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Course Announcements

● PA4c1 is due today
● I’m out of town for the rest of the week at ICSE

○ I will not hold office hours on Wednesday
○ My PhD student Erfan Arvan will lecture on Wednesday

■ please be nice to him!
○ If you want to see a test case before next Monday, you 

need to ask right after class
■ my flight is at 3pm, so I’m going to go to the airport 

~12:30



Agenda

● Motivation
● Limitations of type systems

○ …or lack thereof (Curry-Howard Correspondence)
● Pluggable Types

○ Formalism
○ Practical example (Nullability in Java)
○ Discussion of state-of-the-art (if time)
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Review: What is a type system, anyway?

Definition: a type system is a set of rules that give every program 
element a type, which is an upper bound on the set of possible values 
that that element can take on at run time
● goal of a type system: prevent errors at run time due to 

unexpected values
○ a type can also encode the set of valid operations on values of 

that type
● many programming languages (including Cool) check types at 

compile time (static types)
○ some languages instead check types at run time (dynamic types)
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Motivation

● Traditional static type systems like Cool’s are already 
widely-used by software engineers
○ in practice, type systems are one of the few common 

techniques for improving correctness
■ along with testing and code review

● However, traditional type systems prevent some but not all 
run-time errors
○ prevented: unsuccessful vtable lookups, missing fields, mixing 

up incompatible values (e.g., integers and strings), etc.
○ not prevented: out-of-bounds array accesses, null-pointer 

dereferences, memory leaks, mismatched units, etc.
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Motivation: Verification

● Many techniques for verification of computer programs have 
been proposed
○ e.g., Floyd-Hoare logic, guarded commands, abstract 

interpretation, etc. (ask in office hours)
● Unlike static type systems, these techniques have not been 

widely-adopted outside of niche industries :(
○ and computer programs remain full of bugs that a verifier 

could have prevented…
● One of the biggest obstacles to the adoption of verification 

technologies in practice is the need to write specifications
○ e.g., pre- and post-conditions, loop invariants, etc.
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Pluggable Types as Verification

● Observation: programmers have already shown that they are 
willing to write down static types. 
○ Insight: What if we allowed them to write down the 

specifications that we need for verification as types?
○ Pluggable type systems allow us to do just that

● More formally, a pluggable type system extends a host type 
system with a set of type qualifiers that model a property of 
interest (usually “the program has no bugs of kind X”, for some X)
○ each type qualifier refines the type in question

■ that is, each qualifier is “more specific” than the base type 
(i.e., a subtype) 
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● Developers already use static type systems, so they’re familiar 
with the general idea of types => relatively easy to use (compared 
to other verification techniques)

● Type qualifiers encode property of interest
○ effectively a “second” type system

● Qualified types are like a Cartesian product of a type from the 
pluggable type system and a type from the base type system

● Typechecking is naturally modular = fast
○ but this comes at a cost: programmers need to write types

Pluggable Types: One Slide Summary
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● Qualified types are like a Cartesian product of a type from the 
pluggable type system and a type from the base type system
○ What does this actually mean?

● Analogy: each pluggable type system is like a dimension in a 
traditional coordinate system:
○ the base type system is the first dimension
○ each additional qualifier adds one more dimension
○ let’s see an example
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Real Rational

Consider this 
simple type 
hierarchy.
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Pluggable Types: Formalism: Products

Object

Int Number

Real Rational

Nullable Object

Nullable Int Nullable Number

Nullable Rational

+ Object

+ Int

+ Real + Rational

+ Number

Nullable Real

Or we can do both 
at the same time!



● More formally, in a pluggable type system, every type is a product 
type of a type qualifier and a base type.

