Scoping and Types

Martin Kellogg

Today’s Agenda

e Overview of the role of semantic analysis in a compiler
e Scoping and symbol tables
e Introduction to types

Today’s Agenda

e Overview of the role of semantic analysis in a compiler
e Scoping and symbol tables
e Introduction to types

Traditional compiler/interpreter structure

source
code

Code o
[Lexer HParserHTypecheckerHGeneratorH Optlmlzer]

Interpreter optimized
i assembly

Traditional compiler/interpreter structure

Together, these three stages can be thought of as a
“frontend” for either a compiler or an interpreter. Their
goal: reject bad programs (and prep for later stages...).

Code .
[[Lexer HParser]—»[TypecheckerH—>[GeneratorH Opt|m|zer]

Y
[Interpreter] optimized

source
code

assembly

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:
e Lexical analysis
o Detects inputs with illegal tokens

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:
e Lexical analysis

o Detects inputs with illegal tokens
e Parsing

o Detects inputs with ill-formed parse trees

The Role of Semantic Analysis

Three “Compiler Frontend” stages that reject bad programs:
e Lexical analysis
o Detects inputs with illegal tokens
e Parsing
o Detects inputs with ill-formed parse trees
e Semantic analysis
o Last “frontend” phase
o Catches more errors! But what kinds of errors...

Why a Separate Semantic Analysis?

e |exing and parsing cannot catch some errors

Why a Separate Semantic Analysis?

e Lexing and parsing cannot catch some errors
o Why? Some language constructs are not context-free!

Why a Separate Semantic Analysis?

e Lexing and parsing cannot catch some errors
o Why? Some language constructs are not context-free!
e Examples:

Why a Separate Semantic Analysis?

e |exing and parsing cannot catch some errors

o Why? Some language constructs are not context-free!
e Examples:

O

O

All used variables must have been declared (i.e. scoping)

A method must be invoked with arguments of proper type
(i.e.)

A class must not be defined more than once

etc.

What Does Semantic Analysis Do?

What Does Semantic Analysis Do?

Many checks! For example, cool checks:

All identifiers are declared

Static Types

Inheritance relationships (no cycles, etc.)
Classes defined only once

Methods in a class defined only once
Reserved identifiers are not misused
And others (check the CRM)!

NOoLuhowbdE

What Does Semantic Analysis Do?

Many checks! For example, cool checks:

All identifiers are declared

Static Types

Inheritance relationships (no cycles, etc.)
Classes defined only once

Methods in a class defined only once

Reserved identifiers are not misused
And others (check the CRM)!

NOoLuhowbdE

These requirements are I For example, which of
the above are checked by Python?

What Does Semantic Analysis Do?

Many checks! For example, cool checks:

All identifiers are declared Let’s look at one
Static Types example: scoping

Inheritance relationships (no cycles, etc.)
Classes defined only once
Methods in a class defined only once

Reserved identifiers are not misused
And others (check the CRM)!

NOoLuhowbdE

These requirements are I For example, which of
the above are checked by Python?

Scoping

Definition: The scope of an identifier is the portion of a program in
which that identifier is accessible

Scoping

Definition: The scope of an identifier is the portion of a program in
which that identifier is accessible
e Thesame identifier may refer to different things in different
parts of the program
o Different scopes for same name don’t overlap

Scoping

Definition: The scope of an identifier is the portion of a program in
which that identifier is accessible
e Thesame identifier may refer to different things in different
parts of the program
o Different scopes for same name don’t overlap
e Scoping rules match identifier uses with identifier declarations

Scoping

Definition: The scope of an identifier is the portion of a program in

which that identifier is accessible

e Thesame identifier may refer to different things in different
parts of the program
o Different scopes for same name don’t overlap

e Scoping rules match identifier uses with identifier declarations

e Checking scopingrulesis an important semantic analysis step in
most languages
o including Cool, Java, and C++ (and even Python has global)

Static vs. Dynamic Scope

e Most languages have static scope
o Scope depends only on the program text, not run-time
behavior

Static vs. Dynamic Scope

e Most languages have static scope
o Scope depends only on the program text, not run-time
behavior
o Cool, Java, C++, C#, etc., have static scope

