
Scoping and Types
Martin Kellogg

Today’s Agenda

● Overview of the role of semantic analysis in a compiler
● Scoping and symbol tables
● Introduction to types

Today’s Agenda

● Overview of the role of semantic analysis in a compiler
● Scoping and symbol tables
● Introduction to types

Traditional compiler/interpreter structure

Lexer Parser Typechecker
Code

Generator
Optimizer

source
code

optimized
assemblyInterpreter

Traditional compiler/interpreter structure

Lexer Parser Typechecker
Code

Generator
Optimizer

source
code

optimized
assemblyInterpreter

Together, these three stages can be thought of as a
“frontend” for either a compiler or an interpreter. Their
goal: reject bad programs (and prep for later stages…).

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:
● Lexical analysis

○ Detects inputs with illegal tokens

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:
● Lexical analysis

○ Detects inputs with illegal tokens
● Parsing

○ Detects inputs with ill-formed parse trees

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:
● Lexical analysis

○ Detects inputs with illegal tokens
● Parsing

○ Detects inputs with ill-formed parse trees
● Semantic analysis

○ Last “frontend” phase
○ Catches more errors! But what kinds of errors…

Why a Separate Semantic Analysis?

● Lexing and parsing cannot catch some errors

Why a Separate Semantic Analysis?

● Lexing and parsing cannot catch some errors
○ Why? Some language constructs are not context-free!

Why a Separate Semantic Analysis?

● Lexing and parsing cannot catch some errors
○ Why? Some language constructs are not context-free!

● Examples:

Why a Separate Semantic Analysis?

● Lexing and parsing cannot catch some errors
○ Why? Some language constructs are not context-free!

● Examples:
○ All used variables must have been declared (i.e. scoping)
○ A method must be invoked with arguments of proper type

(i.e. typing)
○ A class must not be defined more than once
○ etc.

What Does Semantic Analysis Do?

What Does Semantic Analysis Do?
Many checks! For example, cool checks:
1. All identifiers are declared
2. Static Types
3. Inheritance relationships (no cycles, etc.)
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
7. And others (check the CRM)!

What Does Semantic Analysis Do?
Many checks! For example, cool checks:
1. All identifiers are declared
2. Static Types
3. Inheritance relationships (no cycles, etc.)
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
7. And others (check the CRM)!

These requirements are language-dependent! For example, which of
the above are checked by Python?

What Does Semantic Analysis Do?
Many checks! For example, cool checks:
1. All identifiers are declared
2. Static Types
3. Inheritance relationships (no cycles, etc.)
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
7. And others (check the CRM)!

These requirements are language-dependent! For example, which of
the above are checked by Python?

Let’s look at one
example: scoping

Scoping
Definition: The scope of an identifier is the portion of a program in
which that identifier is accessible

Scoping
Definition: The scope of an identifier is the portion of a program in
which that identifier is accessible
● The same identifier may refer to different things in different

parts of the program
○ Different scopes for same name don’t overlap

Scoping
Definition: The scope of an identifier is the portion of a program in
which that identifier is accessible
● The same identifier may refer to different things in different

parts of the program
○ Different scopes for same name don’t overlap

● Scoping rules match identifier uses with identifier declarations

Scoping
Definition: The scope of an identifier is the portion of a program in
which that identifier is accessible
● The same identifier may refer to different things in different

parts of the program
○ Different scopes for same name don’t overlap

● Scoping rules match identifier uses with identifier declarations
● Checking scoping rules is an important semantic analysis step in

most languages
○ including Cool, Java, and C++ (and even Python has global)

Static vs. Dynamic Scope
● Most languages have static scope

○ Scope depends only on the program text, not run-time
behavior

Static vs. Dynamic Scope
● Most languages have static scope

○ Scope depends only on the program text, not run-time
behavior

○ Cool, Java, C++, C#, etc., have static scope

Static vs. Dynamic Scope
● Most languages have static scope

○ Scope depends only on the program text, not run-time
behavior

○ Cool, Java, C++, C#, etc., have static scope
● Ancient history: dynamically scoped languages

○ Scope depends on execution of the program

Static vs. Dynamic Scope
● Most languages have static scope

○ Scope depends only on the program text, not run-time
behavior

○ Cool, Java, C++, C#, etc., have static scope
● Ancient history: dynamically scoped languages

○ Scope depends on execution of the program
○ e.g., Lisp, SNOBOL, Tex, Perl, PostScript

■ though modern Lisp has changed to mostly static scoping

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

which definition of x is used?

