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class Count {
  i : Int <- 0;
  inc() : Count {
    {
      i <- i + 1;
      self;
    }
  };
};

class Stock inherits Count {
     name() : String { … }; 
   };

class Main {
     a : Stock <- (new Stock).inc();

 … a.name() …
   }; without SELF_TYPE, the type rules 

will cause a typechecking error 
here, because inc() returns a 
Count (not a Stock)
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Recall: SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count
○ In the case of (new Stock).inc() , the type is Stock

● We introduce the keyword SELF_TYPE to use for the return value 
of such functions
○ We will need to modify the type rules to handle SELF_TYPE
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● Recall the operations that we’ve defined over types:
○ subtyping: T

1
 ≤ T

2

○ least upper bound: lub(T
1

, T
2

)
● To handle SELF_TYPE properly, we need to extend these 

operations to handle it
○ need to consider all four combinations of SELF_TYPE and 

“normal” types (cf. Punnett squares)
○ see last lecture’s slides for the details on how we did this
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Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we 
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

● This leads to a new typing judgment form:

Γ, 𝚳, C ⊢ e
 
: T

● Read as “An expression e occurring in the body of C has static type 
T given a variable type environment Γ and method signatures 𝚳”
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● The next step is to design type rules that account for SELF_TYPE 
for each language construct

● Most of these rules are the same as the rules without SELF_TYPE, 
except that ≤ and lub are the new versions with SELF_TYPE 
support; only change is to pass through the enclosing class

● E.g.,:

Γ, 𝚳, C ⊢ e
1

 : T
1

  Γ(id) = T
0  

   T
1

 ≤ T
0

           Γ, 𝚳, C ⊢ id <- e
1

 : T
1

[Assign]
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● The rules for dispatch need to change. We modify the old dispatch 
rule:
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Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T, 

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the 

class in which the method body appears
○ Note: not the class in which the call site appears!

● The static dispatch class cannot be SELF_TYPE
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New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

● There are a number of other places in the rules where SELF_TYPE 
appears - read the CRM carefully

           Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

         Γ, 𝚳, C ⊢ new SELF_TYPE : SELF_TYPE
C

[New-Self]
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Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!
○ What would go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; }; 
class B inherits A {
  b() : int { ... };
  comp(y : SELF_TYPE) : Bool { ... y.b() ...}; }; 
...
let x : A <- new B in ... x.comp(new A); ... 
...
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Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work. 
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used 
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current 
class
○ The exception is the typechecking of dispatch.
○ SELF_TYPE as the return type in an invoked method might have 

nothing to do with the current class
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Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any 

“bad” programs
○ but at the cost of additional complexity

● SELF_TYPE itself isn’t that important
○ although you have to get it right for PA2…

● But it is illustrative of a class of ideas that trade-off expressiveness 
for complexity
○ and gives you a taste of how this works in practice!
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Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment
○ There is a tradeoff between safety and flexibility
○ There is another tradeoff between expressiveness and 

complexity
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Trivia Break: Computer Science

This prolific Hungarian-American was a professor at Princeton, and 
lived in New Jersey from 1933 until his death. He made major 
contributions to multiple fields, including mathematics, physics, 
economics, and computer science. While he is the inventor of the 
merge sort algorithm, he is best known in computing for the 
architecture named after him (despite the fact that he did not 
directly invent it - J. Presper Eckert and John Mauchly did, while 
working on the ENIAC), which is the basis for the architecture of 
most modern digital computers. 



Trivia Break: Holidays

This holiday, typically occurring sometime in February or March, 
marks the final day of new year celebrations in a widely-used lunar 
calendar. It is always celebrated during the full moon. As early as two 
millennia ago, it had become a festival of great significance. The day 
is traditionally marked by the consumption of tangyuan, a traditional 
dessert made of glutinous rice shaped into balls; and by the releasing 
of paper lanterns, which are typically red to symbolize good luck.
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Course Status

● We have finished all the material that you need for PA2
○ though next week we’ll do a more in-depth discussion of other 

kinds of static analysis
● For the rest of this week, we’ll focus on how code actually gets 

executed
○ today: basics of run-time organization
○ Wednesday: formal description of how a program actually runs 

(operational semantics)
● Goal of all of this: make sure you have the foundation for PA3

○ (also, operational semantics + type rules are closely related)
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Run-time Environments

● Before discussing code execution, we need to understand what we 
are trying to execute

● There are a number of standard techniques that are widely used 
for structuring executable code

● Standard Way:
○ Code 
○ Stack 
○ Heap
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Run-time Resources

● Execution of a program is initially under the control of the 
operating system

● When a program is invoked:
○ The OS allocates space for the program
○ The code of the program is loaded into some part of that space
○ The OS jumps to the entrypoint (i.e., “main”)

● How does “space” work?
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● An address space is a partial mapping from addresses to values. Like 
a big array: the value at memory address 0x12340000 might be 87. 
Partial means some addresses may be invalid.