Static vs. Dynamic Scope

e Most languages have static scope
o Scope depends only on the program text, not run-time

behavior
o Cool, Java, C++, C#, etc., have static scope
e Ancient history: languages

o Scope depends on execution of the program

Static vs. Dynamic Scope

e Most languages have static scope
o Scope depends only on the program text, not run-time

behavior
o Cool, Java, C++, C#, etc., have static scope
e Ancient history: languages

o Scope depends on execution of the program
o e.g., Lisp, SNOBOL, Tex, Perl, PostScript
m though modern Lisp has changed to mostly static scoping

Static Scoping Example

let x: Int <- 0 in
{

X;
{ let x: Int <- 1 in
x; }

X/

Static Scoping Example

let x: Int <- 0 in

{
X;
{ let x: Int <- 1 in
x; }
X;
}

e Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example

let x: Int <- 0 in

{ __ Which definition of x is used?
X,
{ let x: Int <- 1 in
x; }
X,
}

e Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example

let|x:| Int <- 0 in
{

X,
{ let x: Int <- 1 in

x; } >

X/

e Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example

let|x:| Int <- 0 in
{
X;
{ let x: Int <- 1 in
x;|} 7
X; which definition of x is used?
}

e Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example

let|x:| Int <- 0 in
{

{ let|x:| Int <- 1 in

x;| }

e Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example

let|x:| Int <- 0 in
{
X;
{ let|x:| Int <- 1 in
x;|} 7
X;
} which definition of x is used?

e Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example

let|x:||Int <- 0 in
{

{ let|x:| Int <- 1 in

x;| }

e Recall static scoping = uses of x refer to the closest enclosing
definition

Static Scoping Example

let|x:||Int <- 0 in

{

Int <- 1 in
}

-
Redefining a variable like x

)

called “ X

.

\

in this example is sometimes

Y,

e Recall static scoping = uses of x refer to the closest enclosing

definition

Scope in Cool

e Coolidentifier bindings are introduced by

Scope in Cool

e Coolidentifier bindings are introduced by

O

O O O O O

Class declarations (introduce class names)

Method definitions (introduce method names)

Let expressions (introduce object ids)

Formal parameters (introduce object ids)

Attribute definitions in a class (introduce object ids)
Case expressions (introduce object ids)

Implementing the Most-Closely Nested Rule

Implementing the Most-Closely Nested Rule

e Many (but not all) semantic analyses can be expressed as
recursive descent over the AST, including static scoping

Implementing the Most-Closely Nested Rule

e Many (but not all) semantic analyses can be expressed as
recursive descent over the AST, including static scoping
o Processan AST noden

Implementing the Most-Closely Nested Rule

e Many (but not all) semantic analyses can be expressed as
recursive descent over the AST, including static scoping
o Processan AST noden
o Process the childrenofn

Implementing the Most-Closely Nested Rule

e Many (but not all) semantic analyses can be expressed as
recursive descent over the AST, including static scoping
o Processan AST noden
o Process the childrenofn
o Finish processing the AST node n

Implementing the Most-Closely Nested Rule

e Many (but not all) semantic analyses can be expressed as
recursive descent over the AST, including static scoping
o Processan AST noden
o Process the childrenofn
o Finish processing the AST node n

e Example: the scope of let bindings is one subtree

Implementing the Most-Closely Nested Rule

e Many (but not all) semantic analyses can be expressed as
recursive descent over the AST, including static scoping
o Processan AST noden
o Process the childrenofn
o Finish processing the AST node n

e Example: the scope of let bindings is one subtree
o consider:

let x: Int <- 0 in e

Implementing the Most-Closely Nested Rule

e Many (but not all) semantic analyses can be expressed as
recursive descent over the AST, including static scoping
o Processan AST noden
o Process the childrenofn
o Finish processing the AST node n

e Example: the scope of let bindings is one subtree
o consider:

let x: Int <- 0 in e

o X canbe used in exactly the AST subtree corresponding to e

Symbol Tables

e Consideragain: let x: Int <- 0 in e

Symbol Tables

e Consideragain: let x: Int <- 0 in e
o |dea:

Symbol Tables

e Consideragain: let x: Int <- 0 in e
e |dea:
o before processinge, definition of x to the current
definitions, overriding any other definition of x

Symbol Tables

e Consideragain: let x: Int <- 0 in e

e |dea:
o before processinge, definition of x to the current

definitions, overriding any other definition of x
o after processing e, remove the definition of x and restore the
old definition of x

