
Cool Typechecking and
Runtime Organization

Martin Kellogg

Agenda

● Finish discussion of SELF_TYPE
● Object Lifetimes
● Activation Records
● Stack Frames

Agenda

● Finish discussion of SELF_TYPE
● Object Lifetimes
● Activation Records
● Stack Frames

Recall: Why Do We Want SELF_TYPE?

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

Recall: Why Do We Want SELF_TYPE?

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

class Stock inherits Count {
 name() : String { … };
 };

Recall: Why Do We Want SELF_TYPE?

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

class Stock inherits Count {
 name() : String { … };
 };

class Main {
 a : Stock <- (new Stock).inc();

 … a.name() …
 };

Recall: Why Do We Want SELF_TYPE?

class Count {
 i : Int <- 0;
 inc() : Count {
 {
 i <- i + 1;
 self;
 }
 };
};

class Stock inherits Count {
 name() : String { … };
 };

class Main {
 a : Stock <- (new Stock).inc();

 … a.name() …
 }; without SELF_TYPE, the type rules

will cause a typechecking error
here, because inc() returns a
Count (not a Stock)

Recall: SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

Recall: SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count
○ In the case of (new Stock).inc() , the type is Stock

Recall: SELF_TYPE to the Rescue

● We will extend the type system
○ That is, make it more expressive

● Insight:
○ inc returns “self”
○ therefore the return value will be the same type as “self”
○ which could be Count or any subtype of Count
○ In the case of (new Stock).inc() , the type is Stock

● We introduce the keyword SELF_TYPE to use for the return value
of such functions
○ We will need to modify the type rules to handle SELF_TYPE

Recall: Typechecking SELF_TYPE (properly)

● Recall the operations that we’ve defined over types:
○ subtyping: T

1
 ≤ T

2

○ least upper bound: lub(T
1

, T
2

)

Recall: Typechecking SELF_TYPE (properly)

● Recall the operations that we’ve defined over types:
○ subtyping: T

1
 ≤ T

2

○ least upper bound: lub(T
1

, T
2

)
● To handle SELF_TYPE properly, we need to extend these

operations to handle it

Recall: Typechecking SELF_TYPE (properly)

● Recall the operations that we’ve defined over types:
○ subtyping: T

1
 ≤ T

2

○ least upper bound: lub(T
1

, T
2

)
● To handle SELF_TYPE properly, we need to extend these

operations to handle it
○ need to consider all four combinations of SELF_TYPE and

“normal” types (cf. Punnett squares)
○ see last lecture’s slides for the details on how we did this

Type Rules for SELF_TYPE

Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

● This leads to a new typing judgment form:

Γ, 𝚳, C ⊢ e

: T

Type Rules for SELF_TYPE

● Since occurrences of SELF_TYPE depend on the enclosing class, we
need to carry more context during typechecking
○ In particular, we need to add the enclosing class!

● This leads to a new typing judgment form:

Γ, 𝚳, C ⊢ e

: T

● Read as “An expression e occurring in the body of C has static type
T given a variable type environment Γ and method signatures 𝚳”

Changing the Type Rules for SELF_TYPE

● The next step is to design type rules that account for SELF_TYPE
for each language construct

Changing the Type Rules for SELF_TYPE

● The next step is to design type rules that account for SELF_TYPE
for each language construct

● Most of these rules are the same as the rules without SELF_TYPE,
except that ≤ and lub are the new versions with SELF_TYPE
support; only change is to pass through the enclosing class

Changing the Type Rules for SELF_TYPE

● The next step is to design type rules that account for SELF_TYPE
for each language construct

● Most of these rules are the same as the rules without SELF_TYPE,
except that ≤ and lub are the new versions with SELF_TYPE
support; only change is to pass through the enclosing class

● E.g.,:

Γ, 𝚳, C ⊢ e
1

 : T
1

 Γ(id) = T
0

 T
1

 ≤ T
0

 Γ, 𝚳, C ⊢ id <- e
1

 : T
1

[Assign]

