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We’ll start by reviewing 
some of what we saw at the 
end of the last lecture…
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● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

Traditional notation 
(same meaning!):

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int

Pronounced “we can prove that…”
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Baby’s First Type Derivation

⊢ 1 + 2: Int

⊢ 1 : Int
[Int]

1 is an integer 
constant

[Add]
⊢ 2 : Int

[Int]

2 is an integer 
constant

“ground facts” (I will write these in italics)
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Soundness

Definition: a type system is sound if whenever ⊢ e : T, then e evaluates 
to a value of type T.
● Intuition: if we can prove it, then it's true!
● We only want sound rules, but some sound rules are worse than 

others
○ e.g., consider this rule:

⊢ i : Object
[Int-Obj]

i is an integer 
constant
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Typechecking Proofs

● Typechecking proves facts like e : T
○ one type rule is used for each 

kind of expression
● In the type rule used for a node e:

○ the hypotheses are the proofs of 
the types of e’s subexpressions

○ the conclusion is the proof of the 
type of e itself

● e.g, consider the add rule ->

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int
[Add]

  subexpression proofs

proof of e itself

Next, we’re going to 
look at a collection of 
examples of type rules
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Rules for Constants

⊢ false : Bool

⊢ s : String
[String]

[False] s is any string 
constant

⊢ true : Bool
[True]

Notation note: I’m using bold black for keywords, 
bold blue for expressions, and bold red for types
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Rule for New

⊢ new T : T
[New]

● New is a bit more complicated than constants (but not much)
● new T produces an object of type T

○ ignore SELF_TYPE for now…
● That gives us this rule:
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⊢ not e : Bool
[Not]

⊢ e : Bool



⊢ while e
1

 loop e
2

 pool : Object

Rules for Bools and Loops

⊢ not e : Bool
[Not]

[Loop]

⊢ e : Bool

⊢ e
1

 : Bool ⊢ e
2

 : T
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Typing Example

● Typing for  while not false loop 1 + 2 * 3 pool

while   loop pool : Object

not : Bool

false : Bool

+ : Int

1: Int
* : Int

2: Int 3: Int
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Typing Derivations

● The typing reasoning on the previous slide can be 
equivalently represented as a tree:

⊢ while not false loop 1 + 2 * 3 pool : Object

⊢ not false : Bool

false is a Bool

⊢ 1 : Int

1 is an Int

⊢ 1 + 2 * 3 : Int

⊢ false : Bool ⊢ 2 * 3 : Int

⊢ 2 : Int

2 is an Int

⊢ 3 : Int

3 is an Int
● The root of the tree is 

the whole expression
● Each node is an 

instance of a typing 
rule

● Leaves in the tree are 
the rules with ground 
facts
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A Problem: Variables

⊢ x : ?
[Var]

● What is the type of a variable?

● This local structural rule does not carry enough information 
to give x a type (oh no)
○ All of the rules we’ve looked at so far have been about 

constants…

x is an identifier
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A Solution: Type Environments

● To give types to variables, our rules need to 
carry more information
○ i.e., the declared types of variables!

● A type environment gives types for free variables
○ The type environment is a mapping from 

names to types
○ A variable x is free in an expression e if e 

contains an occurrence of x that refers to a 
declaration that is outside of the 
expression

Examples:

expression: “x”
free: “x”

e: “let x : Int in x + y”
free: “y”

e: “x + let x : Int in x + y”
free: “x”, “y”
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A Solution: Type Environments

● Let Γ be a function (equivalently, a mapping) from identifiers to types
● Then the sentence:

Γ ⊢ e : T

is read: “Under the assumption that each free variable x in e has the 
type given by Γ(x), then it is provable that the expression e has type T.

“Γ” is a capital gamma (the third letter of the Greek 
alphabet). We use Γ for type environments by convention.
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New Rules

Γ ⊢ x : T
[Var]

x is an identifier Γ(x) = T

● We’re almost ready for today’s main event: the let rule
● First, we need one more piece of notation:  Γ[T/x]
● Γ[T/x] means “Γ modified to map x to T, and behaving as Γ on all 

other arguments”
● More formally: Γ[T/x](x) = T /\ Γ[T/x](y) = Γ(y) ∀ y ≠ x

You can write Γ[x/T] 
on tests, etc., without 
penalty. 
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Γ ⊢ let x : T
0

 in e
1

 : T
1

[Let-No-Init]
Γ[T

0
/x] ⊢ e

1
 : T

1

Explanation:
● if, after replacing x’s old type with T

0
, we can prove that e

1
 has 

type T
1

…
● …then the let expression is well-typed by T

1

Notation: Γ[T/x](x) = T /\ Γ[T/x](y) = Γ(y) ∀ y ≠ x
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Let Example