Pluggable Types: Product Types



● More formally, in a pluggable type system, every type is a product 
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a 

moment)

Pluggable Types: Product Types



● More formally, in a pluggable type system, every type is a product 
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a 

moment)
● Instead of writing x : T, we write x : Q T

Pluggable Types: Product Types



● More formally, in a pluggable type system, every type is a product 
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a 

moment)
● Instead of writing x : T, we write x : Q T

○ T is the base type, Q is the type qualifier from the pluggable 
type system of interest

Pluggable Types: Product Types



● More formally, in a pluggable type system, every type is a product 
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a 

moment)
● Instead of writing x : T, we write x : Q T

○ T is the base type, Q is the type qualifier from the pluggable 
type system of interest

● We can extend this formalism arbitrarily, e.g., by writing x : Q
1

 Q
2

 T
○ (As long as Q

1
 and Q

2
 are from different type systems)

Pluggable Types: Product Types



● More formally, in a pluggable type system, every type is a product 
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a 

moment)
● Instead of writing x : T, we write x : Q T

○ T is the base type, Q is the type qualifier from the pluggable 
type system of interest

● We can extend this formalism arbitrarily, e.g., by writing x : Q
1

 Q
2

 T
○ (As long as Q

1
 and Q

2
 are from different type systems)

Pluggable Types: Product Types

Note that there is not really anything 
special about T in this formalism - we can 
view the base type system as just another 
pluggable type that’s “in use by default”
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● I hinted that product types are “like” a logical AND gate
● This relationship is one of the cornerstones of the Curry-Howard 

correspondence between mathematical proofs and computer 
programs
○ There is an isomorphism between the proof systems and the 

models of computation: these two families of formalisms can be 
considered as identical
■ (an isomorphism is a one-to-one correspondence between 

the mathematical structures of two objects)
○ In other words: a proof is a program, and the formula it proves 

is the type for the program
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Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:
○ It is possible to “run” proofs, as we would computer programs

■ This implies that it’s possible to “co-develop” a program and 
the proof of its correctness

■ Interactive theorem provers like Rocq or Lean operationalize 
this idea

○ A type system is just a way to write down a theorem about the 
program
■ Different type systems let us write down different 

theorems

For more on this topic, ask 
in office hours and/or take 
CS 735 with me in Sp26.
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● The modifications to most of the type rules to support a pluggable 
type system are straightforward: just add a qualifier term to each 
type:
○ T -> Q T
○ Effectively, this requires the programmer to write a type 

qualifier everywhere they write a type
● The subtyping and least upper bound rules are bit trickier (but not 

much). 
○ We need to account for all possible cases
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● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the 

old subtyping rule
○ the type qualifier part

■ for this part, assume that the type 
qualifiers are arranged into a lattice 
(sound familiar?)

■ then, we can just read subtyping 
information from the lattice

Adding Pluggable Types to Cool: Subtyping

Nullable T

Nonnull T

Any Int

+ Int

If this looks similar to abstract 
interpretation, that’s because it is 
(Cousot proved it in POPL 1997). 
Pluggable types can be viewed as 
an alternative syntax for abstract 
interpretation.



Adding Pluggable Types to Cool: LUB



● Least upper bounds can also be split between the base types and 
the qualifiers:
○ LUB(Q

1
 T

1
, Q

2
 T

2
) = LUB(Q

1
, Q

2
) LUB(T

1
, T

2
)

Adding Pluggable Types to Cool: LUB



● Least upper bounds can also be split between the base types and 
the qualifiers:
○ LUB(Q

1
 T

1
, Q

2
 T

2
) = LUB(Q

1
, Q

2
) LUB(T

1
, T

2
)

● Some pluggable type systems might have interactions between 
qualifiers and base types.
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● Least upper bounds can also be split between the base types and 
the qualifiers:
○ LUB(Q
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) LUB(T

1
, T
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)

● Some pluggable type systems might have interactions between 
qualifiers and base types.
○ e.g., it might not make sense to have a “positive string”
○ in practice, this is fine - just treat like bottom

Adding Pluggable Types to Cool: LUB
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● While it’s plausible to require programmers to write a type 
qualifier at each type use, in practice that’s inconvenient
○ instead, we’d like to pick sensible defaults for unqualified 

types
● For example, consider a nullability pluggable type system with 

two qualifiers: Nullable and NonNull.
○ if we see an unqualified type T, should we treat it as:

■ Nullable T?
■ or NonNull T?