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

which definition of x is used?

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

which definition of x is used?

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example
let x: Int <- 0 in
 {
 x;
 { let x: Int <- 1 in
 x; } ;
 x;
 }

● Recall static scoping = uses of x refer to the closest enclosing
definition

Redefining a variable like x
in this example is sometimes
called “shadowing x”

Scope in Cool
● Cool identifier bindings are introduced by

Scope in Cool
● Cool identifier bindings are introduced by

○ Class declarations (introduce class names)
○ Method definitions (introduce method names)
○ Let expressions (introduce object ids)
○ Formal parameters (introduce object ids)
○ Attribute definitions in a class (introduce object ids)
○ Case expressions (introduce object ids)

Implementing the Most-Closely Nested Rule

Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as

recursive descent over the AST, including static scoping

Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as

recursive descent over the AST, including static scoping
○ Process an AST node n

Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as

recursive descent over the AST, including static scoping
○ Process an AST node n
○ Process the children of n

Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as

recursive descent over the AST, including static scoping
○ Process an AST node n
○ Process the children of n
○ Finish processing the AST node n

Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as

recursive descent over the AST, including static scoping
○ Process an AST node n
○ Process the children of n
○ Finish processing the AST node n

● Example: the scope of let bindings is one subtree

Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as

recursive descent over the AST, including static scoping
○ Process an AST node n
○ Process the children of n
○ Finish processing the AST node n

● Example: the scope of let bindings is one subtree
○ consider:

 let x: Int <- 0 in e

Implementing the Most-Closely Nested Rule
● Many (but not all) semantic analyses can be expressed as

recursive descent over the AST, including static scoping
○ Process an AST node n
○ Process the children of n
○ Finish processing the AST node n

● Example: the scope of let bindings is one subtree
○ consider:

○ x can be used in exactly the AST subtree corresponding to e

let x: Int <- 0 in e

Symbol Tables
● Consider again: let x: Int <- 0 in e

Symbol Tables
● Consider again:
● Idea:

let x: Int <- 0 in e

Symbol Tables
● Consider again:
● Idea:

○ before processing e, add definition of x to the current
definitions, overriding any other definition of x

let x: Int <- 0 in e

Symbol Tables
● Consider again:
● Idea:

○ before processing e, add definition of x to the current
definitions, overriding any other definition of x

○ after processing e, remove the definition of x and restore the
old definition of x

let x: Int <- 0 in e

Symbol Tables
● Consider again:
● Idea:

○ before processing e, add definition of x to the current
definitions, overriding any other definition of x

○ after processing e, remove the definition of x and restore the
old definition of x

● A symbol table is a data structure that tracks the current bindings
of identifiers in this manner

let x: Int <- 0 in e

Symbol Tables
● Consider again:
● Idea:

○ before processing e, add definition of x to the current
definitions, overriding any other definition of x

○ after processing e, remove the definition of x and restore the
old definition of x

● A symbol table is a data structure that tracks the current bindings
of identifiers in this manner
○ You’ll need to make one for PA2
○ OCaml’s Hashtbl is specifically designed to be a symbol table

let x: Int <- 0 in e

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined

Cool UBD example (classes):

class Foo {
 ... let y : Test in ...
};

class Test {
 ...
};

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined
● Attribute names are global within the class where they are defined

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined
● Attribute names are global within the class where they are defined

Cool UBD example (attributes):

class Foo {
 f(): Int { tm };
 tm: Int <- 0;
}

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined
● Attribute names are global within the class where they are defined
● Methods and attribute names have complex rules

