypeT”

\

J

(Building blocks:)

English to Inference Rules e /is“and”
e ->ijs‘if-then”

o x:Tis“xhastypeT”
_ J

If e, has type Int and e, has type Int,
thene, +e, has type Int

'

(e, has type Int /\ e, has type Int) ->
e, +e, hastype Int

'

(e1: IntAe,:Int)->e +e,:Int

(Building blocks:)

English to Inference Rules e /is“and”
e ->ijs‘if-then”
o Xx:Tis“xhastypeT”

If e, has type Int and e, has type Int,

thene, +e, has type Int \- /
Traditional notation
i (same meaning!):
(e, has type Int A\ e, has type Int) -> ~e,:Int e, :Int
e, +e, hastype Int e, +e,Int

'

(e1: IntAe,:Int)->e +e,:Int

(Building blocks:)

English to Inference Rules e /is“and”
e ->ijs‘if-then”
o Xx:Tis“xhastypeT”

If e, has type Int and e, has type Int,

thene, +e, has type Int \-)
Traditional notation
i (same meaning!):
(e, has type Int A\ e, has type Int) -> ~e,:Int e, :Int
e, +e, hastype Int -4, +e,:Int

Pronounced “we can prove that...”
(e1 IntN\e,: Int) -> e, +e,:Int

Inference Rule Examples

i is any integer
% Int constant

[Add] : [Int]
Pe1+e2:Int =i Int

Inference Rule Examples

i is any integer

-e, :Int ~e,:Int constant
[Add] [Int]
-e,+e,Int ~i:lInt
e Theserules give describing how to type integers and +
expressions
e By fillinginthe templates, we can produce for

expressions

Baby’s First Type Derivation

[Add]
~1+2:Int

Baby’s First Type Derivation

[Int]
~1:Int

[Add]
~1+2:Int

Baby’s First Type Derivation

1is an integer
constant

~1:Int

[Int]

[Add]
~1+2:Int

Baby’s First Type Derivation

1is an integer
constant

[Int] [Int]
~1:Int -2 :Int
[Add]

~1+2:Int

Baby’s First Type Derivation

1is an integer 2 is an integer
constant constant
[Int] [Int]
-1:Int -2 :Int
[Add]

~1+2:Int

Baby’s First Type Derivation

“ground facts” (I will write these in italics)

W 2 is an integer

constant constant
[Int] [Int]
-1:Int -2 :Int

[Add]

~1+2:Int

Soundness

Soundness

Definition: a type system is sound if whenever + e : T, then e evaluates
to a value of type T.

Soundness

Definition: a type system is sound if whenever + e : T, then e evaluates
to a value of type T.
e |[ntuition: if we can prove it, theniit's true!

Soundness

Definition: a type system is sound if whenever + e : T, then e evaluates
to a value of type T.
e |[ntuition: if we can prove it, theniit's true!
e We only want sound rules, but some sound rules are worse than
others

Soundness

Definition: a type system is sound if whenever + e : T, then e evaluates
to a value of type T.
e |[ntuition: if we can prove it, theniit's true!
e We only want sound rules, but some sound rules are worse than
others
o e.g., consider this rule:

i is an integer
constant

~i:Object

[Int-Obij]

Typechecking Proofs

e Typechecking provesfactslikee: T

Typechecking Proofs

e Typechecking proves facts likee: T
o onetyperuleisused for each
kind of expression

Typechecking Proofs

e Typechecking proves facts likee: T
o onetyperuleisused for each
kind of expression
e |nthetyperule used for anodee:

Typechecking Proofs

e Typechecking proves facts likee: T
o onetyperuleisused for each
kind of expression
e |nthetyperule used for anodee:
o the hypotheses are the proofs of
the types of €'s subexpressions

Typechecking Proofs

e Typechecking provesfactslikee: T

O

one type rule is used for each
kind of expression

e |nthetyperule used for anodee:

O

the hypotheses are the proofs of
the types of €'s subexpressions
the is the proof of the
type of e

Typechecking Proofs

e Typechecking proves facts likee: T
o onetyperuleisused for each
kind of expression
e |nthetyperule used for anodee:

o thehypotheses are the proofs of + e,:Int e, :Int

9

the types of €'s subexpressions e teo.Int [Add]
o the is the proof of the 1
type of e

e e.g considerthe addrule->

Typechecking Proofs

e Typechecking proves facts likee: T
o onetyperuleisused for each

kind of expression
e |nthetype rule used for anode e: subexpression proofs

o the hypotheses are the proofs of l ~e, :Int] [F e,:Int]
the types of €’'s subexpressions e te-Int [Add]
o the is the proof of the 12
type of e
e e.g considerthe addrule->