○ interestingly, either choice is correct! (Why?)
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● Practical pluggable type systems use a specific defaulting scheme 
called CLIMB-to-top
○ this approach uses a simple dataflow analysis to propagate 

types within a method body
■ also saves user effort!

○ it defaults any location where dataflow discovers a qualifier 
to that qualifier, regardless of the “usual” defaulting rules
■ e.g., in Object x = null, x will be Nullable even if the 

usual default is NonNull
○ there are a number of other subtleties which I’ll elide for time
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● Many pluggable type systems exist to enforce some kind of 
custom type rule (which might replace an existing rule)
○ for example, a nullability type system might have a custom 

rule that forbids dereferencing a type with a nullable 
qualifier:

● These rules can be arbitrary, but generally the type system 
designer chooses them to make some soundness proof work

Pluggable Types: Custom Type Rules
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 : NonNull T Γ ⊢ e
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 : Q T

Γ ⊢ e
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.e
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● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

● Equality tests (@Interned)
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● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

● Equality tests (@Interned)
○ >200 problems in Xerces, Lucene, ...

● Concurrency / locking (@GuardedBy)
○ >500 errors in BitcoinJ, Derby, Guava, Tomcat, ...

● Array bounds (@IndexFor, @NonNegative, etc.)
○ defects in Google Guava, JFreeChart, …

● Resource leaks (@MustCall)
○ defects in Zookeeper, Hadoop, HBase, …

Pluggable Types: Examples

These last two were 
part of my PhD work!



Trivia Break: History of Mathematics

This Ancient Greek mathematician, physicist, engineer, astronomer, 
and inventor from the ancient city of Syracuse in Sicily is regarded as 
the greatest mathematician of ancient history. He anticipated 
modern calculus and analysis by applying the concept of the infinitely 
small and the method of exhaustion to derive and rigorously prove 
many geometrical theorems. These include the area of a circle, the 
surface area and volume of a sphere, the area of an ellipse, the area 
under a parabola, the volume of a segment of a paraboloid of 
revolution, the volume of a segment of a hyperboloid of revolution, 
and the area of a spiral.
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● Let’s consider one specific example in detail: nullability in Java
○ Tony Hoare’s “billion-dollar mistake” etc

● While my examples in this section will all concern nullability, 
many of the principles at play are applicable to any pluggable 
typechecker
○ I’ll try to point these out as we come to them, but as a hint 

about exam questions - asking you about how one of these 
principles might apply to a different type system would be 
fair game
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● Where is the defect in the following code?
○ Whose fault: library implementer or client?

String op(Data in) {
  return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

Cannot decide without 
a specification!
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● Specification option 2:
○ Nullable parameter

String op(@Nullable Data in) {
  return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

with this specification, defect 
is here, instead!



Nullability: Basic Type System



● Two type qualifiers (= abstract values):

Nullability: Basic Type System



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 

Nullability: Basic Type System



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

Nullability: Basic Type System



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

● Default is @NonNull

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

● Nearly no annotations required in method bodies

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

● Nearly no annotations required in method bodies
○ dataflow analysis handles most cases (CLIMB-to-top)

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:



● Two type qualifiers (= abstract values):
○ @Nullable = might be null 
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

● Nearly no annotations required in method bodies
○ dataflow analysis handles most cases (CLIMB-to-top)
○ …except for e.g., generics:  List<@Nullable String>

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:
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● Dataflow analysis performs refinement within method bodies:

if (myField != null) {
myField.hashCode(); 

}

● No need to e.g., declare a new local variable
● This is the same “refinement” that we saw when we talked about 

abstract interpretation earlier
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if (myField != null) { 
method1();
myField.hashCode();

}

● What about the code above? Should it typecheck?
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if (myField != null) { 
method1();
myField.hashCode();

