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Course Announcements

● Graded midterms are at the front of the room
○ If you don’t have it yet, pick it up after class
○ If you take it with you, I won’t accept regrade requests

● A problem with the PA3c3 autograder was found over the 
weekend
○ I’ve therefore granted an extension to today (AoE)

■ Same extension for PA3
● We recently fixed a bug in the reference compiler’s x86-64 

module. Only use Cool version 1.39 for compiling to x86.
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Review: Local Optimizations
● Algebraic Simplification uses math to rewrite expressions

○ e.g., x + 0 -> x
● Constant Folding computes values at compile time

○ e.g., 5 + 3 -> 8
● Single Static Assignment (SSA) form is a useful IR for 

optimizations, because all variables are referentially transparent
● Common Subexpression Elimination replaces duplicated 

right-hand sides of expressions
○ e.g., if x := y + z and w := y + z, then w := x

● Copy Propagation replaces the LHS of assignments with the RHS
○ e.g., if x := y, replace subsequent uses of x with y
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Dead Code Elimination (DCE)

● If:
○ w := rhs appears in a basic block
○ w does not appear anywhere else in the program

● Then
○ the statement w := rhs is dead and can be eliminated

● Dead = does not contribute to the program’s result
● Example (assume that a is not used anywhere else)

b := z + y 
a := b
x := 2 * a

b := z + y
a := b
x := 2 * b

b := z + y
x := 2 * b
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Applying Local Optimizations

● Each local optimization does very little by itself
● Typically optimizations interact

○ Performing one optimization enables (or disables!) other 
optimizations

● Typical optimizing compilers repeatedly perform optimizations 
until no improvement is possible
○ Phase ordering problem again: must beware of local minima

● Interpreters and JITs must be fast!
○ The optimizer can also be stopped at any time to limit the 

compilation time



An Example

● Initial code:

a := x ** 2 
b := 3
c := x
d := c * c 
e := b * 2
f := a + d 
g := e * f



An Example

● Algebraic simplification:

a := x ** 2 
b := 3
c := x
d := c * c 
e := b * 2
f := a + d 
g := e * f



An Example
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a := x * x 
b := 3
c := x
d := c * c 
e := b + b
f := a + d 
g := e * f
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● Copy propagation:

a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a 
g := 6 * f
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An Example

● Dead code elimination:

a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a 
g := 6 * f

Could we get to g = 12 * a?
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Local Optimization Notes

● Intermediate code is helpful for many optimizations
● “Program optimization” is grossly misnamed

○ Code produced by “optimizers” is not optimal in any 
reasonable sense; “program improvement” is a better term

● Even “simple” local optimizations may be unsafe in some contexts
○ e.g., can we safely constant fold in a block that may divide by 

zero?
● Programmers might protest that they don’t write code that can be 

easily improved by such “simple” optimizations
○ But keep in mind that the compiler is actually generating most 

of the code you’re optimizing (e.g., array accesses)
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Deep Dive: Local Value Numbering

● Local Value Numbering (LVN) is a classic algorithm for finding and 
eliminating redundant operations in a basic block
○ You can think of this section as a “how-to” for the conceptual 

optimizations that I covered on Monday and earlier today
○ You can implement many of the other optimizations we’ve 

discussed (e.g., constant folding) using the same core ideas
● The key idea of LVN is to assign a distinct number (called the 

“value number”) to each value computed by the basic block
○ LVN’s goal: assign the same number to two different 

expressions iff they are provably equal
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LVN: Core Algorithm

● LVN initializes a hashtable for each basic block
○ this table maps names, constants, and expressions to value 

numbers 
○ the LVN hashtable is initially empty

● For each operation T := L Op R, in program order, LVN:
○ looks up L and R in the hashtable to get VNL and VNR

■ if found, use already-assigned value number
■ if not found, assign a new value number

○ creates a new string key k = VNL Op VNR
○ looks up k in the table, assigning a new value number if not 

found
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c 1 5
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d 3

2 - 3 4
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entry for 2-3!
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LVN: Example

a := b + c
b := a - d
c := b + c
d := b

Value table:

key value num

b 0 4

c 1 5

0 + 1 2

a 2

d 3 4

2 - 3 4

1 + 4 5

How to use this information? 
We can replace a - d with 
anything with value number 4!
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LVN: Notes

● LVN is most effective when the program is already in SSA form
○ Why?

■ Avoids the need to overwrite table entries!
● It’s easy to build commutativity into LVN

○ Always put value numbers in order in commutative keys
■ e.g., always 0+1, never 1+0

● LVN can incorporate other optimizations
○ e.g., if operands are constants, storing that info directly in the 

table enables constant folding during LVN
● LVN is highly order-dependent: rewriting the code to change the 

order of operations may change the results



Trivia Break: Literature

This epic 1862 novel follows the lives and interactions of several 
characters from 1815 until the 1832 June Rebellion in Paris. It is one 
of the longest novels ever written in French, at 655,478 words. The 
novel contains many digressions - comprising more than a quarter of 
its pages - that do not advance the plot in any way. Despite this, 
Upton Sinclair described it as "one of the half-dozen greatest novels 
of the world." It has been has been popularized through numerous 
adaptations for film, television, and the stage, including a musical. Its 
author is Victor Hugo, whose other works include The Hunchback of 
Notre-Dame.