Typechecking Proofs

e Typechecking proves facts likee: T
o onetyperuleisused for each

kind of expression
e |nthetype rule used for anode e: subexpression proofs

o thehypotheses are the proofs of | + e,:Int] [F e,:Int]

the types of €'s subexpressions e +e-Int [Add]
o the is the proof of the 12

type of e

e e.g considerthe addrule->

Typechecking Proofs r)

Next, we're going to

e Typechecking proves facts likee: T look at a collection of
examples of type rules

o onetyperuleisused for each _
kind of expression
e |nthetyperule used for anode e: subexpression proofs
o thehypotheses are the proofs of | + e,:Int] [F e,:Int
the types of €'s subexpressions
o the is the proof of the
type of e
e e.g considerthe addrule->

J

] [Add]
e, te, Int

Rules for Constants

Rules for Constants

[False]
~false : Bool

Rules for Constants

[False]
~false : Bool

[True]
~true : Bool

Rules for Constants

- false : Bool [False] sisany string
| constant .
[String]
[True] ~s:String

~true : Bool

Rules for Constants

- false : Bool [False] sis any string
| constant .
[String]
[True] ~s:String
~true : Bool

Notation note: I'm using bold black for keywords,
bold blue for expressions, and bold red for types

Rule for New

e New is abit more complicated than constants (but not much)

Rule for New

e New is abit more complicated than constants (but not much)
e new T producesanobjectoftype T
o ignore SELF_TYPE for now...

Rule for New

e New is abit more complicated than constants (but not much)
e new T producesanobjectoftype T

o ignore SELF_TYPE for now...
e That gives us this rule:

[New]
Fnew T:T

Rules for Bools and Loops

~e: Bool

[Not]
~not e : Bool

Rules for Bools and Loops

~e : Bool
[Not]
~not e : Bool
Pei:BooI PeZ:T
[Loop]

~while e, loop e, pool : Object

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

Typing Example
e Typingfor while not false loop 1 + 2 * 3 pool
while 1loop pool

/\

not

false

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

not

I

false :Bool

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

not :Bool

I

false :Bool

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

not :Bool +

I

false :Bool

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

nit :B?ol /;\\\\\\\‘

false :Bool

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\
not :Bool *
|1 /T~
T:Int
false :Bool

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

not :Bool *

l T //*
T:Int

*
false :Bool //\\\\\\\‘
2 3

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

not :Bool *

l T //*
T:Int

*
false :Bool //\\\\\\\‘

2:Int 3:Int

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

not :Bool

|1 /\
false :Bool " //:;71\:t:>\\

2:Int 3:Int

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

+ :Int

nit :B?ol /c;%i\::;:\

:Int

1:Int
false :Bool //:;71\:::\\\

2:Int 3:Int

Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while loop pool :Object

T —

not :Bool

l T 1.I{7KV>:IM
false :Bool ' ’/7\\

2:Int 3:Int

Typing Derivations

e Thetypingreasoning on the previous slide can be
equivalently represented as a tree:

Typing Derivations

e Thetypingreasoning on the previous slide can be
equivalently represented as a tree:

2isan Int 3isan Int

false is a Bool

lisan Int F2:Int F3:Int
+false:Bool -1 - Int F2 * 3:Int
Fnot false:Bool F1 + 2 * 3:Int

Fwhile not false loop 1 + 2 * 3 pool :Object

Typing Derivations

The typing reasoning on the previous slide can be
equivalently represented as a tree:
The root of the treeis

h hol] 2isanint 3isanint
the whole expression false is a Bool lisanint T2 mt. T3 Tnt
+false:Bool -1 :Int 2 * 3:Int
Fnot false:Bool F1 + 2 * 3:Int

Fwhile not false loop 1 + 2 * 3 pool :Object

Typing Derivations

e Thetypingreasoningon the previous slide can be
equivalently represented as a tree:
e Therootofthetreeis

] 2isanint 3isanint
the whole expression false is a Bool isanint TSI TETm

e Eachnodeisan - false:Bool ~1:Int —2 * 3:Int
instance Ofatyp|ng -not false:Bool 1 + 2 * 3:Int

rule Fwhile not false loop 1 + 2 * 3 pool :Object

Typing Derivations

e Thetypingreasoningon the previous slide can be
equivalently represented as a tree:
e Therootofthetreeis
the whole expression false is a Bool

2isan Int 3isan Int

Tisan Int =2 :Int =3 :Int
e Eachnodeisan - false: Bool ~1:Int 2 * 3:Int
instance Ofatyp|ng -not false:Bool 1 + 2 * 3:Int
rule Fwhile not false loop 1 + 2 * 3 pool :Object

e Leavesinthetreeare
the rules with ground
facts

A Problem: Variables

e Whatis the type of avariable?