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined
● Attribute names are global within the class where they are defined
● Methods and attribute names have complex rules

○ E.g., a method can be defined in a parent class rather than in
the class wherein it is used! (inheritance)

Scope in Cool (continued)

● Not all kinds of identifiers follow the most-closely nested rule
● For example, class definitions in Cool:

○ Cannot be nested
○ Are globally visible throughout the program

● In other words, a class name can be used before it is defined
● Attribute names are global within the class where they are defined
● Methods and attribute names have complex rules

○ E.g., a method can be defined in a parent class rather than in
the class wherein it is used! (inheritance)

○ Methods may also be redefined (overridden)

Class Definitions

● We know that class names can be used before being defined

Class Definitions

● We know that class names can be used before being defined
● Can we check this property with a symbol table?

○ Why or why not?

Class Definitions

● We know that class names can be used before being defined
● Can we check this property with a symbol table?

○ Why or why not?
○ We cannot: the symbol table relies on the locality of the

scoping rules

Class Definitions

● We know that class names can be used before being defined
● Can we check this property with a symbol table?

○ Why or why not?
○ We cannot: the symbol table relies on the locality of the

scoping rules
● Solution:

Class Definitions

● We know that class names can be used before being defined
● Can we check this property with a symbol table?

○ Why or why not?
○ We cannot: the symbol table relies on the locality of the

scoping rules
● Solution:

○ Pass 1: collect all class names
○ Pass 2: do the checking

Class Definitions

● We know that class names can be used before being defined
● Can we check this property with a symbol table?

○ Why or why not?
○ We cannot: the symbol table relies on the locality of the

scoping rules
● Solution:

○ Pass 1: collect all class names
○ Pass 2: do the checking

● In other words, semantic analysis often requires multiple passes
○ commonly more than two!

Class Definitions

● We know that class names can be used before being defined
● Can we check this property with a symbol table?

○ Why or why not?
○ We cannot: the symbol table relies on the locality of the

scoping rules
● Solution:

○ Pass 1: collect all class names
○ Pass 2: do the checking

● In other words, semantic analysis often requires multiple passes
○ commonly more than two!

For PA2, use as many passes
as you’d like - we aren’t
evaluating you on efficiency,
but on correctness.

Trivia Break:

Today’s Agenda

● Overview of the role of semantic analysis in a compiler
● Scoping and symbol tables
● Introduction to types

What is a type system, anyway?

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

A type can also
encode the set of
valid operations on
values of that type

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

A type can also
encode the set of
valid operations on
values of that type

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

● type theory is the discipline of math (yes!) that studies the formal
properties of type systems

A type can also
encode the set of
valid operations on
values of that type

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

● goal of a type system: prevent errors at run time due to
unexpected values

● type theory is the discipline of math (yes!) that studies the formal
properties of type systems

● most programming languages include some kind of type system
○ exceptions: assembly, Lisp, a few others

A type can also
encode the set of
valid operations on
values of that type

Why Do We Need Type Systems?

● Consider the following fragment of assembly:

add r1 <- r2 + r3

Why Do We Need Type Systems?

● Consider the following fragment of assembly:

● What are the types of r1, r2, and r3?

add r1 <- r2 + r3

Why Do We Need Type Systems?

● Consider the following fragment of assembly:

● What are the types of r1, r2, and r3?
○ e.g., are they integers in the program?

add r1 <- r2 + r3

Why Do We Need Type Systems?

● Consider the following fragment of assembly:

● What are the types of r1, r2, and r3?
○ e.g., are they integers in the program? Are they pointers and

offsets?

add r1 <- r2 + r3

Why Do We Need Type Systems?

● Consider the following fragment of assembly:

● What are the types of r1, r2, and r3?
○ e.g., are they integers in the program? Are they pointers and

offsets? If so, to data or to other code?

add r1 <- r2 + r3

Why Do We Need Type Systems?