● Consider this Cool expression:

let x : T
0

 in (let y : T
1

 in E
x,y

) + (let x : T
2

 in F
x,y

)

(where E
x,y

 and F
x,y

 are some Cool expressions that contain occurrences of “x” and “y”)

● Consider that the scope:
○ of  “y” is E

x,y

○ of the outer “x” is E
x,y

○ of the inner “x” is F
x,y

● The type rule precisely captures this scoping!
○ “Γ[T/x]”-like replacements exactly match the scoping we’d expect!
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More Let Practice

● Consider 1+ let x : Int in x + 2

● What would the typing derivation be? Get out a piece of paper. I’ll get 
you started…

???
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Type Environment Notes

● The type environment gives types to the free variables (only) in the 
current scope

● The type environment is passed down the AST from the root 
towards the leaves

● Types are computed bottom-up on the AST from the leaves toward 
the root



Trivia Break: History

This book documented the environmental harm caused by the 
indiscriminate use of DDT, a pesticide used by soldiers during World 
War II. It was met with fierce opposition by chemical companies, but 
it swayed public opinion and led to a reversal in US pesticide policy, a 
nationwide ban on DDT for agricultural uses,  and an environmental 
movement that led to the creation of the US Environmental 
Protection Agency. The book’s author is Rachel Carson.
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Let with Initialization

● To see why the rule is weak, consider this example:

class C inherits P { … }
…
let x : P <- new C in …

● The proposed let rule does not allow this code (because “new C” 
(e

0
) does not exactly have the type “P” (T

0
))

○ We say that a rule is too weak or incomplete when it prevents 
us from typechecking “good” programs (but Rice’s Theorem…)
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Subtyping

● Define a relation X ≤ Y on classes that denotes:
○ an object of type X can be used when one of type Y is expected 

(Liskov substitutability), or equivalently
○ X conforms with Y
○ In Cool, this means that X is a subclass of Y

● Definition of ≤ on classes:
○ X ≤ X
○ X ≤ Y if X inherits from Y
○ X ≤ Z if X ≤ Y and Y ≤ Z
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Let with Initialization (better)

[Let-Init]

● Both rules are sound
○ I.e., neither rule allows any “bad” programs to typecheck

● But more programs typecheck with this new rule
○ It is more complete
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Static vs Dynamic Types (again)

● Usual choice (for static type systems): reject some “good” programs
○ Advantage: no “bad” programs will get executed!

● This choice is a big downside of static type systems - they impose a 
cost on the user by disallowing some correct programs
○ some argue for dynamic typechecking instead 

■ “compute is cheap, human attention is expensive”
○ others argue for more expressive static typechecking instead

■ however, more expressive type systems are more complex
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Soundness

● The notions of static types and dynamic types are necessary for 
stating the soundness theorems of advanced type systems like Cool’s
○ a type system’s soundness theorem proves that it rejects all “bad” 

programs
● Define the dynamic type of an object as the class C that is used in the 

“new C” expression that creates the object in some execution
○ run-time notion, present even in languages without static types

● Define the static type of an expression as the least upper bound of the 
dynamic types that the expression can take on, in some execution
○ cf. static vs dynamic semantics

Think of least upper bound as 
“nearest common ancestor in 
the type hierarchy”, for now



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? 



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? Must also consider subtyping / Liskov substitutability



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? Must also consider subtyping / Liskov substitutability
○ so, Cool’s soundness theorem is:

for all expressions E, dynamic_type(E) ≤ static_type(E)



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? Must also consider subtyping / Liskov substitutability
○ so, Cool’s soundness theorem is:

for all expressions E, dynamic_type(E) ≤ static_type(E)

Why is this soundness theorem okay?
● For all E, the compiler allows only operations that 

static_type(E) permits
● Liskov substitutability guarantees that any operation 

available on a supertype is also available on its subtypes
○ subclasses can only add attributes or methods
○ methods can be redefined, but only with the same types



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? Must also consider subtyping / Liskov substitutability
○ so, Cool’s soundness theorem is:

for all expressions E, dynamic_type(E) ≤ static_type(E)

Why is this soundness theorem okay?
● For all E, the compiler allows only operations that 

static_type(E) permits
● Liskov substitutability guarantees that any operation 

available on a supertype is also available on its subtypes
○ subclasses can only add attributes or methods
○ methods can be redefined, but only with the same types



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? Must also consider subtyping / Liskov substitutability
○ so, Cool’s soundness theorem is:

for all expressions E, dynamic_type(E) ≤ static_type(E)