A Problem: Variables

e Whatis the type of avariable?

X is an identifier

- [Var]

A Problem: Variables

e Whatis the type of avariable?

X is an identifier

- [Var]

e This local structural rule does
to give x a type (oh no)

carry enough information

A Problem: Variables

e Whatis the type of avariable?

X is an identifier

7 [Var]

e Thislocal structural rule does carry enough information
to give x a type (oh no)
o All of the rules we've looked at so far have been about
constants...

A Solution: Type Environments

e Togivetypes to variables, our rules need to
carry more information

A Solution: Type Environments

e Togivetypes to variables, our rules need to
carry more information
o i.e.,the of variables!

A Solution: Type Environments

e Togivetypes to variables, our rules need to
carry more information
o i.e.,the of variables!

e A type environment gives types for free variables

A Solution: Type Environments

e Togivetypes to variables, our rules need to
carry more information
o i.e.,the of variables!
e A type environment gives types for free variables
o The type environment is a mapping from
names to types

A Solution: Type Environments

e Togivetypes to variables, our rules need to
carry more information
o i.e.,the of variables!
e A type environment gives types for free variables
o The type environment is a mapping from
names to types
o Avariablexisfreeinanexpressioneife
contains an occurrence of x that refersto a
declaration that is outside of the
expression

A Solution: Type Environments

e Togivetypes to variables, our rules need to

carry more information Examples:
o i.e.,the of variables!
e A type environment gives types for free variables

o The type environment is a mapping from
names to types

o Avariablexisfreeinanexpressioneife
contains an occurrence of x that refersto a
declaration that is outside of the

expression: “x”
free:

expression

A Solution: Type Environments

e Togivetypes to variables, our rules need to

carry more information Examples:
o ie,the of variables! o
e A type environment gives types for free variables ?:(er)eie“is,,lon: X

o The type environment is a mapping from
names to types

o Avariablexisfreeinanexpressioneife
contains an occurrence of x that refersto a
declaration that is outside of the

e:“letx:Intinx+y”
free:

expression

A Solution: Type Environments

e Togivetypes to variables, our rules need to

carry more information Examples:
o ie,the of variables! o
e A type environment gives types for free variables ?:(er)eie“is,,lon: X
o The type environment is a mapping from
names to types fre'eet ;‘ Intinx+y”
o Avariablexisfreeinanexpressioneife
contains an occurrence of x thatreferstoa |e:“x+letx:Intinx+y”
declaration that is outside of the free:

expression

A Solution: Type Environments

e Togivetypes to variables, our rules need to
carry more information

O

e A type environment gives types for free variables

i.e., the of variables!

o Thetype environmentis a mapping from

O

names to types

A variable x is free in an expressioneif e
contains an occurrence of x that refers to a
declaration that is outside of the
expression

Examples:

“_n

expression: “x

“_n

free: “x

e:“letx:Intinx+y”

“._..”n

free:"y

e:“x+letx:Intinx+y”

“_n «_n

free: “x’, "y

A Solution: Type Environments

e Let[l beafunction (equivalently, a mapping) from identifiers to types

A Solution: Type Environments

e Let[l beafunction (equivalently, a mapping) from identifiers to types
e Then the sentence:

[Fe: T

is read: “Under the assumption that each free variable x in e has the
type given by '(x), then it is provable that the expression e has type T.

A Solution: Type Environments

e Let[l beafunction (equivalently, a mapping) from identifiers to types
e Then the sentence:

[Fe: T

is read: “Under the assumption that each free variable x in e has the
type given by '(x), then it is provable that the expression e has type T.

p)
“Mis a (the third letter of the Greek

alphabet). We use I for type environments by convention.
. y,

Modified Rules

Modified Rules

i is any integer
[+ e1 - Int [+ 62 :Int [Add] constant [|]
nt
e, +e, Int [~i:Int

New Rules

New Rules

X is an identifier F(x) =T
[=x:T

[Var]

New Rules

X is an identifier F(x) =T
[=x:T

[Var]

e We're almost ready for today’s main event: the let rule

New Rules

X is an identifier F(x) =T
[=x:T

[Var]

e We're almost ready for today’s main event: the let rule
e First, we need one more piece of notation: '[T/x]

New Rules

X is an identifier F(x) =T
[=x:T

[Var]

e We're almost ready for today’s main event: the let rule
e First, we need one more piece of notation: '[T/x]

e [[T/x] means“l modified to map xto T, and behaving as " on all
other arguments”

New Rules

X is an identifier F(x) =T
[=x:T

[Var]

e We're almost ready for today’s main event: the let rule
e First, we need one more piece of notation: '[T/x]

e [[T/x] means“l modified to map xto T, and behaving as " on all
other arguments”

e More formally:

New Rules

X is an identifier F(x) =T
[=x:T

[Var]

e We're almost ready for today’s main event: the let rule
e First, we need one more piece of notation: '[T/x]

e [[T/x] means“l modified to map xto T, and behaving as " on all
other arguments”

e Moreformally:T[T/x](x)=T

New Rules

X is an identifier F(x) =T
[=x:T

[Var]

e We're almost ready for today’s main event: the let rule

e First, we need one more piece of notation: '[T/x]

e [[T/x] means“l modified to map xto T, and behaving as " on all
other arguments”

e More formally: I[T/x](x) =T/AT[T/X](y)=T(y) V y#Xx

New Rules

You can write IN[x/T]
on tests, etc., without

s an identifi Fx)=T
X is an identifier () [Var] \penalty. y

[E=x:T

e We're almost ready for today’s main event: the let rule

e First, we need one more piece of notation: '[T/x]

e [[T/x] means“l modified to map xto T, and behaving as " on all
other arguments”

e More formally: I[T/x](x) =T/AT[T/X](y)=T(y) V y#Xx

Notation: [[T/x](x) =T /AT[T/x](y) =T(y) V y # X

New Rules: Let

Notation: [[T/x](x) =T /AT[T/x](y) =T(y) V y # X

New Rules: Let

MT/x]-e:T,

FFIetx:ToinelzT1

[Let-No-Init]

Explanation:

Notation: [[T/x](x) =T /AT[T/x](y) =T(y) V y # X

New Rules: Let

MT/x]-e:T,

FFIetx:ToinelzT1

[Let-No-Init]

Explanation:
e if, after replacing x’s old type with T, we can prove that e, has
typeT,...

Notation: [[T/x](x) =T /AT[T/x](y) =T(y) V y # X

New Rules: Let

MT/x]-e:T,

: [Let-No-Init]
[letx:T,ine, : T,
Explanation:
e if, after replacing x’s old type with T, we can prove that e, has
typeT,...

e ..thenthe let expressionis well-typed by T,

Let Example

e Consider this Cool expression:

letx: T, in(lety:T,in Ex,y) +(letx: T, in Fx’y)

(where E ., andF aresome Cool expressions that contain occurrences of “x” and “y”)

Let Example

e Consider this Cool expression:

letx: T, in(lety:T,in Ex,y) +(letx: T, in Fx’y)
(where E., and F , aresome Cool expressions that contain occurrences of “x” and “y”)

e Consider that the scope:

Let Example

Consider this Cool expression:

letx: T, in(lety:T,in Ex,y) +(letx: T, in Fx’y)
(where E., and F , aresome Cool expressions that contain occurrences of “x” and “y”)

Consider that the scope:
o of “y'is EXy

Let Example

Consider this Cool expression:

letx: T, in(lety:T,in Ex,y) +(letx: T, in Fx’y)
(where EXy and FX’y are some Cool expressions that contain occurrences of “x” and “y”)
Consider that the scope:
[{) e
o of "y'lis EX’y
o of the outer “x” is EXy

Let Example

Consider this Cool expression:

letx: T, in(lety:T,in Ex,y) +(letx: T, in Fx’y)
(where E., and F , aresome Cool expressions that contain occurrences of “x” and “y”)

Consider that the scope:
o of “y'is EX’y

o of the outer “x” is EX’y
o oftheinner“x”is FX’y

Let Example

e Consider this Cool expression:

letx: T, in(lety:T,in Ex,y) +(letx: T, in Fx’y)
(where E., and F , aresome Cool expressions that contain occurrences of “x” and “y”)

e Consider that the scope:
o of “y'is EX’y
o of the outer “x” is EX’y
o oftheinner“x”is FX’y
e Thetype rule precisely captures this scoping!

Let Example

e Consider this Cool expression:

letx: T, in(lety:T,in Ex’y) +(letx: T, in Fx’y)
(where E ., andF aresome Cool expressions that contain occurrences of “x” and “y”)

e Consider that the scope:
o of “y'is EX’y
o of the outer “x” is EX’y
o oftheinner“x”is FX’y
e Thetype rule precisely captures this scoping!
o “I'[T/x]™like replacements exactly match the scoping we'd expect!

Example of Typing Let

AST letx: T, in

|

-4

4/\>

lety:T,in letx:T,in

Xy

Xy

Example of Typing Let

AST [+ letx:T,in
Type env. l
+
4/\>
lety:T,in letx:T,in
X’y

Xy

Example of Typing Let

AST

Type env.