Symbol Tables

e Consideragain: let x: Int <- 0 in e
e Idea:
o before processinge, definition of x to the current
definitions, overriding any other definition of x
o after processing e, remove the definition of x and restore the
old definition of x
e Asymbol tableis a data structure that tracks the current
of identifiers in this manner

Symbol Tables

e Consideragain: let x: Int <- 0 in e
e Idea:
o before processinge, definition of x to the current
definitions, overriding any other definition of x
o after processing e, remove the definition of x and restore the
old definition of x
e Asymbol tableis a data structure that tracks the current
of identifiers in this manner
o You'll need to make one for PA2
o OCaml’s Hashtbl is specifically designed to be a symbol table

Scope in Cool (continued)

e Not all kinds of identifiers follow the most-closely nested rule

Scope in Cool (continued)

e Not all kinds of identifiers follow the most-closely nested rule
e For example, class definitions in Cool:

o Cannot be nested

o Are throughout the program

Scope in Cool (continued)

e Not all kinds of identifiers follow the most-closely nested rule
e For example, class definitions in Cool:

o Cannot be nested

o Are throughout the program
e Inother words, a class name can be used before it is defined

Cool UBD example (classes):
Scope in Cool (continued)

class Foo {

. . . . let y : Test in ...
e Not all kinds of identifiers follow t] ;

e For example, class definitions in Cq
o Cannot be nested o
o Are througho(} ;

class Test {

e Inother words, a class name can be used before it is defined

Scope in Cool (continued)

e Not all kinds of identifiers follow the most-closely nested rule
e For example, class definitions in Cool:
o Cannot be nested
o Are throughout the program
e Inother words, a class name can be used before it is defined
e Attribute names are global within the class where they are defined

Cool UBD example (attributes):
Scope in Cool (continued)

class Foo {

: : : £(): Int { tm };
e Not all kinds of identifiers follow t| . Inf: <- 0;

e For example, class definitionsin Cq}
o Cannot be nested

o Are throughout the program
e Inother words, a class name can be used before it is defined
e Attribute names are global within the class where they are defined

Scope in Cool (continued)

e Not all kinds of identifiers follow the most-closely nested rule
e For example, class definitions in Cool:
o Cannot be nested
o Are throughout the program
e Inother words, a class name can be used before it is defined
e Attribute names are global within the class where they are defined
e Methods and attribute names have complex rules

Scope in Cool (continued)

e Not all kinds of identifiers follow the most-closely nested rule
e For example, class definitions in Cool:
o Cannot be nested
o Are throughout the program
e Inother words, a class name can be used before it is defined
e Attribute names are global within the class where they are defined
e Methods and attribute names have complex rules
o E.g.,amethod canbe defined in a parent class rather thanin
the class wherein it is used! ()

Scope in Cool (continued)

e Not all kinds of identifiers follow the most-closely nested rule
e For example, class definitions in Cool:
o Cannot be nested
o Are throughout the program
e Inother words, a class name can be used before it is defined
e Attribute names are global within the class where they are defined
e Methods and attribute names have complex rules
o E.g.,amethod canbe defined in a parent class rather thanin
the class wherein it is used! ()
o Methods may also be redefined (overridden)

Class Definitions

e We know that class names can be used before being defined

Class Definitions

e We know that class names can be used before being defined
e Canwe check this property with a symbol table?
o Why or why not?

Class Definitions

e We know that class names can be used before being defined
e Canwe check this property with a symbol table?
o Why or why not?
o We cannot: the symbol table relies on the locality of the
scoping rules

Class Definitions

e We know that class names can be used before being defined
e Canwe check this property with a symbol table?
o Why or why not?
o We cannot: the symbol table relies on the locality of the
scoping rules
e Solution:

Class Definitions

e We know that class names can be used before being defined
e Canwe check this property with a symbol table?

o Why or why not?

o We cannot: the symbol table relies on the locality of the

scoping rules

e Solution:

o Pass 1: collect all class names

o Pass 2:do the checking

Class Definitions

e We know that class names can be used before being defined
e Canwe check this property with a symbol table?
o Why or why not?
o We cannot: the symbol table relies on the locality of the
scoping rules
e Solution:
o Pass 1: collect all class names
o Pass 2:do the checking
e Inother words, semantic analysis often requires multiple passes
o commonly more than two!

