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WEe'll start by reviewing
some of what we saw at the
end of the last lecture...
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(Building blocks: )

English to Inference Rules e /is“and”
e ->ijs‘if-then”
o Xx:Tis“xhastypeT”

If e, has type Int and e, has type Int,

thene, +e, has type Int \- )
Traditional notation
i (same meaning!):
(e, has type Int A\ e, has type Int) -> ~e,:Int e, :Int
e, +e, hastype Int -4, +e,:Int

Pronounced “we can prove that...”
(e1 IntN\e,: Int) -> e, +e,:Int
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Inference Rule Examples

i is any integer

-e, :Int ~e,:Int constant
[Add] [Int]
-e,+e,Int ~i:lInt
e Theserules give describing how to type integers and +
expressions
e By fillinginthe templates, we can produce for

expressions
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Baby’s First Type Derivation

1is an integer 2 is an integer
constant constant
[Int] [Int]
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[Add]

~1+2:Int



Baby’s First Type Derivation

“ground facts” (I will write these in italics)

W 2 is an integer

constant constant
[Int] [Int]
-1:Int -2 :Int

[Add]

~1+2:Int
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Soundness

Definition: a type system is sound if whenever + e : T, then e evaluates
to a value of type T.
e |[ntuition: if we can prove it, theniit's true!
e We only want sound rules, but some sound rules are worse than
others
o e.g., consider this rule:

i is an integer
constant

~i:Object

[Int-Obij]
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Typechecking Proofs

e Typechecking proves facts likee: T
o onetyperuleisused for each

kind of expression
e |nthetype rule used for anode e: subexpression proofs

o thehypotheses are the proofs of | + e,:Int ] [F e,:Int ]

the types of €'s subexpressions e +e-Int [Add]
o the is the proof of the 12

type of e

e e.g considerthe addrule->



Typechecking Proofs r )

Next, we're going to

e Typechecking proves facts likee: T look at a collection of
examples of type rules

o onetyperuleisused for each \_
kind of expression
e |nthetyperule used for anode e: subexpression proofs
o thehypotheses are the proofs of | + e,:Int ] [F e,:Int
the types of €'s subexpressions
o the is the proof of the
type of e
e e.g considerthe addrule->

J

] [Add]
e, te, Int
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Rules for Constants

- false : Bool [False] sis any string
| constant .
[String]
[True] ~s:String
~true : Bool

Notation note: I'm using bold black for keywords,
bold blue for expressions, and bold red for types
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Rule for New

e New is abit more complicated than constants (but not much)
e new T producesanobjectoftype T

o ignore SELF_TYPE for now...
e That gives us this rule:

[New]
Fnew T:T
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~e: Bool

[Not]
~not e : Bool



Rules for Bools and Loops

~e : Bool
[Not]
~not e : Bool
Pei:BooI PeZ:T
[Loop]

~while e, loop e, pool : Object
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Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while 1loop pool

/\

+ :Int

nit :B?ol /c;%i\::;:\

:Int

1:Int
false :Bool //:;71\:::\\\

2:Int 3:Int



Typing Example

e Typingfor while not false loop 1 + 2 * 3 pool

while loop pool :Object

T —

not :Bool

l T 1.I{7KV>:IM
false :Bool ' ’/7\\

2:Int 3:Int
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Typing Derivations

e Thetypingreasoningon the previous slide can be
equivalently represented as a tree:
e Therootofthetreeis
the whole expression false is a Bool

2isan Int 3isan Int

Tisan Int =2 :Int =3 :Int
e Eachnodeisan - false: Bool ~1:Int 2 * 3:Int
instance Ofatyp|ng -not false:Bool 1 + 2 * 3:Int
rule Fwhile not false loop 1 + 2 * 3 pool :Object

e Leavesinthetreeare
the rules with ground
facts
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A Problem: Variables

e Whatis the type of avariable?

X is an identifier

7 [Var]

e Thislocal structural rule does carry enough information
to give x a type (oh no)
o All of the rules we've looked at so far have been about
constants...
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carry more information Examples:
o ie,the of variables! o
e A type environment gives types for free variables ?:(er)eie“is,,lon: X
o The type environment is a mapping from
names to types fre'eet ;‘ Intinx+y”
o Avariablexisfreeinanexpressioneife
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A Solution: Type Environments

e Togivetypes to variables, our rules need to
carry more information

O

e A type environment gives types for free variables

i.e., the of variables!

o Thetype environmentis a mapping from

O

names to types

A variable x is free in an expressioneif e
contains an occurrence of x that refers to a
declaration that is outside of the
expression

Examples:

“_n

expression: “x

“_n

free: “x

e:“letx:Intinx+y”

“._..”n

free:"y

e:“x+letx:Intinx+y”