● Consider the following fragment of assembly:

● What are the types of r1, r2, and r3?
○ e.g., are they integers in the program? Are they pointers and

offsets? If so, to data or to other code?
● Regardless of their logical types, all of these have the same

assembly language implementation!

add r1 <- r2 + r3

Why Do We Need Type Systems?

● Consider the following fragment of assembly:

● What are the types of r1, r2, and r3?
○ e.g., are they integers in the program? Are they pointers and

offsets? If so, to data or to other code?
● Regardless of their logical types, all of these have the same

assembly language implementation!
○ one goal of typechecking: prevent mixing these up

add r1 <- r2 + r3

Primary Goal of Type Systems

● A language’s type system specifics which operations are valid for
which types

Primary Goal of Type Systems

● A language’s type system specifics which operations are valid for
which types

● The primary goal of typechecking is to ensure that operations are
only used on the correct types

Primary Goal of Type Systems

● A language’s type system specifics which operations are valid for
which types

● The primary goal of typechecking is to ensure that operations are
only used on the correct types
○ This enforces the intended interpretation of values, which

fundamentally all look the same to the machine
■ i.e., everything is a bit string at the machine code level…

Primary Goal of Type Systems

● A language’s type system specifics which operations are valid for
which types

● The primary goal of typechecking is to ensure that operations are
only used on the correct types
○ This enforces the intended interpretation of values, which

fundamentally all look the same to the machine
■ i.e., everything is a bit string at the machine code level…

● A type system provides a concise formalization for a set of
semantic checking rules

What Kinds of Errors Can A Type System Detect?

What Kinds of Errors Can A Type System Detect?

● Memory errors:
○ Reading from an invalid pointer,

etc.

What Kinds of Errors Can A Type System Detect?

● Memory errors:
○ Reading from an invalid pointer,

etc.
● Invalid operations

○ e.g., calling “meow()” on a Dog

What Kinds of Errors Can A Type System Detect?

● Memory errors:
○ Reading from an invalid pointer,

etc.
● Invalid operations

○ e.g., calling “meow()” on a Dog
● Violations of abstraction boundaries

○ e.g., ->

class FileSystem {
 open (x: String) : File {
 ...
 }
 ...
}

class Client {
 f(fs : FileSystem) {
 File fd <- fs.open(“foo”)
 ...
 } -- f cannot see inside fd!
}

What Kinds of Errors Can A Type System Detect?

● Memory errors:
○ Reading from an invalid pointer,

etc.
● Invalid operations

○ e.g., calling “meow()” on a Dog
● Violations of abstraction boundaries

○ e.g., ->
● …and arbitrarily-complex other

properties (wait for pluggable types
lecture later)

class FileSystem {
 open (x: String) : File {
 ...
 }
 ...
}

class Client {
 f(fs : FileSystem) {
 File fd <- fs.open(“foo”)
 ...
 } -- f cannot see inside fd!
}

Kinds of type systems

● Static vs dynamic checking

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime
■ shares advantages/disadvantages with other dynamic

analyses

Kinds of type systems

● Static vs dynamic checking
○ statically typed languages have their types checked before the

program runs, typically at compile time
■ shares advantages/disadvantages with other static analyses

○ dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime
■ shares advantages/disadvantages with other dynamic

analyses

Dynamic typing is sometimes
called duck typing
● “if it walks like a duck and

quacks like a duck, you can
treat it as a duck”

Static vs dynamic types

● Both are common in practice

Static vs dynamic types

● Both are common in practice
○ examples of each?

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ ???
○ Benefits of dynamic typing:

■ ???

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ early detection of errors, types are documentation
○ Benefits of dynamic typing:

■ faster prototyping, no false positives

Static vs dynamic types

● Both are common in practice
○ examples of each?

■ Static: Java, C, Rust, OCaml, TypeScript, etc.
■ Dynamic: Python, Ruby, JavaScript, etc.