Changes to Dispatch Rules

● The rules for dispatch need to change. We modify the old dispatch
rule:

Changes to Dispatch Rules

● The rules for dispatch need to change. We modify the old dispatch
rule:

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

Changes to Dispatch Rules

● The rules for dispatch need to change. We modify the old dispatch
rule:

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

n+1
’

[Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, T

n+1
’)

T
n+1

’ ≠ SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● Then, we add a new rule for the SELF_TYPE case:
○ (changes in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

.f(e
1

, …, e
n
) : T

0

[Dispatch-Self]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T
0

, f) = (T
1

’, …, T
n
’, SELF_TYPE)

What’s different about this rule?
● It handles the Stock example
● Formal parameters can’t be SELF_TYPE
● Actual arguments can be SELF_TYPE

○ extended ≤ handles this case
● The type T

0
 of the dispatch expression could be SELF_TYPE

Changes to Dispatch Rules

● What about static dispatch? Does it need changes?

Changes to Dispatch Rules

● What about static dispatch? Does it need changes? Yes…

[Static Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, T

n+1
’)

T
0

 ≤ TΓ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Γ, 𝚳, C ⊢ e
0

@T.f(e
1

, …, e
n
) : T

n+1
’

Changes to Dispatch Rules

● What about static dispatch? Does it need changes? Yes…

Γ, 𝚳, C ⊢ e
0

@T.f(e
1

, …, e
n
) : T

n+1
’

[Static Dispatch]
∀ i in (1…n), T

i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, T

n+1
’)

T
0

 ≤ T T
n+1

’ ≠ SELF_TYPEΓ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n

Changes to Dispatch Rules

● And again we need a special rule for when the method’s return type
is SELF_TYPE:

Changes to Dispatch Rules

● And again we need a special rule for when the method’s return type
is SELF_TYPE: (changes again in pink)

Γ, 𝚳, C ⊢ e
0

: T
0

 Γ,

𝚳, C ⊢ e
1

: T
1

…
Γ, 𝚳, C ⊢ e

n
: T

n
[St.-Dispatch-Self]

∀ i in (1…n), T
i
 ≤ T

i
’

𝚳(T, f) = (T
1

’, …, T
n
’, SELF_TYPE)

Γ, 𝚳, C ⊢ e
0

@T.f(e
1

, …, e
n
) : T

0

T
0

 ≤ T

Static Dispatch Notes

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the

class in which the method body appears

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the

class in which the method body appears
○ Note: not the class in which the call site appears!

Static Dispatch Notes

● Why is the rule on the previous slide correct?
○ If we dispatch a method returning SELF_TYPE in some class T,

don’t we get back a T?
● No. SELF_TYPE is the type of “self”, which may be a subclass of the

class in which the method body appears
○ Note: not the class in which the call site appears!

● The static dispatch class cannot be SELF_TYPE

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

 Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

 Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

 Γ, 𝚳, C ⊢ new SELF_TYPE : SELF_TYPE
C

[New-Self]

New SELF_TYPE Rules

● There are also two other new rules specifically for SELF_TYPE:

● There are a number of other places in the rules where SELF_TYPE
appears - read the CRM carefully

 Γ, 𝚳, C ⊢ self : SELF_TYPE
C

[Self]

 Γ, 𝚳, C ⊢ new SELF_TYPE : SELF_TYPE
C

[New-Self]

Where is SELF_TYPE illegal in Cool?

Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!

Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!
○ What would go wrong if T were SELF_TYPE?

Where is SELF_TYPE illegal in Cool?

● m(x : T) : T’ { … }
○ only T’ (not T) can be SELF_TYPE!
○ What would go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; };
class B inherits A {
 b() : int { ... };
 comp(y : SELF_TYPE) : Bool { ... y.b() ...}; };
...
let x : A <- new B in ... x.comp(new A); ...
...

Summary of SELF_TYPE

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current
class

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current
class
○ The exception is the typechecking of dispatch.