Class Definitions

e We know that class names can be used before being defined
e Canwe check this property with a symbol table?

o Why or why not?

o We cannot: the symbol table relies on the locality of the

scoping rules (For PA2, use R
e Solution: -we aren't
o Pass 1: collect all class names | €valuating you on efficiency,
\ but on correctness. y

o Pass 2:do the checking
e Inother words, semantic analysis often requires multiple passes
o commonly more than two!

Trivia Break:

Today’s Agenda

e Overview of the role of semantic analysis in a compiler
e Scoping and symbol tables
e Introduction to types

What is a type system, anyway?

What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

What is a type system, anyway?

(A type can also
encode the set of
on

\

\Values of that type

Definition: a type system is a set of rules that give every program

element a type, which is an upper bound on the set of possible values

that that element can take on at run time

What is a type system, anyway?

(A type can also
encode the set of
on

\

\Values of that type

Definition: a type system is a set of rules that give every program

element a type, which is an upper bound on the set of possible values

that that element can take on at run time

e goal of atype system: prevent errors at run time due to

unexpected values

What is a type system, anyway?

(A type can also
encode the set of
on

\

\Values of that type

Definition: a type system is a set of rules that give every program

element a type, which is an upper bound on the set of possible values

that that element can take on at run time

e goal of atype system: prevent errors at run time due to

unexpected values

e type theory isthe discipline of math (yes!) that studies the formal

properties of type systems

What is a type system, anyway?

(A type can also
encode the set of
on

\Values of that type

\

Definition: a type system is a set of rules that give every program

element a type, which is an upper bound on the set of possible values

that that element can take on at run time

e goal of atype system: prevent errors at run time due to

unexpected values

e type theory isthe discipline of math (yes!) that studies the formal

properties of type systems

e most programming languages include some kind of type system

o exceptions: assembly, Lisp, a few others

Why Do We Need Type Systems?

e Consider the following fragment of assembly:

add rl <- r2 + r3

Why Do We Need Type Systems?

e Consider the following fragment of assembly:

add rl <- r2 + r3

e Whatarethetypesofrl, r2,and £3?

Why Do We Need Type Systems?

e Consider the following fragment of assembly:

add rl <- r2 + r3

e Whatarethetypesofrl, r2,and £3?
o e.g.,aretheyintegersinthe program?

Why Do We Need Type Systems?

e Consider the following fragment of assembly:

add rl <- r2 + r3

e Whatarethetypesofrl, r2,and £3?
o e.g.,aretheyintegersinthe program? Are they pointers and
offsets?

Why Do We Need Type Systems?

e Consider the following fragment of assembly:

add rl <- r2 + r3

e Whatarethetypesofrl, r2,and £3?
o e.g.,aretheyintegersinthe program? Are they pointers and
offsets? If so, to data or to other code?

Why Do We Need Type Systems?

e Consider the following fragment of assembly:

add rl <- r2 + r3

e Whatarethetypesofrl, r2,and £3?
o e.g.,aretheyintegersinthe program? Are they pointers and
offsets? If so, to data or to other code?
e Regardless of their logical types, all of these have the same
assembly language implementation!

Why Do We Need Type Systems?

e Consider the following fragment of assembly:

add rl <- r2 + r3

e Whatarethetypesofrl, r2,and £3?
o e.g.,aretheyintegersinthe program? Are they pointers and
offsets? If so, to data or to other code?
e Regardless of their logical types, all of these have the same
assembly language implementation!
o one goal of typechecking: prevent mixing these up

Primary Goal of Type Systems

e Alanguage’s type system specifics which operations are valid for
which types

Primary Goal of Type Systems

e Alanguage’s type system specifics which operations are valid for
which types

e Theprimary goal of typechecking is to ensure that operations are
only used on the correct types

Primary Goal of Type Systems

e Alanguage’s type system specifics which operations are valid for
which types

e Theprimary goal of typechecking is to ensure that operations are
only used on the correct types
o This enforces the intended interpretation of values, which
fundamentally all look the same to the machine
m i.e., everythingis abit string at the machine code level...

Primary Goal of Type Systems

e Alanguage’s type system specifics which operations are valid for
which types
e Theprimary goal of typechecking is to ensure that operations are
only used on the correct types
o This enforces the intended interpretation of values, which
fundamentally all look the same to the machine
m i.e., everythingis abit string at the machine code level...
e A type system provides a concise for a set of
semantic checking rules

What Kinds of Errors Can A Type System Detect?