[+ letx:T,in

-

F[To/x] -4

F[TO/x] - lety: T, in

MTy/x]- letx: T, in

Xy

Xy

Example of Typing Let

AST M- letx:T,in
Type env. ‘ l
MT/XxIF +

F[TO/x] - lety: T, in

|

(FMIT/XDIT, /Y- E

v

X

MTy/x]- letx: T, in

Xy

Example of Typing Let

AST M- letx:T,in
Type env. ‘ l
MT/XxIF +

F[TO/x] - lety: T, in

|

(FMIT/XDIT, /Y- E

v

(FIT DT /Y] x

MTy/x]- letx: T, in

Xy

Example of Typing Let

AST M- letx:T,in
Type env. ‘ l
r[TO/X] - o+

MT/x]r lety: T, in MT/x]- letx:T,in

| \

(MTXDIT /Y] E (MT/xDIT,/x1 =

v

(FIT DT /Y] x

Example of Typing Let

AST M= letx:T,in
Type env. ‘ l
Types
MT/XxIF +
MT/x]r lety: T, in MT/x]- letx:T,in
(MT/XDIT /Yl E (FIT /XDIT,/x] - F,,

v

(T, /X])[T S X T

Example of Typing Let

AST M= letx:T,in
Type env. ‘ l
Types
MT/XxIF +
MT/x]r lety: T, in MT/x]- letx:T,in
(MT/XDIT/yl- E :Int (MIT /DT, /X1 F,

v

(T, /X])[T JYIE xc: T

Example of Typing Let

AST M- letx:T,in
Type env. ‘ l
Types
MT/XxIF +
MTy/x]+ lety:T,in :Int MTy/XIF letx:T,in
(MT/XDIT/yl- E :Int (MIT /DT, /X1 F,

v

(T, /X])[T JYIE xc: T

Example of Typing Let

AST M= letx:T,in
Type env. ‘ l
Types

MT/XxIF +

MTy/x]~ lety:T, in :Int

| \

(MTy/XDIT /yl- E, ¢ Int

v

(T, /X])[T JYIE xc: T

MTy/x]- letx: T, in

\

([T, /X])[T /x]+- F,.:

Example of Typing Let

AST M= letx:T,in
Type env. ‘ l
Types

MT/XxIF +

MTy/x]~ lety:T, in :Int

| \

(MTy/XDIT /yl- E, ¢ Int

v

(T, /X])[T JYIE xc: T

MTy/x]- letx: T, in

\

([T, /X])[T /x]+- F,.:

:Int

Example of Typing Let

AST e letx:T,in
Type env. ‘ l
Types

MTy/XIF + :Int

MTy/x]~ lety:T, in :Int

| \

(MTy/XDIT /yl- E, ¢ Int

v

(T, /X])[T JYIE xc: T

MTy/x]- letx: T, in

\

([T, /X])[T /x]+- F,.:

:Int

Example of Typing Let

AST M= letx:T,in: Int
Type env. ‘ l
Types

MTy/XIF + :Int

MTy/x]+ lety:T,in :Int MTy/XIF letx:T,in

| \ \

(MT/XDIT/yl- E :Int ([T, /x])[T /x]P F :Int

:Int

v

(T, /X])[T JYIE xc: T

More Let Practice

e Considerl1+letx:Intinx+2

More Let Practice

e Considerl1+letx:Intinx+2

e What would the typing derivation be?

More Let Practice

e Considerl1+letx:Intinx+2

e What would the typing derivation be? Get out a piece of paper. I'll get
you started...

?7?

[F1+letx:Intinx+2:7?7?

Type Environment Notes

e Thetype environment gives types to the (only) in the
current scope

Type Environment Notes

The type environment gives types to the (only) in the
current scope

The type environment is passed down the AST from the root
towards the leaves

Type Environment Notes

The type environment gives types to the (only) in the
current scope

The type environment is passed down the AST from the root
towards the leaves

Types are computed bottom-up on the AST from the leaves toward
the root

Trivia Break: History

This book documented the environmental harm caused by the
indiscriminate use of DDT, a pesticide used by soldiers during World
War Il. It was met with fierce opposition by chemical companies, but
it swayed public opinion and led to a reversal in US pesticide policy, a
nationwide ban on DDT for agricultural uses, and an environmental
movement that led to the creation of the US Environmental
Protection Agency. The book’s author is Rachel Carson.