“_n «_n

free: “x’, "y
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A Solution: Type Environments

e Let[l beafunction (equivalently, a mapping) from identifiers to types
e Then the sentence:

[Fe: T

is read: “Under the assumption that each free variable x in e has the
type given by '(x), then it is provable that the expression e has type T.

p )
“Mis a (the third letter of the Greek

alphabet). We use I for type environments by convention.
. y,
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Modified Rules

i is any integer
[+ e1 - Int [+ 62 :Int [Add] constant [| ]
nt
e, +e, Int [~i:Int
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New Rules

X is an identifier F(x) =T
[=x:T

[Var]

e We're almost ready for today’s main event: the let rule

e First, we need one more piece of notation: '[T/x]

e [[T/x] means“l modified to map xto T, and behaving as " on all
other arguments”
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New Rules

You can write IN[x/T]
on tests, etc., without

s an identifi Fx)=T
X is an identifier ( ) [Var] \penalty. y

[E=x:T

e We're almost ready for today’s main event: the let rule

e First, we need one more piece of notation: '[T/x]

e [[T/x] means“l modified to map xto T, and behaving as " on all
other arguments”

e More formally: I[T/x](x) =T/AT[T/X](y)=T(y) V y#Xx
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Notation: [[T/x](x) =T /AT[T/x](y) =T(y) V y # X

New Rules: Let

MT/x]-e:T,

: [Let-No-Init]
[letx:T,ine, : T,
Explanation:
e if, after replacing x’s old type with T, we can prove that e, has
typeT,...

e ..thenthe let expressionis well-typed by T,
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Let Example

e Consider this Cool expression:

letx: T, in(lety:T,in Ex’y) +(letx: T, in Fx’y)
(where E ., andF aresome Cool expressions that contain occurrences of “x” and “y”)

e Consider that the scope:
o of “y'is EX’y
o of the outer “x” is EX’y
o oftheinner“x”is FX’y
e Thetype rule precisely captures this scoping!
o “I'[T/x]™like replacements exactly match the scoping we'd expect!
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AST

Type env.

[+ letx:T,in

-

F[To/x] -4

F[TO/x] - lety: T, in

MTy/x]- letx: T, in

Xy

Xy
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Type env. ‘ l
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AST M= letx:T,in
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Example of Typing Let

AST e letx:T,in
Type env. ‘ l
Types

MTy/XIF + :Int

MTy/x]~ lety:T, in :Int

| \

(MTy/XDIT /yl- E, ¢ Int

v

(T, /X])[T JYIE xc: T

MTy/x]- letx: T, in

\

([T, /X])[T /x]+- F,.:

:Int



Example of Typing Let

AST M= letx:T,in: Int
Type env. ‘ l
Types

MTy/XIF + :Int

MTy/x]+ lety:T,in :Int MTy/XIF letx:T,in

| \ \

(MT/XDIT/yl- E  :Int ([T, /x])[T /x]P F :Int

:Int

v

(T, /X])[T JYIE xc: T
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More Let Practice

e Considerl1+letx:Intinx+2

e What would the typing derivation be? Get out a piece of paper. I'll get
you started...

?7?

[F1+letx:Intinx+2:7?7?
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Type Environment Notes

The type environment gives types to the (only) in the
current scope

The type environment is passed down the AST from the root
towards the leaves

Types are computed bottom-up on the AST from the leaves toward
the root



Trivia Break: History

This book documented the environmental harm caused by the
indiscriminate use of DDT, a pesticide used by soldiers during World
War Il. It was met with fierce opposition by chemical companies, but
it swayed public opinion and led to a reversal in US pesticide policy, a
nationwide ban on DDT for agricultural uses, and an environmental
movement that led to the creation of the US Environmental
Protection Agency. The book’s author is Rachel Carson.
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e, T, F[TO/X] ~e, : T,

Let with Initialization Mletx: T, <-e ine,:T,

e TJoseewhy theruleisweak, consider this example:
class C inherits P{... }
i;tx :P<-newCin...
e The proposed let rule does not allow this code (because “new C”
(eo) does not exactly have the type “P” (TO))

o We say that aruleis too weak or incomplete when it prevents
us from typechecking “good” programs
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Subtyping

e Define arelation X =Y on classes that denotes:
o anobject of type X can be used when one of type Y is expected
(Liskov substitutability), or equivalently
o X withY
o |In Cool, this means that X is a subclass of Y
e Definition of < on classes:
o X=X
o X=2Yif Xinherits fromY
o X=ZifXsYandY=<Z
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Let with Initialization (better)