Summary of SELF_TYPE

● The extended ≤ and lub operations can do a lot of the work.
○ Implement them to handle SELF_TYPE

● SELF_TYPE can be used only in a few places. Be sure it isn’t used
anywhere else.

● A use of SELF_TYPE always refers to any subtype in the current
class
○ The exception is the typechecking of dispatch.
○ SELF_TYPE as the return type in an invoked method might have

nothing to do with the current class

Why Do We Cover SELF_TYPE?

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs
○ but at the cost of additional complexity

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs
○ but at the cost of additional complexity

● SELF_TYPE itself isn’t that important
○ although you have to get it right for PA2…

Why Do We Cover SELF_TYPE?

● SELF_TYPE is an example of a research idea
○ it adds expressiveness to the type system without allowing any

“bad” programs
○ but at the cost of additional complexity

● SELF_TYPE itself isn’t that important
○ although you have to get it right for PA2…

● But it is illustrative of a class of ideas that trade-off expressiveness
for complexity
○ and gives you a taste of how this works in practice!

Type Systems

● The rules in these lectures were Cool-specific

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment
○ There is a tradeoff between safety and flexibility

Type Systems

● The rules in these lectures were Cool-specific
○ Other languages have (very!) different rules
○ We’ll survey some other type systems later in the course

● General themes of type systems (that aren’t Cool-specific):
○ Type rules are defined on the structure of expressions
○ Types of variables are modeled by a type environment
○ There is a tradeoff between safety and flexibility
○ There is another tradeoff between expressiveness and

complexity

In-class Activity

In-class Activity

● Get into groups of three.
● These typing judgments have

one or more flaws. For each
judgment, list the flaws and
explain how they affect the
judgment.

In-class Activity

● Get into groups of three.
● These typing judgments have

one or more flaws. For each
judgment, list the flaws and
explain how they affect the
judgment.

Trivia Break: Computer Science

This prolific Hungarian-American was a professor at Princeton, and
lived in New Jersey from 1933 until his death. He made major
contributions to multiple fields, including mathematics, physics,
economics, and computer science. While he is the inventor of the
merge sort algorithm, he is best known in computing for the
architecture named after him (despite the fact that he did not
directly invent it - J. Presper Eckert and John Mauchly did, while
working on the ENIAC), which is the basis for the architecture of
most modern digital computers.

Trivia Break: Holidays

This holiday, typically occurring sometime in February or March,
marks the final day of new year celebrations in a widely-used lunar
calendar. It is always celebrated during the full moon. As early as two
millennia ago, it had become a festival of great significance. The day
is traditionally marked by the consumption of tangyuan, a traditional
dessert made of glutinous rice shaped into balls; and by the releasing
of paper lanterns, which are typically red to symbolize good luck.

Course Status

● We have finished all the material that you need for PA2

Course Status

● We have finished all the material that you need for PA2
○ though next week we’ll do a more in-depth discussion of other

kinds of static analysis

Course Status

● We have finished all the material that you need for PA2
○ though next week we’ll do a more in-depth discussion of other

kinds of static analysis
● For the rest of this week, we’ll focus on how code actually gets

executed

Course Status

● We have finished all the material that you need for PA2
○ though next week we’ll do a more in-depth discussion of other

kinds of static analysis
● For the rest of this week, we’ll focus on how code actually gets

executed
○ today: basics of run-time organization

Course Status

● We have finished all the material that you need for PA2
○ though next week we’ll do a more in-depth discussion of other

kinds of static analysis
● For the rest of this week, we’ll focus on how code actually gets

executed
○ today: basics of run-time organization
○ Wednesday: formal description of how a program actually runs

(operational semantics)

Course Status

● We have finished all the material that you need for PA2
○ though next week we’ll do a more in-depth discussion of other

kinds of static analysis
● For the rest of this week, we’ll focus on how code actually gets

executed
○ today: basics of run-time organization
○ Wednesday: formal description of how a program actually runs

(operational semantics)
● Goal of all of this: make sure you have the foundation for PA3

○ (also, operational semantics + type rules are closely related)