Let with Initialization

e Now consider let with initialization:

[e,:T, F[To/x] ~e,: T,

FFIetx:T0<-eoine1:T1

[Let-Init]

Let with Initialization

e Now consider let with initialization:

[e,:T, F[To/x] ~e,: T,

FFIetx:T0<-eoine1:T1

[Let-Init]

e Thisruleisweak. Why?

e, T, F[TO/X] ~e, : T,

Let with Initialization Mletx: T, <-e ine,:T,

e, T, F[TO/X] ~e, : T,

Let with Initialization Mletx: T, <-e ine,:T,

e TJoseewhy theruleisweak, consider this example:
class C inherits P{... }

letx:P<-newCin...

e, T, F[TO/X] ~e, : T,

Let with Initialization

FFIetx:T0<-e0ine1:T1

e TJoseewhy theruleisweak, consider this example:
class C inherits P{... }
letx:P<-newCin...

e The proposed let rule does not allow this code (because “new C”
(e,) does not exactly have the type “P” (T))

e, T, F[TO/X] ~e, : T,

Let with Initialization Mletx: T, <-e ine,:T,

e TJoseewhy theruleisweak, consider this example:
class C inherits P{... }
i;tx :P<-newCin...
e The proposed let rule does not allow this code (because “new C”
(eo) does not exactly have the type “P” (TO))

o We say that aruleis too weak or incomplete when it prevents
us from typechecking “good” programs

Subtyping

Subtyping

e Define arelation X <Y onclasses that denotes:

Reminder from math class: a relation is |
some specific subset of the Cartesian
L product of some finite list of sets p

Subtyping

e Define arelation X <Y on classes that denotes:

Subtyping

e Define arelation X <Y onclasses that denotes:

Subtyping

e Define arelation X =Y onclasses that denotes:
o anobject of type X can be used when one of type Y is expected
(Liskov substitutability), or equivalently

Subtyping

e Define arelation X =Y on classes that denotes:
o anobject of type X can be used when one of type Y is expected
(Liskov substitutability), or equivalently
o X withY

Subtyping

e Define arelation X =Y onclasses that denotes:
o anobject of type X can be used when one of type Y is expected
(Liskov substitutability), or equivalently

o X withY
o |In Cool, this means that X is a subclass of Y

Subtyping

e Define arelation X =Y on classes that denotes:
o anobject of type X can be used when one of type Y is expected
(Liskov substitutability), or equivalently
o X withY
o |In Cool, this means that X is a subclass of Y
e Definition of < on classes:
o X=X
o X=2Yif Xinherits fromY
o X=ZifXsYandY=<Z

Let with Initialization (better)

Let with Initialization (better)

[e,:T TsT, F[T()/X]FelzT1

FFIetx:TO<-e0ine1:T1

[Let-Init]

Let with Initialization (better)

[e,:T TsT, F[T()/X]FelzT1

FFIetx:TO<-e0ine1:T1

[Let-Init]

e Bothrules are sound
o l.e, neither rule allows any “bad” programs to typecheck

Let with Initialization (better)

[e,:T TsT, F[T()/X]FelzT1

FFIetx:TO<-e0ine1:T1

[Let-Init]

e Bothrules are sound

o l.e, neither rule allows any “bad” programs to typecheck
e But more programs typecheck with this new rule

o Itis more complete

Expressiveness of Type Systems

e Thereisatension between:
o flexible rules that do not constrain programmers
o restrictive rules that ensure safety of execution

Expressiveness of Type Systems

e Thereisatension between:
o flexible rules that programmers
o restrictive rules that ensure safety of execution

e Thistension is necessitated by Rice’s Theorem: all non-trivial
semantic properties of a program are undecidable.

Expressiveness of Type Systems

e Thereisatension between:
o flexible rules that programmers
o restrictive rules that ensure safety of execution
e Thistension is necessitated by Rice’s Theorem: all non-trivial
semantic properties of a program are undecidable.
o To make the typechecker decidable, we
either soundness or completeness

on

Expressiveness of Type Systems

e Thereisatension between:
o flexible rules that programmers
o restrictive rules that ensure safety of execution
e Thistension is necessitated by Rice’s Theorem: all non-trivial
semantic properties of a program are undecidable.
o To make the typechecker decidable, we on
either soundness or completeness
m i.e., we musteither reject some “good” programs or accept
some “bad” programs

Expressiveness of Type Systems

e Thereisatension between:
o flexible rules that programmers
o restrictive rules that ensure safety of execution
e Thistension is necessitated by Rice’s Theorem: all non-trivial
semantic properties of a program are undecidable.
o To make the typechecker decidable, we on
either soundness or completeness
m i.e., we musteither reject some “good” programs or accept
some “bad” programs
e Usual choice (for static type systems): reject some “good” programs

Static vs Dynamic Types (again)

e Usual choice (for static type systems): reject some “good” programs

Static vs Dynamic Types (again)

e Usual choice (for static type systems): reject some “good” programs
o Advantage: no “bad” programs will get executed!