Why is this soundness theorem okay?
● For all E, the compiler allows only operations that 

static_type(E) permits
● Liskov substitutability guarantees that any operation 

available on a supertype is also available on its subtypes
○ subclasses can only add attributes or methods
○ methods can be redefined, but only with the same types



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? Must also consider subtyping / Liskov substitutability
○ so, Cool’s soundness theorem is:

for all expressions E, dynamic_type(E) ≤ static_type(E)

Why is this soundness theorem okay?
● For all E, the compiler allows only operations that 

static_type(E) permits
● Liskov substitutability guarantees that any operation 

available on a supertype is also available on its subtypes
○ subclasses can only add attributes or methods



Stating a Soundness Theorem

● In early type systems, the set of static types corresponded exactly 
with the dynamic types
○ in such a type system, the soundness theorem is easy to state:

for all expressions E, dynamic_type(E) = static_type(E)
● This gets more complicated for “advanced” type systems (Java, Cool)

○ Why? Must also consider subtyping / Liskov substitutability
○ so, Cool’s soundness theorem is:

for all expressions E, dynamic_type(E) ≤ static_type(E)

Why is this soundness theorem okay?
● For all E, the compiler allows only operations that 

static_type(E) permits
● Liskov substitutability guarantees that any operation 

available on a supertype is also available on its subtypes
○ subclasses can only add attributes or methods
○ methods can be redefined, but only with the same types



Subtyping Example

● Consider the following Cool classes:

class A { a() : Int { 0 }; }
class B inherits A { b() : Int { 1 }; }



Subtyping Example

● Consider the following Cool classes:

class A { a() : Int { 0 }; }
class B inherits A { b() : Int { 1 }; }

● An instance of B has methods “a()” and “b()”



Subtyping Example

● Consider the following Cool classes:

class A { a() : Int { 0 }; }
class B inherits A { b() : Int { 1 }; }

● An instance of B has methods “a()” and “b()”
● And instance of A only has method “a()”



Subtyping Example

● Consider the following Cool classes:

class A { a() : Int { 0 }; }
class B inherits A { b() : Int { 1 }; }

● An instance of B has methods “a()” and “b()”
● And instance of A only has method “a()”

○ A type error will occur if we try to invoke method “b()” on an 
object with dynamic type A



Subtyping Example

● Consider the following Cool classes:

class A { a() : Int { 0 }; }
class B inherits A { b() : Int { 1 }; }

● An instance of B has methods “a()” and “b()”
● And instance of A only has method “a()”

○ A type error will occur if we try to invoke method “b()” on an 
object with dynamic type A

○ But the static type system will forbid such an invocation!
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Examples of Wrong Let Rule (1)

● Now consider a hypothetical wrong let rule:

● How is it different from the correct rule?
● The following program does not typecheck:

let x : Int <- 0 in x + 1
● Why not? Typing environment hasn’t been updated!

Γ ⊢ e
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 : T T
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 Γ ⊢ e
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 : T
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Γ ⊢ let x : T
0

 <- e
0

 in e
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 : T
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[Let-Init]
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● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
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Examples of Wrong Let Rule (2)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
● The following bad program (!) is well-typed:

let x : B <- new A in x.b()
● Why is this program bad?
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Examples of Wrong Let Rule (3)

● Now consider another hypothetical wrong let rule:

● How is this one different from the correct rule?
● This “good” program is not well-typed:

let x : A <- new B in { … x <- new A ; x.a(); }
● Why isn’t this program well-typed?

Γ ⊢ e
0

 : T T
 
≤ T

0
 Γ[T/x] ⊢ e

1
 : T

1

Γ ⊢ let x : T
0

 <- e
0

 in e
1

 : T
1

[Let-Init]



Type Rule Notation

● The type rules use very concise notation



Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed



Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:



Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed



Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected



Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected
● But no matter how well we choose the type rules, some good 

programs will be rejected anyway



Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected
● But no matter how well we choose the type rules, some good 

programs will be rejected anyway
○ Rice’s Theorem strikes again: typechecking is undecidable



Type Rule Notation

● The type rules use very concise notation
○ and they are very carefully constructed

● Virtually any change in a rule either:
○ Makes the type system unsound

■ i.e., bad programs are well-typed
○ Or, makes the type system less usable (more incomplete)

■ i.e., good programs are rejected
● But no matter how well we choose the type rules, some good 

programs will be rejected anyway
○ Rice’s Theorem strikes again: typechecking is undecidable

Next time we’ll cover some 
even-more-complex rules 
than let:
● Typechecking method 

dispatch
● Typechecking with 

SELF_TYPE in Cool



Course Announcements

● Don’t put off starting PA2!
○ This part of the semester may feel like a lull, but that feeling 

isn’t accurate!