Run-time Environments

● Before discussing code execution, we need to understand what we
are trying to execute

Run-time Environments

● Before discussing code execution, we need to understand what we
are trying to execute

● There are a number of standard techniques that are widely used
for structuring executable code

Run-time Environments

● Before discussing code execution, we need to understand what we
are trying to execute

● There are a number of standard techniques that are widely used
for structuring executable code

● Standard Way:
○ Code
○ Stack
○ Heap

Run-time Organization Outline

Run-time Organization Outline

● Management of run-time resources

Run-time Organization Outline

● Management of run-time resources
● Correspondence between static and dynamic structures

○ remind me: what do “static” and “dynamic” mean?

Run-time Organization Outline

● Management of run-time resources
● Correspondence between static and dynamic structures

○ remind me: what do “static” and “dynamic” mean?
● Storage organization

Run-time Organization Outline

● Management of run-time resources
● Correspondence between static and dynamic structures

○ remind me: what do “static” and “dynamic” mean?
● Storage organization

Run-time Resources

● Execution of a program is initially under the control of the
operating system

Run-time Resources

● Execution of a program is initially under the control of the
operating system

● When a program is invoked:

Run-time Resources

● Execution of a program is initially under the control of the
operating system

● When a program is invoked:
○ The OS allocates space for the program

Run-time Resources

● Execution of a program is initially under the control of the
operating system

● When a program is invoked:
○ The OS allocates space for the program
○ The code of the program is loaded into some part of that space

Run-time Resources

● Execution of a program is initially under the control of the
operating system

● When a program is invoked:
○ The OS allocates space for the program
○ The code of the program is loaded into some part of that space
○ The OS jumps to the entrypoint (i.e., “main”)

Run-time Resources

● Execution of a program is initially under the control of the
operating system

● When a program is invoked:
○ The OS allocates space for the program
○ The code of the program is loaded into some part of that space
○ The OS jumps to the entrypoint (i.e., “main”)

● How does “space” work?

Space: Virtual Memory (OS/Arch review?)

● An address space is a partial mapping from addresses to values. Like
a big array: the value at memory address 0x12340000 might be 87.
Partial means some addresses may be invalid.

Space: Virtual Memory (OS/Arch review?)

● An address space is a partial mapping from addresses to values. Like
a big array: the value at memory address 0x12340000 might be 87.
Partial means some addresses may be invalid.

● There is an address space associated with the physical memory in
your computer. If you have 1GB of RAM, addresses 0 to
0x40000000 are valid.

Space: Virtual Memory (OS/Arch review?)

● An address space is a partial mapping from addresses to values. Like
a big array: the value at memory address 0x12340000 might be 87.
Partial means some addresses may be invalid.

● There is an address space associated with the physical memory in
your computer. If you have 1GB of RAM, addresses 0 to
0x40000000 are valid.

● If I want to store some information on MachineX and you want to
store other information on MachineX, we would have to collude to
use different physical addresses (= different parts of the address
space).

Space: Virtual Memory 2 (OS/Arch review?)

● Virtual memory is an abstraction in which each process gets its own
virtual address space. The OS and hardware work together to
provide this abstraction. All modern general computers use it.

Space: Virtual Memory 2 (OS/Arch review?)

● Virtual memory is an abstraction in which each process gets its own
virtual address space. The OS and hardware work together to
provide this abstraction. All modern general computers use it.

● Each virtual address space is then mapped separately into a
different part of physical memory. (simplification)

Space: Virtual Memory 2 (OS/Arch review?)

● Virtual memory is an abstraction in which each process gets its own
virtual address space. The OS and hardware work together to
provide this abstraction. All modern general computers use it.

● Each virtual address space is then mapped separately into a
different part of physical memory. (simplification)

● So Process1 can store information at its virtual address 0x4444
and Process2 can also store information at its virtual address
0x4444 and there will be no overlap in physical memory.

Space: Virtual Memory 2 (OS/Arch review?)

● Virtual memory is an abstraction in which each process gets its own
virtual address space. The OS and hardware work together to
provide this abstraction. All modern general computers use it.