}

● What about the code above? Should it typecheck?
○ No! method1() could side-effect myField and set it to null
○ Three ways to tell the typechecker this is ok:

■ @SideEffectFree void method1() { ... }
■ @MonotonicNonNull myField;
■ @EnsuresNonNull("myField") method1() {...}

Nullability: Side-Effects
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● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state
○ @Deterministic

■ If called with == args again, gives == result
○ @Pure

■ Both side-effect-free and deterministic
● These are method annotations, not type qualifiers

○ Checker Framework trusts rather than checks them by default
■ checking these with few false positives is an open problem

Nullability: Side-Effect Annotations

These can be used with any Checker 
Framework checker, not just the 
nullability checker



Nullability: Why @Deterministic?



● Consider the following code:

if (method2() != null) { 
method2().hashCode();

}

Nullability: Why @Deterministic?



● Consider the following code:

if (method2() != null) { 
method2().hashCode();

}

● This code is safe if and only if method2() returns the same value 
every time we call it

Nullability: Why @Deterministic?



● Consider the following code:

if (method2() != null) { 
method2().hashCode();

}
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● Consider the following code:

if (method2() != null) { 
method2().hashCode();

}

● This code is safe if and only if method2() returns the same value 
every time we call it
○ @Deterministic exactly expresses this property
○ Why might a method not be deterministic?

Nullability: Why @Deterministic?
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● Another way to prove that a value is persistent across 
side-effects is the @MonotonicNonNull type annotation, written 
on a field type
○ Might be null or non-null
○ May only be (re-)assigned a non-null value

● Purpose: avoid re-checking
● Once non-null, always non-null 

○ Example: Singleton pattern
● Fields with this type don’t need to be “unrefined” at 

possibly-side-effecting method calls

Nullability: Lazy Initialization
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● More method annotations that express facts that a method 
requires or guarantees about program elements other than 
parameters/return values (e.g., in-scope fields)
○ @RequiresNonNull (pre-condition)
○ @EnsuresNonNull (post-condition)
○ @EnsuresNonNullIf (conditional post-condition)

● Example: 
@EnsuresNonNullIf(expression="#1", result=true)

   public boolean equals(@Nullable Object obj) { ... }

Nullability: Method Pre- and Post-conditions
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/** Interns a String, and handles null. */ 
@PolyNull String intern(@PolyNull String a) {
  if (a == null) {
    return null;
  }
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/** Interns a String, and handles null. */ 
@PolyNull String intern(@PolyNull String a) {
  if (a == null) {
    return null;
  }
  return a.intern();
}

● Like defining two overloaded methods:
○ @NonNull  String intern(@NonNull  String a) {...}

○ @Nullable String intern(@Nullable String a) {...}

Nullability: Qualifier Polymorphism
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● It’s possible for an @NonNull field to contain null at run time! 
How?

● Consider the following code:
@NonNull String name;
MyClass() {  // constructor

 ... this.name.hashCode() ...
}

● Problem: Java initializes all non-primitive fields to null during 
object initialization, before running the constructor
○ Does Cool do this? How do you know?

■ (new operational semantics rule)

Nullability: Initialization
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● So, another type system tracks the initialization status of each 
object:
○ @Initialized = constructor has completed
○ @UnderInitialization(Frame.class)

■ Frame’s constructor is currently executing
○ @UnknownInitialization(Frame.class) 

■ Might be initialized or under initialization
● Type rule for initialization: cannot dereference fields (even 

nonnull fields!) until the object is @Initialized
○ What’s the type hierarchy/lattice for these?

Nullability: Initialization
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● Nullability checker in the CF also has a type system for tracking 
which values are known to be keys in which maps
○ Map.get() can return null in general, but map operations 

are so common that we need to handle the common case
○ @KeyFor(“m”) means “this value is definitely a valid key in 

map m, so calling Map.get() on this value will return 
something nonnull”

● These sort of auxiliary type systems are a common pattern in 
practical typecheckers
○ My first project in grad school had 7!