● Ongoing debate about the benefits
○ Benefits of static typing:

■ early detection of errors, types are documentation
○ Benefits of dynamic typing:

■ faster prototyping, no false positives

Most “production” code
written in a statically-typed
language with escape hatches
● e.g., unsafe casts in C,

native methods in Java

Other ways type systems differ

Other ways type systems differ

● Implicit vs explicit

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties
○ e.g., Kotlin guarantees no null-pointer dereferences, but Java

doesn’t (both compile to Java bytecode)

Other ways type systems differ

● Implicit vs explicit
○ “do you write the types yourself”
○ almost all mainstream, static languages are explicit

● Strength of the type system
○ not all type systems can prove the same properties
○ e.g., Kotlin guarantees no null-pointer dereferences, but Java

doesn’t (both compile to Java bytecode)
○ stronger types can be added to a language (ask me more)

■ this is “pluggable types” from a few slides ago…

Cool Types

Cool Types

● Only two kinds:
○ Class names
○ SELF_TYPE

Cool Types

● Only two kinds:
○ Class names
○ SELF_TYPE

● There are no unboxed base types (like e.g., int in Java)

Cool Types

● Only two kinds:
○ Class names
○ SELF_TYPE

● There are no unboxed base types (like e.g., int in Java)
● The user must declare a type for all identifiers

○ “declare” here is just a fancy way to say “write down by hand”

Cool Types

● Only two kinds:
○ Class names
○ SELF_TYPE

● There are no unboxed base types (like e.g., int in Java)
● The user must declare a type for all identifiers

○ “declare” here is just a fancy way to say “write down by hand”
● The compiler then infers types for expressions

○ for every expression!
○ Java, C, C++, etc., do this too

Aside: Typechecking vs. Type Inference

Aside: Typechecking vs. Type Inference

Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Aside: Typechecking vs. Type Inference

Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Definition: Type Inference is the process of selecting consistent types for
a program, which typically is not fully annotated.

Aside: Typechecking vs. Type Inference

Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Definition: Type Inference is the process of selecting consistent types for
a program, which typically is not fully annotated.

● These two concepts are closely related, but subtly different

Aside: Typechecking vs. Type Inference

Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Definition: Type Inference is the process of selecting consistent types for
a program, which typically is not fully annotated.

● These two concepts are closely related, but subtly different
○ Which do you think is harder?

Rules of Inference

● Lexers and parsers have formal notations that specify how they
work

Rules of Inference

● Lexers and parsers have formal notations that specify how they
work
○ Regexps/DFAs (lexer), context-free grammars (parser)

Rules of Inference

● Lexers and parsers have formal notations that specify how they
work
○ Regexps/DFAs (lexer), context-free grammars (parser)

● The appropriate formalism for typechecking is logical rules of
inference

Rules of Inference

● Lexers and parsers have formal notations that specify how they
work
○ Regexps/DFAs (lexer), context-free grammars (parser)

● The appropriate formalism for typechecking is logical rules of
inference

● Why? A rule of inference has the form:
○ “if Hypothesis is true, then Conclusion is true”

Rules of Inference

● Lexers and parsers have formal notations that specify how they
work
○ Regexps/DFAs (lexer), context-free grammars (parser)

● The appropriate formalism for typechecking is logical rules of
inference

● Why? A rule of inference has the form:
○ “if Hypothesis is true, then Conclusion is true”

● Typechecking computes via similar reasoning:
○ “If E1 and E2 have certain types, then E3 has a certain type”

Rules of Inference

● Lexers and parsers have formal notations that specify how they
work
○ Regexps/DFAs (lexer), context-free grammars (parser)

● The appropriate formalism for typechecking is logical rules of
inference

● Why? A rule of inference has the form:
○ “if Hypothesis is true, then Conclusion is true”

● Typechecking computes via similar reasoning:
○ “If E1 and E2 have certain types, then E3 has a certain type”

You can think of rules of inference
as a compact notation for If-Then
statements/conditionals

English to Inference Rules

● We’ll start with a simplified system and gradually add features
○ I promise the notation is easy to read (with practice)

English to Inference Rules

● We’ll start with a simplified system and gradually add features
○ I promise the notation is easy to read (with practice)