● There is an address space associated with the physical memory in 
your computer. If you have 1GB of RAM, addresses 0 to 
0x40000000 are valid.

● If I want to store some information on MachineX and you want to 
store other information on MachineX, we would have to collude to 
use different physical addresses (= different parts of the address 
space).



Space: Virtual Memory 2 (OS/Arch review?)

● Virtual memory is an abstraction in which each process gets its own 
virtual address space. The OS and hardware work together to 
provide this abstraction. All modern general computers use it.



Space: Virtual Memory 2 (OS/Arch review?)

● Virtual memory is an abstraction in which each process gets its own 
virtual address space. The OS and hardware work together to 
provide this abstraction. All modern general computers use it.

● Each virtual address space is then mapped separately into a 
different part of physical memory. (simplification)



Space: Virtual Memory 2 (OS/Arch review?)

● Virtual memory is an abstraction in which each process gets its own 
virtual address space. The OS and hardware work together to 
provide this abstraction. All modern general computers use it.

● Each virtual address space is then mapped separately into a 
different part of physical memory. (simplification)

● So Process1 can store information at its virtual address 0x4444 
and Process2 can also store information at its virtual address 
0x4444 and there will be no overlap in physical memory.
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● Virtual memory is an abstraction in which each process gets its own 
virtual address space. The OS and hardware work together to 
provide this abstraction. All modern general computers use it.

● Each virtual address space is then mapped separately into a 
different part of physical memory. (simplification)

● So Process1 can store information at its virtual address 0x4444 
and Process2 can also store information at its virtual address 
0x4444 and there will be no overlap in physical memory.
○ e.g., P1 0x4444 virtual -> 0x1000 physical
○ and P2 0x4444 virtual -> 0x8000 physical
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high addresses
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a program’s 
virtual 
memory:
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Notes on How I’ve Presented This

● Our pictures of machine organization have:
○ Low address at the top
○ High address at the bottom
○ Lines delimiting areas for different kinds of data

● These pictures are simplifications
○ e.g., not all memory need be contiguous

● In some textbooks lower addresses are at bottom (doesn't 
matter)



“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”



“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”

● A compiler is responsible for:
○ generating code (that will be run later)
○ orchestrating use of this data space



“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”

● A compiler is responsible for:
○ generating code (that will be run later)
○ orchestrating use of this data space

● An interpreter only has to:
○ directly execute the code
○ manage the program’s run-time data itself



“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”

● A compiler is responsible for:
○ generating code (that will be run later)
○ orchestrating use of this data space

● An interpreter only has to:
○ directly execute the code
○ manage the program’s run-time data itself

● Of these two, the compiler’s task is much harder: the compiler 
must predict the program’s behavior to do it right!
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Code Execution Goals

● We have two goals when generating code to execute:
○ Correctness
○ Speed

● Which of these matters more?
○ Correctness! First rule of compilers…

● Most complications in run-time organization, though, come from 
trying to be both fast and correct
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Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one 
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually 
returns to the point immediately after the call

● Do these assumptions always hold?
○ Of course not! But, they’re useful simplifications and hold 

enough of the time that we can use them.
○ Examples violating (1): scheduler, having more than one CPU
○ Examples violation (2): exceptions, kill signals
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Activations

Definition: Each invocation of some procedure P is an activation of P
● The lifetime of an activation of P is all the steps to activate P

○ including all the steps of procedures that P calls, and that 
those procedures call, etc.