Static vs Dynamic Types (again)

e Usual choice (for static type systems): reject some “good” programs
o Advantage: no “bad” programs will get executed!

e Thischoiceis abig downside of static type systems - they impose a
cost on the user by disallowing some correct programs

Static vs Dynamic Types (again)

e Usual choice (for static type systems): reject some “good” programs
o Advantage: no “bad” programs will get executed!
e Thischoiceis abig downside of static type systems - they impose a
cost on the user by disallowing some correct programs
o some argue for dynamic typechecking instead
m ‘compute is cheap, human attention is expensive”

Static vs Dynamic Types (again)

e Usual choice (for static type systems): reject some “good” programs
o Advantage: no “bad” programs will get executed!
e Thischoiceis abig downside of static type systems - they impose a
cost on the user by disallowing some correct programs
o some argue for dynamic typechecking instead
m ‘compute is cheap, human attention is expensive”
o others argue for static typechecking instead
m however, more expressive type systems are more complex

Soundness

e The notions of static types and dynamic types are necessary for
stating the soundness theorems of advanced type systems like Cool’s

Soundness

e The notions of static types and dynamic types are necessary for
stating the soundness theorems of advanced type systems like Cool’s
o atype system’s soundness theorem proves that it rejects all “bad”
programs

Soundness

e The notions of static types and are necessary for
stating the soundness theorems of advanced type systems like Cool’s
o atype system’s soundness theorem proves that it rejects all “bad”
programs
e Definethe of an object as the class C that is used in the
“new C” expression that creates the object in some execution

Soundness

e The notions of static types and are necessary for
stating the soundness theorems of advanced type systems like Cool’s
o atype system’s soundness theorem proves that it rejects all “bad”
programs
e Definethe of an object as the class C that is used in the
“new C” expression that creates the object in some execution
o run-time notion, present even in languages without static types

Soundness

The notions of static types and are necessary for
stating the soundness theorems of advanced type systems like Cool’s
o atype system’s soundness theorem proves that it rejects all “bad”
programs

Define the of an object as the class C that is used in the
“new C” expression that creates the object in some execution

o run-time notion, present even in languages without static types
Define the static type of an expression as the of the
dynamic types that the expression can take on, in some execution

o cf.static vs dynamic semantics

Soundness

The notions of static types and are necessary for
stating the soundness theorems of advanced type systems like Cool’s
o atype system’s soundness theorem proves that it rejects all “bad”

~
programs Think of as

Define the of an objec] « :
. . nearest common ancestor In
new C” expression that creates th : 5
the type hierarchy”, for now

o run-time notion, present even in
Define the static type of an expression as the of the

dynamic types that the expression can take on, in some execution
o cf.static vs dynamic semantics

Stating a Soundness Theorem

e |nearly type systems, the set of static types corresponded exactly
with the dynamic types

Stating a Soundness Theorem

e |nearlytype systems, the set of static types corresponded exactly
with the dynamic types
o insuch atype system, the soundness theorem is easy to state:
for all expressions E, dynamic_type(E) = static_type(E)

Stating a Soundness Theorem

e |nearlytype systems, the set of static types corresponded exactly
with the dynamic types
o insuch atype system, the soundness theorem is easy to state:
for all expressions E, dynamic_type(E) = static_type(E)
e This gets more complicated for “advanced” type systems (Java, Cool)
o Why?

Stating a Soundness Theorem

e |nearlytype systems, the set of static types corresponded exactly
with the dynamic types
o insuch atype system, the soundness theorem is easy to state:
for all expressions E, dynamic_type(E) = static_type(E)
e This gets more complicated for “advanced” type systems (Java, Cool)
o Why? Must also consider / Liskov substitutability

Stating a Soundness Theorem

e |nearlytype systems, the set of static types corresponded exactly
with the dynamic types
o insuch atype system, the soundness theorem is easy to state:
for all expressions E, dynamic_type(E) = static_type(E)
e This gets more complicated for “advanced” type systems (Java, Cool)
o Why? Must also consider / Liskov substitutability
o so, Cool’s soundness theorem is:
for all expressions E, dynamic_type(E) < static_type(E)

Stating a Soundness Theorem

IfrVVhy is this soundness theorem okay?