Trivia Break: Mathematics

This French republican political activist was repeatedly arrested as a 
teenager in the late 1820s and early 1830s in the lead up to the June 
Rebellion (which is famously the setting for Les Misérables), before 
dying in a duel just a few days before the uprising began, aged just 20. 
Despite his involvement in politics, he was an active research 
mathematician. His work in mathematics, though not appreciated 
during his lifetime, laid the foundations for two major branches of 
abstract algebra, one of which is named for him. He also solved a 
problem open for over 350 years: determining a necessary and 
sufficient condition for a polynomial to be solvable by radicals.
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A Brief Digression on GDB

● It has come to my attention that not all of you have been trained 
on how to use GDB to debug assembly programs
○ GDB is a tool you should all be familiar with…

● I’m now going to do a short demo of how I would approach 
debugging a segfault in an assembly program that I’ve written
○ Peanut gallery commentary is encouraged: I am by no means 

the world’s best systems programmer
● The problem: we’re generating assembly code for Cool programs 

that call into libc, and printf is segfaulting
○ You will not be able to reproduce this behavior on v1.39 of 

the reference compiler :)
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Regional Optimizations
● A regional optimization considers one or more logically-related 

basic blocks together
○ These blocks are not required to form a whole procedure

■ that’s a “global” optimization; the boundary is fuzzy
○ However, usually they’re “related” in some way: for example, 

the whole body of a loop may be an optimization target
● Primary difference between local and regional optimizations is 

the need to handle control flow
○ e.g., if/else, jumps, etc.

● We will look at two examples:
○ extending local value numbering to regions
○ loop unrolling
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Extended Basic Blocks
● Regional optimizations usually work on an extended basic block 

(“EBB”): a small control-flow graph of basic blocks
● Formally, an EBB is a maximal collection of basic blocks where:

○ there are unique entry and exit blocks
○ all basic blocks besides the entry must only have predecessor 

blocks that are members of the EBB
● Most local optimizations can operate on EBBs with small 

modifications (including most of those we saw earlier)
○ Thus, you can do most local optimizations at the regional level!

● I will show how we extend local value numbering to a regional 
optimization; others are left as an exercise
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Extended Basic Blocks: Example
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Extended Basic Blocks: Example

single exit block

(don’t worry about the details)
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Super-local Value Numbering

● To extend LVN to more than one basic block, we 
need to reason about all possible paths through 
the EBB

● In theory, we can consider each path 
independently
○ That is, treat each path as if it were a block!

■ after all, no branches in a single path…
● Blocks with single predecessor can keep the 

hashtable from the last block
● Any block with multiple predecessors, such as B

5
, 

can use a fresh hashtable
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consider the path B
0

, B
2

, B
3

combine into a single logical block

…but we 
need S-LVN 
to discover 
these two!
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● Unfortunately, analyzing each path separately isn’t feasible, 
because paths grow exponentially in the number of branches
○ this is called the path explosion problem

■ it impacts a number of important static analyses that work 
at path granularity (most famously symbolic execution)

● Regional optimizations can capitalize on the tree structure of an 
EBB, though, to avoid redoing too much work
○ insight: paths share common prefixes

■ e.g., (B
0

, B
2

, B
3

) and (B
0

, B
2

, B
4

) share prefix (B
0

, B
2

)
○ the compiler can cache the results for common prefixes and 

reuse them when analyzing related paths

For more details on this 
algorithm, see the book.



Other Regional Optimizations

● Loop unrolling
● Code motion
● Loop induction variable elimination
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Loop Unrolling

● To unroll a loop, replicate the loop’s body and adjust the logic that 
controls the number of iterations performed

● Direct benefits:
○ reduce number of branches (they’re expensive)
○ enable reuse of certain computations (e.g., outer loop indices)
○ improve spatial locality, especially for array accesses

● Loop unrolling changes the ratio of arithmetic to memory 
operations in the loop
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Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and 

potentially negative:
○ it increases program size. If this causes the instruction cache 

to overflow, it’s not worthwhile to unroll the loop.
○ unrolling increases the number of operations in the loop 

body, which might enable other optimizations
■ e.g., more operations in the loop body might unlock 

interesting instruction schedules
○ unrolling can enable multi-word instructions (i.e., SIMD)

■ SIMD = “single instruction, multiple data”
○ unrolled loop may use more registers, and if it causes a spill 

the unrolling is almost certainly not worth it

Whether or not to unroll a loop often 
depends on these factors, so there is no 
one-size-fits-all algorithm for deciding 
whether to unroll
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Code Motion

● Goal: move loop-invariant calculations out of loops
● Example:

for (i = 0; i < 10; i++) {
   a[i] = a[i] + b[j];
   z = z + 10000;
}

● Benefit: avoids redundant computation each time around the 
loop

t1 = b[j];
t2 = 10000;
for (i = 0; i < 10; i++) {
 a[i] = a[i] + t1;
 z = z + t2;
}
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Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop
○ increment offsets/pointers each time around loop
○ no expensive scaling in loop
○ then do loop-invariant code motion

for (i = 0; i < 10; i++){
    a[i] = a[i] + x;
}

for (p = &a[0]; p < &a[10]; p = p+4){
    *p = *p + x;
}
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Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local 
optimizations

● Generally operate on extended basic blocks with one entry/exit
○ commonly, the body of a loop

● Benefits of a regional optimization often depend on indirect 
effects, such as spatial locality
○ This means that they are inherently more risky than their local 

cousins
● Nearly all local optimizations can be extended to work at the 

regional level
○ Which you want to use is up to you!



Course Announcements

● Graded midterms are at the front of the room
○ If you don’t have it yet, pick it up after class
○ If you take it with you, I won’t accept regrade requests

● A problem with the PA3c3 autograder was found over the 
weekend
○ I’ve therefore granted an extension to today (AoE)

■ Same extension for PA3
● We recently fixed a bug in the reference compiler’s x86-64 

module. Only use Cool version 1.39 for compiling to x86.