● Each virtual address space is then mapped separately into a
different part of physical memory. (simplification)

● So Process1 can store information at its virtual address 0x4444
and Process2 can also store information at its virtual address
0x4444 and there will be no overlap in physical memory.
○ e.g., P1 0x4444 virtual -> 0x1000 physical
○ and P2 0x4444 virtual -> 0x8000 physical

Program Memory Layout

code

other space

low addresses
0x00000000

high addresses
0x40000000

a program’s
virtual
memory:

Notes on How I’ve Presented This

● Our pictures of machine organization have:
○ Low address at the top
○ High address at the bottom
○ Lines delimiting areas for different kinds of data

Notes on How I’ve Presented This

● Our pictures of machine organization have:
○ Low address at the top
○ High address at the bottom
○ Lines delimiting areas for different kinds of data

● These pictures are simplifications
○ e.g., not all memory need be contiguous

Notes on How I’ve Presented This

● Our pictures of machine organization have:
○ Low address at the top
○ High address at the bottom
○ Lines delimiting areas for different kinds of data

● These pictures are simplifications
○ e.g., not all memory need be contiguous

● In some textbooks lower addresses are at bottom (doesn't
matter)

“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”

“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”

● A compiler is responsible for:
○ generating code (that will be run later)
○ orchestrating use of this data space

“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”

● A compiler is responsible for:
○ generating code (that will be run later)
○ orchestrating use of this data space

● An interpreter only has to:
○ directly execute the code
○ manage the program’s run-time data itself

“Other Space”

● “Other Space” in the picture holds all of the data for the program
○ i.e., “Other Space” = “Data Space”

● A compiler is responsible for:
○ generating code (that will be run later)
○ orchestrating use of this data space

● An interpreter only has to:
○ directly execute the code
○ manage the program’s run-time data itself

● Of these two, the compiler’s task is much harder: the compiler
must predict the program’s behavior to do it right!

Code Execution Goals

● We have two goals when generating code to execute:

Code Execution Goals

● We have two goals when generating code to execute:
○ Correctness
○ Speed

Code Execution Goals

● We have two goals when generating code to execute:
○ Correctness
○ Speed

● Which of these matters more?

Code Execution Goals

● We have two goals when generating code to execute:
○ Correctness
○ Speed

● Which of these matters more?
○ Correctness! First rule of compilers…

Code Execution Goals

● We have two goals when generating code to execute:
○ Correctness
○ Speed

● Which of these matters more?
○ Correctness! First rule of compilers…

● Most complications in run-time organization, though, come from
trying to be both fast and correct

Assumptions About Execution

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

● Do these assumptions always hold?

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

● Do these assumptions always hold?
○ Of course not! But, they’re useful simplifications and hold

enough of the time that we can use them.

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

● Do these assumptions always hold?
○ Of course not! But, they’re useful simplifications and hold

enough of the time that we can use them.
○ Examples violating (1):

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

● Do these assumptions always hold?
○ Of course not! But, they’re useful simplifications and hold

enough of the time that we can use them.
○ Examples violating (1): scheduler, having more than one CPU

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

● Do these assumptions always hold?
○ Of course not! But, they’re useful simplifications and hold

enough of the time that we can use them.
○ Examples violating (1): scheduler, having more than one CPU
○ Examples violation (2):

Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

● Do these assumptions always hold?
○ Of course not! But, they’re useful simplifications and hold

enough of the time that we can use them.
○ Examples violating (1): scheduler, having more than one CPU
○ Examples violation (2): exceptions, kill signals

Activations

Definition: Each invocation of some procedure P is an activation of P

Activations

Definition: Each invocation of some procedure P is an activation of P
● The lifetime of an activation of P is all the steps to activate P

○ including all the steps of procedures that P calls, and that
those procedures call, etc.

Activations

Definition: Each invocation of some procedure P is an activation of P
● The lifetime of an activation of P is all the steps to activate P

○ including all the steps of procedures that P calls, and that
those procedures call, etc.