● Building blocks:
○ /\ is “and”

English to Inference Rules

● We’ll start with a simplified system and gradually add features
○ I promise the notation is easy to read (with practice)

● Building blocks:
○ /\ is “and”
○ -> is “if-then”

English to Inference Rules

● We’ll start with a simplified system and gradually add features
○ I promise the notation is easy to read (with practice)

● Building blocks:
○ /\ is “and”
○ -> is “if-then”
○ x : T is “x has type T”

English to Inference Rules
Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

English to Inference Rules

If e
1

 has type Int and e
2

 has type Int,
then e

1
 + e

2
 has type Int

Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

English to Inference Rules

If e
1

 has type Int and e
2

 has type Int,
then e

1
 + e

2
 has type Int

(e
1

 has type Int /\ e
2

 has type Int) ->
e

1
 + e

2
 has type Int

Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

English to Inference Rules

If e
1

 has type Int and e
2

 has type Int,
then e

1
 + e

2
 has type Int

(e
1

 has type Int /\ e
2

 has type Int) ->
e

1
 + e

2
 has type Int

(e
1

 : Int /\ e
2

 : Int) -> e
1

 + e
2

 : Int

Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

English to Inference Rules

If e
1

 has type Int and e
2

 has type Int,
then e

1
 + e

2
 has type Int

(e
1

 has type Int /\ e
2

 has type Int) ->
e

1
 + e

2
 has type Int

(e
1

 : Int /\ e
2

 : Int) -> e
1

 + e
2

 : Int

Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

Traditional notation
(same meaning!):

English to Inference Rules

If e
1

 has type Int and e
2

 has type Int,
then e

1
 + e

2
 has type Int

(e
1

 has type Int /\ e
2

 has type Int) ->
e

1
 + e

2
 has type Int

(e
1

 : Int /\ e
2

 : Int) -> e
1

 + e
2

 : Int

Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

Traditional notation
(same meaning!):

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int

English to Inference Rules

If e
1

 has type Int and e
2

 has type Int,
then e

1
 + e

2
 has type Int

(e
1

 has type Int /\ e
2

 has type Int) ->
e

1
 + e

2
 has type Int

(e
1

 : Int /\ e
2

 : Int) -> e
1

 + e
2

 : Int

Building blocks:
● /\ is “and”
● -> is “if-then”
● x : T is “x has type T”

Traditional notation
(same meaning!):

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int

Pronounced “we can prove that…”

Inference Rule Examples

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int
[Add]

Inference Rule Examples

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int ⊢ i : Int
[Int][Add]

i is any integer
constant

Inference Rule Examples

● These rules give templates describing how to type integers and +
expressions

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int ⊢ i : Int
[Int][Add]

i is any integer
constant

Inference Rule Examples

● These rules give templates describing how to type integers and +
expressions

● By filling in the templates, we can produce complete typings for
expressions

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int ⊢ i : Int
[Int][Add]

i is any integer
constant

Inference Rule Examples

● These rules give templates describing how to type integers and +
expressions

● By filling in the templates, we can produce complete typings for
expressions

● Note that we can fill the template with any expression!

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int ⊢ i : Int
[Int][Add]

i is any integer
constant

⊢ e
1

 : Int ⊢ e
2

 : Int

⊢ e
1

 + e
2

: Int ⊢ i : Int
[Int][Add]

i is any integer
constant

Inference Rule Examples

⊢ i : Int
[Int]

i is any integer
constant

● These rules give templates describing how to type integers and +
expressions

● By filling in the templates, we can produce complete typings for
expressions

● Note that we can fill the template with any expression!

Valid use of the [Add] rule:

⊢ false : Int ⊢ true : Int

⊢ false + true : Int

Baby’s First Type Derivation

⊢ 1 + 2: Int

on the whiteboard…

Course Announcements

● My OH this week are modified:
○ no OH this afternoon (faculty meeting)

● Don’t forget: PA2c1 is due Friday
○ this is a testing assignment: you’ll just write Cool programs

● PA1 grades will come out “soon”