~—

v

for all expressions E, dynamic_type(E) < static_type(E)

Stating a Soundness Theorem

IfrVVhy is this soundness theorem okay?
e For all E,the compiler allows only operations that
static_type(E) permits

v

~—

for all expressions E, dynamic_type(E) < static_type(E)

Stating a Soundness Theorem

IfrVVhy is this soundness theorem okay?

e For all E,the compiler allows only operations that
static_type(E) permits

e Liskov substitutability guarantees that any operation
available on a supertype is also available on its subtypes

~—

v

for all expressions E, dynamic_type(E) < static_type(E)

Stating a Soundness Theorem

IfrVVhy is this soundness theorem okay?

e For all E,the compiler allows only operations that
static_type(E) permits

e Liskov substitutability guarantees that any operation
available on a supertype is also available on its subtypes
o subclasses can only add attributes or methods

~—

v

for all expressions E, dynamic_type(E) < static_type(E)

Stating a Soundness Theorem

IfrVVhy is this soundness theorem okay?

e For all E,the compiler allows only operations that
static_type(E) permits

e Liskov substitutability guarantees that any operation
available on a supertype is also available on its subtypes
o subclasses can only add attributes or methods

S o methods can be redefined, but

v

for all expressions E, dynamic_type(E) < static_type(E)

Subtyping Example

e Consider the following Cool classes:

classA{a():Int{0};}
class Binherits A{b():Int{1};}

Subtyping Example

e Consider the following Cool classes:

classA{a():Int{0};}
class Binherits A{b():Int{1};}

e Aninstance of B has methods “a()” and “b()”

Subtyping Example

e Consider the following Cool classes:

classA{a():Int{0};}
class Binherits A{b():Int{1};}

e Aninstance of B has methods “a()” and “b()”
e And instance of A only has method “a()”

Subtyping Example

e Consider the following Cool classes:

classA{a():Int{0};}
class Binherits A{b():Int{1};}

e Aninstance of B has methods “a()” and “b()”
e And instance of A only has method “a()”
o Atype error will occur if we try to invoke method “b()” on an
object with dynamic type A

Subtyping Example

Consider the following Cool classes:

classA{a():Int{0};}
class Binherits A{b():Int{1};}

An instance of B has methods “a()” and “b()”
And instance of A only has method “a()”
o Atype error will occur if we try to invoke method “b()” on an
object with dynamic type A
o But the static type system will forbid such an invocation!

Example of Wrong Let Rule (1)

Examples of Wrong Let Rule (1)

e Now consider a hypothetical wrong let rule:

FFeO:T TST0 erlzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e Howisitdifferent fromthe correct rule?

Examples of Wrong Let Rule (1)

e Now consider a hypothetical wrong let rule:

FFeO:T TST0 erlzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e Howisitdifferent from the correct rule?

e Thefollowing program does not typecheck:
letx:Int<-0inx+1

e Why not?

Examples of Wrong Let Rule (1)

e Now consider a hypothetical wrong let rule:

FFeO:T TST0 erlzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s it different from the correct rule?

e The following program does not typecheck:
letx:Int<-0inx+1

e Why not? Typing environment hasn’t been updated!

Examples of Wrong Let Rule (2)

e Now consider another hypothetical wrong let rule:

[~e,:T T,=T F[T()/X]FeizT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s this one different from the correct rule?

Examples of Wrong Let Rule (2)

e Now consider another hypothetical wrong let rule:

[~e,:T T,=T F[T()/X]FeizT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s this one different from the correct rule?
e The following bad program (!) is well-typed:

let x: B <-new A in x.b()
e Why s this program bad?

Examples of Wrong Let Rule (3)

e Now consider another hypothetical wrong let rule:

[e,:T TsT, F[T/X]FelzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s this one different from the correct rule?

Examples of Wrong Let Rule (3)

e Now consider another hypothetical wrong let rule:

[e,:T TsT, F[T/X]FelzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s this one different from the correct rule?
e This“good” program is not well-typed:

letx: A<-newBin{...x <-new A ; x.a(); }
e Why isn't this program well-typed?

Type Rule Notation

e Thetyperulesuse very concise notation

Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed

Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:

Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed

Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed
o Or, makes the type system less usable (more
m i.e,good programs are rejected

Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed
o Or, makes the type system less usable (more
m i.e,good programs are rejected
e But no matter how well we choose the type rules, some good
programs will be rejected anyway

Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed
o Or, makes the type system less usable (more)
m i.e,good programs are rejected
e But no matter how well we choose the type rules, some good
programs will be rejected anyway
o Rice's Theorem strikes again: typechecking is undecidable

/Next time we’ll cover some \

Type Rule Notation even-more-complex rules

than let:
The type rules use very concise | ® Typechecking method

o and they are very carefully CL dispatch
[

Virtually inaruleeit Ui naek it

o Makes the type system unso SELF_TYPE in Cool /
m i.e,badprograms are well-typed
o Or, makes the type system less usable (more)
m i.e,good programs are rejected
But no matter how well we choose the type rules, some good
programs will be rejected anyway
o Rice’s Theorem strikes again: typechecking is undecidable

Course Announcements

e Don't put off starting PA2!
o This part of the semester may feel like a lull, but that feeling
isn’t accurate!