● We also will discuss lifetimes of variables.
○ The lifetime of a variable x is the portion of execution during

which x is defined.

Activations

Definition: Each invocation of some procedure P is an activation of P
● The lifetime of an activation of P is all the steps to activate P

○ including all the steps of procedures that P calls, and that
those procedures call, etc.

● We also will discuss lifetimes of variables.
○ The lifetime of a variable x is the portion of execution during

which x is defined.
● Note the relation with scope: scope is static, lifetimes are

dynamic

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does
○ That is, that the lifetimes

of procedure activations
are properly nested

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does
○ That is, that the lifetimes

of procedure activations
are properly nested

● As a result, we can depict
activation lifetimes as a tree

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does
○ That is, that the lifetimes

of procedure activations
are properly nested

● As a result, we can depict
activation lifetimes as a tree

● Example ->

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does
○ That is, that the lifetimes

of procedure activations
are properly nested

● As a result, we can depict
activation lifetimes as a tree

● Example ->

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

main()

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does
○ That is, that the lifetimes

of procedure activations
are properly nested

● As a result, we can depict
activation lifetimes as a tree

● Example ->

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

main()

g()

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does
○ That is, that the lifetimes

of procedure activations
are properly nested

● As a result, we can depict
activation lifetimes as a tree

● Example ->

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

main()

g() f()

Activation Trees

● Assumption (2) requires that
when P calls Q, then Q
returns before P does
○ That is, that the lifetimes

of procedure activations
are properly nested

● As a result, we can depict
activation lifetimes as a tree

● Example ->

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

main()

g() f()

g()

Activation Trees: Another Example

● What’s the activation tree for this example?

class Main {
 g() : Int { 1 };
 f(x : Int) : Int {

if x = 0 then g() else f(x - 1) fi
 };
 main() : Int {{ f(3); }};
};

(on the whiteboard)

Activation Tree Notes

Activation Tree Notes

● The activation tree depends on run-time behavior

Activation Tree Notes

● The activation tree depends on run-time behavior
○ The activation tree may be different for every program input

Activation Tree Notes

● The activation tree depends on run-time behavior
○ The activation tree may be different for every program input

● Since activations are properly nested, a stack can track currently
active procedures

Activation Tree Notes

● The activation tree depends on run-time behavior
○ The activation tree may be different for every program input

● Since activations are properly nested, a stack can track currently
active procedures
○ This is the call stack

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

g()

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

f()

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

f()

g()

Revised Memory Layout

code

low addresses
0x00000000

high addresses
0x40000000

a program’s
virtual
memory:

other space

Revised Memory Layout

code

low addresses
0x00000000

high addresses
0x40000000

a program’s
virtual
memory:

stack

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Contents of a Typical AR (for some procedure G)

Contents of a Typical AR (for some procedure G)

● Space for G’s return value

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)
■ sometimes also called the frame pointer

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)
■ sometimes also called the frame pointer

● Machine status prior to calling G
○ Local variables
○ Register and program counter contents

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)
■ sometimes also called the frame pointer

● Machine status prior to calling G
○ Local variables
○ Register and program counter contents

● Other temporary values

Revisiting An Example

class Main {
 g() : Int { 1 };
 f(x : Int) : Int {

if x = 0
 then g()
 else f(x - 1) (**)
fi

 };
 main() : Int {{
 f(3); (*) }};
};

Revisiting An Example

class Main {
 g() : Int { 1 };
 f(x : Int) : Int {

if x = 0
 then g()
 else f(x - 1) (**)
fi

 };
 main() : Int {{
 f(3); (*) }};
};

return address

control link

argument

space for result

AR for f:

Revisiting An Example: Stack after 2 Calls to f()

class Main {
 g() : Int { 1 };
 f(x : Int) : Int {

if x = 0
 then g()
 else f(x - 1) (**)
fi

 };
 main() : Int {{
 f(3); (*) }};
};

(**)

2

result

(*)