What Kinds of Errors Can A Type System Detect?

e Memory errors:
o Reading from an invalid pointer,
etc.

What Kinds of Errors Can A Type System Detect?

e Memory errors:
o Reading from an invalid pointer,
etc.
e |[nvalid operations
o e.g.,calling “meow()” on a Dog

What Kinds of Errors Can A Type System Detect?

class FileSystem ({

. :
Memory errors: open (x: String) : File {

o Reading from an invalid pointer,
etc. }

e |[nvalid operations
o e.g.,calling “meow()” on a Dog

e Violations of abstraction boundaries .
class Client {

o e.g.,-> f(fs : FileSystem) {
File fd <- fs.open(“foo”)

} --fcannot see inside fd!
}

What Kinds of Errors Can A Type System Detect?

class FileSystem ({

. :
Memory errors: open (x: String) : File {

o Reading from an invalid pointer,
etc. }

e |nvalid operations y

o e.g.,calling “meow()” on a Dog

e Violations of abstraction boundaries .
class Client {

o e.g.,-> f(fs : FileSystem) {

e ..and arbitrarily-complex other File fd <- fs.open(“foo”)
properties (wait for pluggable types
lecture later) }

} --fcannot see inside fd!

Kinds of type systems

e Static vs dynamic checking

Kinds of type systems

e Static vs dynamic checking
o statically typed languages have their types checked before the
program runs, typically at compile time

Kinds of type systems

e Static vs dynamic checking
o statically typed languages have their types checked before the
program runs, typically at compile time
m shares advantages/disadvantages with other static analyses

Kinds of type systems

e Static vs dynamic checking
o statically typed languages have their types checked before the
program runs, typically at compile time
m shares advantages/disadvantages with other static analyses
o dynamically typed languages have their types checked at run
time, typically by a special interpreter or language runtime

Kinds of type systems

e Static vs dynamic checking
o statically typed languages have their types checked before the
program runs, typically at compile time
m shares advantages/disadvantages with other static analyses
o dynamically typed languages have their types checked
, typically by a special interpreter or language runtime
m shares advantages/disadvantages with other dynamic
analyses

\

[Dynamic typing is sometimes

Kinds of type systems | called
e ‘“if it walks like a duck and

, . , quacks like a duck, you can
e Static vs dynamic checking et b 2@ 5 U

o statically typed languages havgenen—rrpmmmﬂg

program runs, typically at compile time

m shares advantages/disadvantages with other static analyses
o dynamically typed languages have their types checked

, typically by a special interpreter or language runtime
m shares advantages/disadvantages with other dynamic
analyses

Static vs dynamic types

e Both are common in practice

Static vs dynamic types

e Both are common in practice
o examples of each?

Static vs dynamic types

e Both are common in practice
o examples of each?
m Static: Java, C, Rust, OCaml, TypeScript, etc.
m Dynamic: Python, Ruby, JavaScript, etc.

Static vs dynamic types

e Both are common in practice
o examples of each?
m Static: Java, C, Rust, OCaml, TypeScript, etc.
m Dynamic: Python, Ruby, JavaScript, etc.
° about the benefits

Static vs dynamic types

e Both are common in practice
o examples of each?
m Static: Java, C, Rust, OCaml, TypeScript, etc.
m Dynamic: Python, Ruby, JavaScript, etc.
° about the benefits
o Benefits of static typing:
m 777

o Benefits of dynamic typing:
m 77

Static vs dynamic types

e Both are common in practice
o examples of each?
m Static: Java, C, Rust, OCaml, TypeScript, etc.
m Dynamic: Python, Ruby, JavaScript, etc.
° about the benefits
o Benefits of static typing:
m ecarly detection of errors, types are documentation
o Benefits of dynamic typing:
m faster prototyping, no false positives

(Most “production” code A

Static vs dynamic types | writtenin astatically-typed
language with escape hatches

e e.g., unsafecastsinC,

\ native methods in Java)

e Both are common in practice
o examples of each?
m Static: Java, C, Rust, OCaml, TypeScript, etc.
m Dynamic: Python, Ruby, JavaScript, etc.
° about the benefits
o Benefits of static typing:
m ecarly detection of errors, types are documentation
o Benefits of dynamic typing:
m faster prototyping, no false positives

