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Together, these three stages can be thought of as a 
“frontend” for either a compiler or an interpreter. Their 
goal: reject bad programs (and prep for later stages…).
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The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:
● Lexical analysis

○ Detects inputs with illegal tokens
● Parsing

○ Detects inputs with ill-formed parse trees
● Semantic analysis

○ Last “frontend” phase 
○ Catches more errors! But what kinds of errors…
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Why a Separate Semantic Analysis?

● Lexing and parsing cannot catch some errors
○ Why? Some language constructs are not context-free!

● Examples:
○ All used variables must have been declared (i.e. scoping)
○ A method must be invoked with arguments of proper type 

(i.e. typing)
○ A class must not be defined more than once
○ etc.
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What Does Semantic Analysis Do?
Many checks! For example, cool checks: 
1. All identifiers are declared
2. Static Types
3. Inheritance relationships (no cycles, etc.)
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
7. And others (check the CRM)!

These requirements are language-dependent! For example, which of 
the above are checked by Python?

Let’s look at one 
example: scoping
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Scoping
Definition: The scope of an identifier is the portion of a program in 
which that identifier is accessible
● The same identifier may refer to different things in different 

parts of the program
○ Different scopes for same name don’t overlap

● Scoping rules match identifier uses with identifier declarations
● Checking scoping rules is an important semantic analysis step in 

most languages
○ including Cool, Java, and C++ (and even Python has global)
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Static vs. Dynamic Scope
● Most languages have static scope

○ Scope depends only on the program text, not run-time 
behavior

○ Cool, Java, C++, C#, etc., have static scope
● Ancient history: dynamically scoped languages

○ Scope depends on execution of the program
○ e.g., Lisp, SNOBOL, Tex, Perl, PostScript

■ though modern Lisp has changed to mostly static scoping 
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Static Scoping Example
let x: Int <- 0 in 
  {
    x;
    { let x: Int <- 1 in
          x; } ; 
    x;
  }

● Recall static scoping = uses of x refer to the closest enclosing 
definition

Redefining a variable like x 
in this example is sometimes 
called “shadowing x”
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Scope in Cool
● Cool identifier bindings are introduced by

○ Class declarations (introduce class names)
○ Method definitions (introduce method names)
○ Let expressions (introduce object ids)
○ Formal parameters (introduce object ids)
○ Attribute definitions in a class (introduce object ids)
○ Case expressions (introduce object ids)
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Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as 

recursive descent over the AST, including static scoping
○ Process an AST node n
○ Process the children of n
○ Finish processing the AST node n

● Example: the scope of let bindings is one subtree
○ consider:

      

○ x can be used in exactly the AST subtree corresponding to e

let x: Int <- 0 in e
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Symbol Tables
● Consider again: 
● Idea:

○ before processing e, add definition of x to the current 
definitions, overriding any other definition of x

○ after processing e, remove the definition of x and restore the 
old definition of x

● A symbol table is a data structure that tracks the current bindings 
of identifiers in this manner
○ You’ll need to make one for PA2
○ OCaml’s Hashtbl is specifically designed to be a symbol table

let x: Int <- 0 in e
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Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined

Cool UBD example (classes):

class Foo {
  ... let y : Test in ...
};

class Test {
  ...
};
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Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined
● Attribute names are global within the class where they are defined

Cool UBD example (attributes):

class Foo {
  f(): Int { tm }; 
  tm: Int <- 0;
}
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Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined
● Attribute names are global within the class where they are defined
● Methods and attribute names have complex rules

○ E.g., a method can be defined in a parent class rather than in 
the class wherein it is used! (inheritance)

○ Methods may also be redefined (overridden)
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Class Definitions

● We know that class names can be used before being defined
● Can we check this property with a symbol table?

○ Why or why not?
○ We cannot: the symbol table relies on the locality of the 

scoping rules
● Solution: 

○ Pass 1: collect all class names
○ Pass 2: do the checking

● In other words, semantic analysis often requires multiple passes
○ commonly more than two!

For PA2, use as many passes 
as you’d like - we aren’t 
evaluating you on efficiency, 
but on correctness.
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What is a type system, anyway?