● We also will discuss lifetimes of variables. 
○ The lifetime of a variable x is the portion of execution during 

which x is defined.
● Note the relation with scope: scope is static, lifetimes are 

dynamic
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Activation Trees

● Assumption (2) requires that 
when P calls Q, then Q 
returns before P does
○ That is, that the lifetimes 

of procedure activations 
are properly nested

● As a result, we can depict 
activation lifetimes as a tree

● Example ->

class Main {
  g() : Int { 1 };
  f() : Int { g() };
  main() : Int {{ g(); f(); }};
};

main()

g() f()

g()



Activation Trees: Another Example

● What’s the activation tree for this example?

class Main {
  g() : Int { 1 };
  f(x : Int) : Int { 

if x = 0 then g() else f(x - 1) fi
  };
  main() : Int {{ f(3); }};
};

(on the whiteboard)
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● The activation tree depends on run-time behavior
○ The activation tree may be different for every program input

● Since activations are properly nested, a stack can track currently 
active procedures
○ This is the call stack
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Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
  g() : Int { 1 };
  f() : Int { g() };
  main() : Int {{ g(); f(); }};
};

Stack

main()

f()

g()



Revised Memory Layout

code

low addresses
0x00000000

high addresses
0x40000000

a program’s 
virtual 
memory:

other space



Revised Memory Layout

code

low addresses
0x00000000

high addresses
0x40000000

a program’s 
virtual 
memory:

stack
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Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G) 
■ sometimes also called the frame pointer

● Machine status prior to calling G
○ Local variables
○ Register and program counter contents

● Other temporary values
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Revisiting An Example

class Main {
  g() : Int { 1 };
  f(x : Int) : Int { 

if x = 0 
  then g() 
  else f(x - 1) (**) 
fi

  };
  main() : Int {{ 
    f(3); (*) }};
};

return address

control link

argument

space for result

AR for f:



Revisiting An Example: Stack after 2 Calls to f()

class Main {
  g() : Int { 1 };
  f(x : Int) : Int { 

if x = 0 
  then g() 
  else f(x - 1) (**) 
fi

  };
  main() : Int {{ 
    f(3); (*) }};
};

(**)

2

result

(*)

3

result

main()’s AR:

f()’s AR

f()’s AR
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Notes on The Example

● main() has no argument or local variables and its result is “never” 
used; its AR is uninteresting

● (*) and (**) are return addresses of the invocations of f
○ The return address is where execution resumes after a 

procedure call finishes
● This is only one of many possible AR designs

○ Would also work for C, Pascal, FORTRAN, etc.
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The Main Point

The compiler must determine, at compile- 
time, the layout of activation records and 

generate code that, when executed at run- 
time, correctly accesses locations in those 

activation records.

Thus, the AR layout and the compiler must be 
designed together!
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Discussion

● The advantage of placing the return value first in a frame is that 
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently
○ An organization is better if it improves execution speed or 

simplifies code generation
■ This is an important tradeoff! On an embedded device 

with fixed software, you might make different choices!

● Real compilers hold as much of 
the frame as possible in registers
○ Especially method result and 

arguments
● Why?
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Globals

● All references to a global variable must point to the same object
○ Can’t really store a global in an activation record

● Globals are assigned a fixed address once
○ Variables with fixed address are “statically allocated”

● Depending on the language, there may be other statically 
allocated values
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Heap Storage

● A value that outlives the procedure that creates it cannot be kept 
in the AR, even if it’s not a global
○ e.g., foo : Bar () { new Bar };

■ this Bar value must survive deallocation of foo’s AR
● Languages with dynamically-allocated data (such as Cool!) use a 

heap to store such dynamic data
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them grow towards each other



Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses 
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

● Both the stack and the heap grow
● Compilers must take care that 

they don’t grow into each other!
● Solution: start heap and stack at 

opposite ends of memory, let 
them grow towards each other



Memory Layout with Heap

code

low addresses

high addresses

a program’s 
virtual 
memory:

stack

static data

heap



Your Own Heap

● In PA3, you’ll need to emit assembly code for things like:

let x = new Counter(5) in
let y = x in {
  x.increment(1);
  out_int( y.getCount() ); // what does this print?
}



Your Own Heap

● In PA3, you’ll need to emit assembly code for things like:

let x = new Counter(5) in
let y = x in {
  x.increment(1);
  out_int( y.getCount() ); // what does this print?
}

● You’ll need to use and manage an explicit heap (introduced today 
and covered in more detail in later lectures). A heap maps 
addresses (i.e., integers) to values.



Course Announcements

● PA2c2 due next Monday
○ requires typechecking + semantic analysis of everything but 

expressions
○ if you haven’t started yet, I’m worried for you
○ don’t forget that you can work in pairs!

■ I strongly recommend this option
■ it’s not too late to pair up, even if both of you have started 

independently