3

result

main()’s AR:

f()’s AR

f()’s AR

Notes on The Example

● main() has no argument or local variables and its result is “never”
used; its AR is uninteresting

Notes on The Example

● main() has no argument or local variables and its result is “never”
used; its AR is uninteresting

● (*) and (**) are return addresses of the invocations of f
○ The return address is where execution resumes after a

procedure call finishes

Notes on The Example

● main() has no argument or local variables and its result is “never”
used; its AR is uninteresting

● (*) and (**) are return addresses of the invocations of f
○ The return address is where execution resumes after a

procedure call finishes
● This is only one of many possible AR designs

○ Would also work for C, Pascal, FORTRAN, etc.

The Main Point

The Main Point

The compiler must determine, at compile-
time, the layout of activation records and

generate code that, when executed at run-
time, correctly accesses locations in those

activation records.

The Main Point

The compiler must determine, at compile-
time, the layout of activation records and

generate code that, when executed at run-
time, correctly accesses locations in those

activation records.

Thus, the AR layout and the compiler must be
designed together!

Discussion

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently
○ An organization is better if it improves execution speed or

simplifies code generation

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently
○ An organization is better if it improves execution speed or

simplifies code generation
■ This is an important tradeoff! On an embedded device

with fixed software, you might make different choices!

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently
○ An organization is better if it improves execution speed or

simplifies code generation
■ This is an important tradeoff! On an embedded device

with fixed software, you might make different choices!

● Real compilers hold as much of
the frame as possible in registers
○ Especially method result and

arguments
● Why?

Globals

Globals

● All references to a global variable must point to the same object
○ Can’t really store a global in an activation record

Globals

● All references to a global variable must point to the same object
○ Can’t really store a global in an activation record

● Globals are assigned a fixed address once
○ Variables with fixed address are “statically allocated”

Globals

● All references to a global variable must point to the same object
○ Can’t really store a global in an activation record

● Globals are assigned a fixed address once
○ Variables with fixed address are “statically allocated”

● Depending on the language, there may be other statically
allocated values

Memory Layout with Static Data

code

low addresses

high addresses

a program’s
virtual
memory:

stack

static data

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global
○ e.g., foo : Bar () { new Bar };

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global
○ e.g., foo : Bar () { new Bar };

■ this Bar value must survive deallocation of foo’s AR

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global
○ e.g., foo : Bar () { new Bar };

■ this Bar value must survive deallocation of foo’s AR
● Languages with dynamically-allocated data (such as Cool!) use a

heap to store such dynamic data

Summary

Summary

● The code area contains object code
○ For most languages, fixed size and read only

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

● Both the stack and the heap grow
● Compilers must take care that

they don’t grow into each other!
● Solution: start heap and stack at

opposite ends of memory, let
them grow towards each other

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

● Both the stack and the heap grow
● Compilers must take care that

they don’t grow into each other!
● Solution: start heap and stack at

opposite ends of memory, let
them grow towards each other

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

● Both the stack and the heap grow
● Compilers must take care that

they don’t grow into each other!
● Solution: start heap and stack at

opposite ends of memory, let
them grow towards each other

Memory Layout with Heap

code

low addresses

high addresses

a program’s
virtual
memory:

stack

static data

heap

Your Own Heap

● In PA3, you’ll need to emit assembly code for things like:

let x = new Counter(5) in
let y = x in {
 x.increment(1);
 out_int(y.getCount()); // what does this print?
}

Your Own Heap

● In PA3, you’ll need to emit assembly code for things like:

let x = new Counter(5) in
let y = x in {
 x.increment(1);
 out_int(y.getCount()); // what does this print?
}

● You’ll need to use and manage an explicit heap (introduced today
and covered in more detail in later lectures). A heap maps
addresses (i.e., integers) to values.

Course Announcements

● PA2c2 due next Monday
○ requires typechecking + semantic analysis of everything but

expressions
○ if you haven’t started yet, I’m worried for you
○ don’t forget that you can work in pairs!

■ I strongly recommend this option
■ it’s not too late to pair up, even if both of you have started

independently