Nullability: Auxiliary Type Systems
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● Practical checkers still have false positives
○ Users need ways to suppress them easily, or they won’t use 

the tools
● Two main ways:

○ Casts. A cast in “regular Java” (without a pluggable 
typechecker) is already used to suppress a warning from the 
regular type system
■ Can also write a type qualifier in the casted-to type

○ Explicit warning suppressions via @SuppressWarnings
■ More flexible and easier to read

Nullability: Warning Suppression
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● Extant type systems are pretty good
○ Nullness Checker I’ve just shown is in wide use
○ Uber’s NullAway is a big competitor

■ “No false negatives in practice”
○ Type systems for other problems (e.g., resource leaks) 

becoming more popular
● Big problem: getting people to use them

○ Annotation burden for legacy code is the most serious issue
○ Now I’m going to talk about some ongoing research work

Pluggable Types: State-of-the-Art
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Solution: Type Inference

● Traditional type inference: constraint solving
○ Problem: need a new constraint system for each type system

● Recent work has proposed 3 alternative type inference techniques:
○ Checker Framework Whole-Program Inference (ASE 2023)
○ NullAway Annotator (FSE 2023)
○ NullGTN (arxiv 2024)
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CF Whole-Program Inference (ASE 2023)
● Most pluggable typecheckers already implement local type 

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

● Key idea: iteratively run local inference and propagate results
○ Advantage: works with any typechecker built on a framework 

“for free” (no per-typechecker code required)
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CF WPI: Example
class DataHandler {
  Data data = null;    
  +@EnsuresNonNull(expr={"this.data"}) 
  void lazyInit() {
    if (data == null)
      data = new Data(...);
  }
  String serialize() {
    lazyInit();
    return data.toString(); // safe
  }
}

212
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
. 



CF WPI: Example
class DataHandler {
  +@Nullable Data data = null;    
  +@EnsuresNonNull(expr={"this.data"}) 
  void lazyInit() {
    if (data == null)
      data = new Data(...);
  }
  String serialize() {
    lazyInit();
    return data.toString(); // safe
  }
}

213
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
. 

local dataflow proves 
that null can flow into 
this field



CF WPI: Example
class DataHandler {
  +@Nullable Data data = null;    
  +@EnsuresNonNull(expr={"this.data"}) 
  void lazyInit() {
    if (data == null)
      data = new Data(...);
  }
  String serialize() {
    lazyInit();
    return data.toString(); // safe
  }
}

214
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
. 

CF also supports postcondition 
annotations (WPI advantage!)



CF WPI: Example
class DataHandler {
  +@Nullable Data data = null;    
  +@EnsuresNonNull(expr={"this.data"}) 
  void lazyInit() {
    if (data == null)
      data = new Data(...);
  }
  String serialize() {
    lazyInit();
    return data.toString(); // safe
  }
}
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. 

CF also supports postcondition 
annotations (WPI advantage!),
enabling verification of this code
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NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for 
annotations
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NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for 
annotations

● Iterative, bounded-depth search for annotation set that minimizes 
checker warnings
○ With some optimizations to reduce the search space
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NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for 
annotations

● Iterative, bounded-depth search for annotation set that minimizes 
checker warnings
○ With some optimizations to reduce the search space

● Only implementation is for NullAway (FSE ‘19, developed at Uber)
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NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for 
annotations

● Iterative, bounded-depth search for annotation set that minimizes 
checker warnings
○ With some optimizations to reduce the search space

● Only implementation is for NullAway (FSE ‘19, developed at Uber)
○ Only infers @Nullable annotations
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NullAway Annotator: Example
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class DataHandler {
  Data data = null;    
  +@EnsuresNonNull(expr={"this.data"}) 
  void lazyInit() {
    if (data == null)
      data = new Data(...);
  }
  String serialize() {
    lazyInit();
    return data.toString(); // safe
  }
}