Other ways type systems differ

Other ways type systems differ

e Implicit vs explicit

Other ways type systems differ

e Implicit vs explicit
o “doyou write the types yourself”
o almost all mainstream, static languages are explicit

Other ways type systems differ

e Implicit vs explicit

o “doyou write the types yourself”

o almost all mainstream, static languages are explicit
e Strength of the type system

o not all type systems can prove the same properties

Other ways type systems differ

e Implicit vs explicit
o “doyou write the types yourself”
o almost all mainstream, static languages are explicit
e Strength of the type system
o not all type systems can prove the same properties
o e.g., Kotlin , but Java
doesn’t (both compile to Java bytecode)

Other ways type systems differ

e Implicit vs explicit
o “doyou write the types yourself”
o almost all mainstream, static languages are explicit
e Strength of the type system
o not all type systems can prove the same properties
o e.g., Kotlin , but Java
doesn’t (both compile to Java bytecode)
o stronger types can be added to a language (ask me more)
m thisis “pluggable types” from a few slides ago...

Cool Types

Cool Types

e Only two kinds:
o Class names
o SELF_TYPE

Cool Types

e Only two kinds:
o Class names

o SELF _TYPE
e There are no unboxed base types (like e.g., int in Java)

Cool Types

e Only two kinds:
o Class names
o SELF TYPE
e There are no unboxed base types (like e.g., int in Java)
e The user must declare a type for all identifiers
o ‘“declare” here is just a fancy way to say “write down by hand”

Cool Types

e Only two kinds:
o Class names
o SELF TYPE
e There are no unboxed base types (like e.g., int in Java)
e The user must declare a type for all identifiers
o ‘“declare” here is just a fancy way to say “write down by hand”
e Thecompiler then types for expressions
o for every expression!
o Java, C, C++, etc, do this too

Aside: Typechecking vs. Type Inference

Aside: Typechecking vs. Type Inference

Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Aside: Typechecking vs. Type Inference
Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Definition: Type Inference is the process of selecting consistent types for
a program, which typically is not fully annotated.

Aside: Typechecking vs. Type Inference
Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Definition: Type Inference is the process of selecting consistent types for
a program, which typically is not fully annotated.

e These two concepts are closely related, but subtly different

Aside: Typechecking vs. Type Inference
Definition: Typechecking is the process of verifying that the types in a
fully-annotated program are consistent.

Definition: Type Inference is the process of selecting consistent types for
a program, which typically is not fully annotated.

e These two concepts are closely related, but subtly different
o Whichdoyou think is harder?

Rules of Inference

e |exers and parsers have formal notations that specify how they
work

Rules of Inference

e |exers and parsers have formal notations that specify how they
work
o Regexps/DFAs (lexer), context-free grammars (parser)

Rules of Inference

e |exers and parsers have formal notations that specify how they

work
o Regexps/DFAs (lexer), context-free grammars (parser)
e The appropriate formalism for typechecking is logical rules of

inference

Rules of Inference

e |exers and parsers have formal notations that specify how they
work
o Regexps/DFAs (lexer), context-free grammars (parser)
e The appropriate formalism for typechecking is logical rules of
inference
e Why? Arule of inference has the form:
o “if Hypothesis is true, then Conclusion is true”

Rules of Inference

e |exers and parsers have formal notations that specify how they
work
o Regexps/DFAs (lexer), context-free grammars (parser)
e The appropriate formalism for typechecking is logical rules of
inference
e Why? Arule of inference has the form:
o “if Hypothesis is true, then Conclusion is true”
e Typechecking computes via similar reasoning:
o ‘IfE,and E, have certain types, then E , has a certain type”

Rules of Inference

\
Lexers and parsers have f You can think of rules of inference

as a compact notation for If-Then

work statements/conditionals
o Regexps/DFAs (lexer), y,

e The appropriate formalism for typechecking is logical rules of
inference
e Why? Arule of inference has the form:
o “if Hypothesis is true, then Conclusion is true”
e Typechecking computes via similar reasoning:
o ‘IfE,and E, have certain types, then E , has a certain type”

English to Inference Rules

e We'll start with a simplified system and gradually add features
o | promise the notation is easy to read (with practice)