Definition: a type system is a set of rules that give every program 
element a type, which is an upper bound on the set of possible values 
that that element can take on at run time

● goal of a type system: prevent errors at run time due to 
unexpected values

● type theory is the discipline of math (yes!) that studies the formal 
properties of type systems

● most programming languages include some kind of type system
○ exceptions: assembly, Lisp, a few others

A type can also 
encode the set of 
valid operations on 
values of that type
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Why Do We Need Type Systems?

● Consider the following fragment of assembly:

● What are the types of r1, r2, and r3?
○ e.g., are they integers in the program? Are they pointers and 

offsets? If so, to data or to other code?
● Regardless of their logical types, all of these have the same 

assembly language implementation!
○ one goal of typechecking: prevent mixing these up

add r1 <- r2 + r3
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Primary Goal of Type Systems

● A language’s type system specifics which operations are valid for 
which types

● The primary goal of typechecking is to ensure that operations are 
only used on the correct types
○ This enforces the intended interpretation of values, which 

fundamentally all look the same to the machine
■ i.e., everything is a bit string at the machine code level…

● A type system provides a concise formalization for a set of 
semantic checking rules
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What Kinds of Errors Can A Type System Detect?

● Memory errors:
○ Reading from an invalid pointer, 

etc.
● Invalid operations

○ e.g., calling “meow()” on a Dog
● Violations of abstraction boundaries

○ e.g., ->
● …and arbitrarily-complex other 

properties (wait for pluggable types 
lecture later)

class FileSystem {
 open (x: String) : File {
  ...
 }
 ...
}

class Client {
 f(fs : FileSystem) {
  File fd <- fs.open(“foo”)
  ...
 } -- f cannot see inside fd!
}
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Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the 

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run 
time, typically by a special interpreter or language runtime
■ shares advantages/disadvantages with other dynamic 

analyses

Dynamic typing is sometimes 
called duck typing 
● “if it walks like a duck and 

quacks like a duck, you can 
treat it as a duck”
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Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ early detection of errors, types are documentation
○ Benefits of dynamic typing:

■ faster prototyping, no false positives

Most “production” code 
written in a statically-typed 
language with escape hatches
● e.g., unsafe casts in C, 

native methods in Java
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Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties
○ e.g., Kotlin guarantees no null-pointer dereferences, but Java 

doesn’t (both compile to Java bytecode)
○ stronger types can be added to a language (ask me more)

■ this is “pluggable types” from a few slides ago…
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Cool Types

● Only two kinds:
○ Class names
○ SELF_TYPE

● There are no unboxed base types (like e.g., int in Java)
● The user must declare a type for all identifiers

○ “declare” here is just a fancy way to say “write down by hand”
● The compiler then infers types for expressions

○ for every expression!
○ Java, C, C++, etc., do this too
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Aside: Typechecking vs. Type Inference

Definition: Typechecking is the process of verifying that the types in a 
fully-annotated program are consistent.

Definition: Type Inference is the process of selecting consistent types for 
a program, which typically is not fully annotated.

● These two concepts are closely related, but subtly different
○ Which do you think is harder?
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● Lexers and parsers have formal notations that specify how they 
work
○ Regexps/DFAs (lexer), context-free grammars (parser)

● The appropriate formalism for typechecking is logical rules of 
inference

● Why? A rule of inference has the form:
○ “if Hypothesis is true, then Conclusion is true”

● Typechecking computes via similar reasoning:
○ “If E1 and E2 have certain types, then E3 has a certain type”

You can think of rules of inference 
as a compact notation for If-Then 
statements/conditionals
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Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

Traditional notation 
(same meaning!):

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int

Pronounced “we can prove that…”
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Inference Rule Examples

⊢ i : Int
[Int]

i is any integer 
constant

● These rules give templates describing how to type integers and + 
expressions

● By filling in the templates, we can produce complete typings for 
expressions

● Note that we can fill the template with any expression!

Valid use of the [Add] rule:

⊢ false : Int ⊢ true : Int

⊢ false + true : Int



Baby’s First Type Derivation

⊢ 1 + 2: Int

on the whiteboard…



Course Announcements

● My OH this week are modified:
○ no OH this afternoon (faculty meeting)

● Don’t forget: PA2c1 is due Friday
○ this is a testing assignment: you’ll just write Cool programs

● PA1 grades will come out “soon”