(same example from a few slides ago…)
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NullAway Annotator: Example
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class DataHandler {
  Data data = null;    
  +@EnsuresNonNull(expr={"this.data"}) 
  void lazyInit() {
    if (data == null)
      data = new Data(...);
  }
  String serialize() {
    lazyInit();
    return data.toString(); // safe
  }
}

(same example from a few slides ago…)

Annotator considers adding an 
@Nullable annotation, but does not: 
doing so would not decrease the error 
count
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NullAway Annotator: Example

222

class DataHandler {
  Data data = null;    
  +@EnsuresNonNull(expr={"this.data"}) 
  void lazyInit() {
    if (data == null)
      data = new Data(...);
  }
  String serialize() {
    lazyInit();
    return data.toString(); // safe
  }
}

(same example from a few slides ago…)

Annotator considers adding an 
@Nullable annotation, but does not: 
doing so would not decrease the error 
count (new error here)
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NullAway Annotator: Another Example
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class MyActivity {
  Name name;
  Address addr; 
  MyActivity() {
    name = null; addr = null; }
  @Initializer
  void onStart() { name = defaultName(); } 
  void doFirst() { name.showFirst(); } 
  void doLast() {
    name.showLast();
    if (addr != null) addr.show();
} }
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NullAway Annotator: Another Example
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class MyActivity {
  Name name;
  Address addr; 
  MyActivity() {
    name = null; addr = null; }
  @Initializer
  void onStart() { name = defaultName(); } 
  void doFirst() { name.showFirst(); } 
  void doLast() {
    name.showLast();
    if (addr != null) addr.show();
} }

Annotator does not add @Nullable to 
name, because it would add two new 
errors (correct answer!)
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NullAway Annotator: Another Example
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class MyActivity {
  Name name;
  +@Nullable Address addr; 
  MyActivity() {
    name = null; addr = null; }
  @Initializer
  void onStart() { name = defaultName(); } 
  void doFirst() { name.showFirst(); } 
  void doLast() {
    name.showLast();
    if (addr != null) addr.show();
} }

However, it does add 
@Nullable to addr (always 
null-checked before use)
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NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
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NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for 

inferring Python and TypeScript type annotations
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NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for 

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would
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NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for 

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would
● Trained on ~32k classes with at least one @Nullable annotation 

from GitHub
○ Data from many sources: checkers, documentation, etc.
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NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for 

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would
● Trained on ~32k classes with at least one @Nullable annotation 

from GitHub
○ Data from many sources: checkers, documentation, etc.

● Only infers @Nullable
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NullGTN: Example

public int sumLengths(
  int [] v1, 
  int [] v2) {
    int result = 0;
    result += (v1 == null) ? 0 : v1.length; 
    result += (v2 == null) ? 0 : v2.length; 
    return result; 
}
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NullGTN: Example

public int sumLengths(
  int +@Nullable [] v1, 
  int +@Nullable [] v2) {
    int result = 0;
    result += (v1 == null) ? 0 : v1.length; 
    result += (v2 == null) ? 0 : v2.length; 
    return result; 
}
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NullGTN can infer 
@Nullable here even if 
there are no call sites



Key Differences
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Key Differences

● CF WPI implementation is the only one that supports multiple 
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated
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Key Differences

● CF WPI implementation is the only one that supports multiple 
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated
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Implication: comparison has to be focused 
on nullability type systems, for now



Key Differences

● CF WPI implementation is the only one that supports multiple 
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

● Only NullGTN can possibly annotate entrypoint parameters
○ (Assuming no test cases)
○ In WPI’s evaluation, this was the largest cause of missed 

human-written annotations (11%)
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Pluggable Types in Practice

● checkerframework.org has a few dozen checkers
○ also practical to build your own!

● Specialized checkers are now being built at tech companies
○ e.g., NullAway at Uber

● If we can get type inference working, maybe these will be in 
widespread use in a few more years :)

http://checkerframework.org