[e,:T TsT, F[T()/X]FelzT1

FFIetx:TO<-e0ine1:T1

[Let-Init]

e Bothrules are sound

o l.e, neither rule allows any “bad” programs to typecheck
e But more programs typecheck with this new rule

o Itis more complete
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Static vs Dynamic Types (again)

e Usual choice (for static type systems): reject some “good” programs
o Advantage: no “bad” programs will get executed!
e Thischoiceis abig downside of static type systems - they impose a
cost on the user by disallowing some correct programs
o some argue for dynamic typechecking instead
m ‘compute is cheap, human attention is expensive”
o others argue for static typechecking instead
m however, more expressive type systems are more complex
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Soundness

The notions of static types and are necessary for
stating the soundness theorems of advanced type systems like Cool’s
o atype system’s soundness theorem proves that it rejects all “bad”

~
programs Think of as

Define the of an objec] « :
. . nearest common ancestor In
new C” expression that creates th : 5
the type hierarchy”, for now

o run-time notion, present even in
Define the static type of an expression as the of the

dynamic types that the expression can take on, in some execution
o cf.static vs dynamic semantics
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Stating a Soundness Theorem

e |nearlytype systems, the set of static types corresponded exactly
with the dynamic types
o insuch atype system, the soundness theorem is easy to state:
for all expressions E, dynamic_type(E) = static_type(E)
e This gets more complicated for “advanced” type systems (Java, Cool)
o Why? Must also consider / Liskov substitutability
o so, Cool’s soundness theorem is:
for all expressions E, dynamic_type(E) < static_type(E)
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Stating a Soundness Theorem

IfrVVhy is this soundness theorem okay?

e For all E,the compiler allows only operations that
static_type(E) permits

e Liskov substitutability guarantees that any operation
available on a supertype is also available on its subtypes
o subclasses can only add attributes or methods

S o methods can be redefined, but

v

for all expressions E, dynamic_type(E) < static_type(E)
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Subtyping Example

Consider the following Cool classes:

classA{a():Int{0};}
class Binherits A{b():Int{1};}

An instance of B has methods “a()” and “b()”
And instance of A only has method “a()”
o Atype error will occur if we try to invoke method “b()” on an
object with dynamic type A
o But the static type system will forbid such an invocation!



Example of Wrong Let Rule (1)



Examples of Wrong Let Rule (1)

e Now consider a hypothetical wrong let rule:

FFeO:T TST0 erlzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e Howisitdifferent fromthe correct rule?



Examples of Wrong Let Rule (1)

e Now consider a hypothetical wrong let rule:

FFeO:T TST0 erlzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e Howisitdifferent from the correct rule?

e Thefollowing program does not typecheck:
letx:Int<-0inx+1

e Why not?
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e Now consider a hypothetical wrong let rule:

FFeO:T TST0 erlzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s it different from the correct rule?

e The following program does not typecheck:
letx:Int<-0inx+1

e Why not? Typing environment hasn’t been updated!
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e Now consider another hypothetical wrong let rule:

[~e,:T T,=T F[T()/X]FeizT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s this one different from the correct rule?
e The following bad program (!) is well-typed:

let x: B <-new A in x.b()
e Why s this program bad?
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Examples of Wrong Let Rule (3)

e Now consider another hypothetical wrong let rule:

[e,:T TsT, F[T/X]FelzT1

FPIetx:T0<-e0ine1:T1

[Let-Init]

e How s this one different from the correct rule?
e This“good” program is not well-typed:

letx: A<-newBin{...x <-new A ; x.a(); }
e Why isn't this program well-typed?



Type Rule Notation

e Thetyperulesuse very concise notation



Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed



Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:



Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed



Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed
o Or, makes the type system less usable (more
m i.e,good programs are rejected



Type Rule Notation

e Thetyperulesuse very concise notation
o and they are very carefully constructed
e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed
o Or, makes the type system less usable (more
m i.e,good programs are rejected
e But no matter how well we choose the type rules, some good
programs will be rejected anyway



Type Rule Notation

e Thetyperulesuse very concise notation
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e Virtually in arule either:
o Makes the type system unsound
m i.e,badprograms are well-typed
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m i.e,good programs are rejected
e But no matter how well we choose the type rules, some good
programs will be rejected anyway
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/Next time we’ll cover some \

Type Rule Notation even-more-complex rules

than let:
The type rules use very concise | ® Typechecking method

o and they are very carefully CL dispatch
[

Virtually inaruleeit Ui naek it

o Makes the type system unso SELF_TYPE in Cool /
m i.e,badprograms are well-typed
o Or, makes the type system less usable (more )
m i.e,good programs are rejected
But no matter how well we choose the type rules, some good
programs will be rejected anyway
o Rice’s Theorem strikes again: typechecking is undecidable




Course Announcements

e Don't put off starting PA2!
o This part of the semester may feel like a lull, but that feeling
isn’t accurate!