English to Inference Rules

e We'll start with a simplified system and gradually add features
o | promise the notation is easy to read (with practice)

e Building blocks:
o /is“and”

English to Inference Rules

e We'll start with a simplified system and gradually add features
o | promise the notation is easy to read (with practice)

e Building blocks:
o /is“and”
o ->is‘“if-then”

English to Inference Rules

e We'll start with a simplified system and gradually add features
o | promise the notation is easy to read (with practice)
e Building blocks:
o /is“and”
o ->is‘“if-then”
o X:Tis“xhastypeT”

English to Inference Rules

(Building blocks:
e /\is“and”
e ->is‘“if-then”

_

\

o x:Tis“xhastypeT”

J

English to Inference Rules

If e, has type Int and e, has type Int,
thene, +e, has type Int

(Building blocks:
e /\is“and”
e ->is‘“if-then”

_

\

o x:Tis“xhastypeT”

J

English to Inference Rules

If e, has type Int and e, has type Int,
thene, +e, has type Int

'

(e, has type Int /\ e, has type Int) ->
e, +e, hastype Int

(Building blocks:
e /\is“and”
e ->is‘“if-then”

_

o x:Tis“xhastypeT”

\

J

(Building blocks:)

English to Inference Rules e /is“and”
e ->ijs‘if-then”

o x:Tis“xhastypeT”
_ J

If e, has type Int and e, has type Int,
thene, +e, has type Int

'

(e, has type Int /\ e, has type Int) ->
e, +e, hastype Int

'

(e1: IntAe,:Int)->e +e,:Int

(Building blocks:)

English to Inference Rules e /is“and”
e ->ijs‘if-then”

o x:Tis“xhastypeT”
_ J

If e, has type Int and e, has type Int,
thene, +e, has type Int

'

(e, has type Int /\ e, has type Int) ->
e, +e, hastype Int

'

(e1: IntAe,:Int)->e +e,:Int

(Building blocks:)

English to Inference Rules e /is“and”
e ->ijs‘if-then”
o Xx:Tis“xhastypeT”

If e, has type Int and e, has type Int,

thene, +e, has type Int \- /
Traditional notation
i (same meaning!):
(e, has type Int A\ e, has type Int) -> ~e,:Int e, :Int
e, +e, hastype Int e, +e,Int

'

(e1: IntAe,:Int)->e +e,:Int

(Building blocks:)

English to Inference Rules e /is“and”
e ->ijs‘if-then”
o Xx:Tis“xhastypeT”

If e, has type Int and e, has type Int,

thene, +e, has type Int \-)
Traditional notation
i (same meaning!):
(e, has type Int A\ e, has type Int) -> ~e,:Int e, :Int
e, +e, hastype Int -4, +e,:Int

Pronounced “we can prove that...”
(e1 IntN\e,: Int) -> e, +e,:Int

Inference Rule Examples

Inference Rule Examples

i is any integer
% Int constant

[Add] : [Int]
Pe1+e2:Int =i Int

Inference Rule Examples

i is any integer
% Int constant

[Add] : [Int]
Pe1+e2:Int =i Int

e Theserules give templates describing how to type integers and +
expressions

Inference Rule Examples

i is any integer

-e, :Int ~e,:Int constant
[Add] [Int]
-e,+e,Int ~i:lInt
e Theserules give describing how to type integers and +
expressions
e By fillinginthe templates, we can produce for

expressions

Inference Rule Examples

i is any integer

-e, :Int ~e,:Int constant
[Add] [Int]
-e,+e,Int ~i:lInt
e Theserules give describing how to type integers and +
expressions
e By fillinginthe templates, we can produce for

expressions
e Note that we can fill the template with any expression!

Inference Rule Examples

Valid use of the [Add] rule: . ,
I IS any integer
constant

1] : [Int]
~false:Int ~true:Int ~i:Int

~false + true: Int describing how to type integers and +

EXPressions

e By fillinginthe templates, we can produce for
expressions

e Note that we can fill the template with any expression!

Baby’s First Type Derivation

~1+2:Int

on the whiteboard...

Course Announcements

e My OH this week are modified:

o no OH this afternoon (faculty meeting)
e Don'’t forget: PA2c1 is due Friday

o thisis atesting assignment: you'll just write Cool programs
e PA1 grades will come out “soon”

