
Pluggable Types
Martin Kellogg

Course Announcements

● PA4c1 is due today

Course Announcements

● PA4c1 is due today
● I’m out of town for the rest of the week at ICSE

Course Announcements

● PA4c1 is due today
● I’m out of town for the rest of the week at ICSE

○ I will not hold office hours on Wednesday

Course Announcements

● PA4c1 is due today
● I’m out of town for the rest of the week at ICSE

○ I will not hold office hours on Wednesday
○ My PhD student Erfan Arvan will lecture on Wednesday

■ please be nice to him!

Course Announcements

● PA4c1 is due today
● I’m out of town for the rest of the week at ICSE

○ I will not hold office hours on Wednesday
○ My PhD student Erfan Arvan will lecture on Wednesday

■ please be nice to him!
○ If you want to see a test case before next Monday, you

need to ask right after class
■ my flight is at 3pm, so I’m going to go to the airport

~12:30

Agenda

● Motivation
● Limitations of type systems

○ …or lack thereof (Curry-Howard Correspondence)
● Pluggable Types

○ Formalism
○ Practical example (Nullability in Java)
○ Discussion of state-of-the-art (if time)

Review: What is a type system, anyway?

Review: What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time

Review: What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time
● goal of a type system: prevent errors at run time due to

unexpected values

Review: What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time
● goal of a type system: prevent errors at run time due to

unexpected values
○ a type can also encode the set of valid operations on values of

that type

Review: What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time
● goal of a type system: prevent errors at run time due to

unexpected values
○ a type can also encode the set of valid operations on values of

that type
● many programming languages (including Cool) check types at

compile time (static types)

Review: What is a type system, anyway?

Definition: a type system is a set of rules that give every program
element a type, which is an upper bound on the set of possible values
that that element can take on at run time
● goal of a type system: prevent errors at run time due to

unexpected values
○ a type can also encode the set of valid operations on values of

that type
● many programming languages (including Cool) check types at

compile time (static types)
○ some languages instead check types at run time (dynamic types)

Motivation

● Traditional static type systems like Cool’s are already
widely-used by software engineers

Motivation

● Traditional static type systems like Cool’s are already
widely-used by software engineers
○ in practice, type systems are one of the few common

techniques for improving correctness
■ along with testing and code review

Motivation

● Traditional static type systems like Cool’s are already
widely-used by software engineers
○ in practice, type systems are one of the few common

techniques for improving correctness
■ along with testing and code review

● However, traditional type systems prevent some but not all
run-time errors

Motivation

● Traditional static type systems like Cool’s are already
widely-used by software engineers
○ in practice, type systems are one of the few common

techniques for improving correctness
■ along with testing and code review

● However, traditional type systems prevent some but not all
run-time errors
○ prevented: unsuccessful vtable lookups, missing fields, mixing

up incompatible values (e.g., integers and strings), etc.

Motivation

● Traditional static type systems like Cool’s are already
widely-used by software engineers
○ in practice, type systems are one of the few common

techniques for improving correctness
■ along with testing and code review

● However, traditional type systems prevent some but not all
run-time errors
○ prevented: unsuccessful vtable lookups, missing fields, mixing

up incompatible values (e.g., integers and strings), etc.
○ not prevented: out-of-bounds array accesses, null-pointer

dereferences, memory leaks, mismatched units, etc.

Motivation: Verification

Motivation: Verification

● Many techniques for verification of computer programs have
been proposed
○ e.g., Floyd-Hoare logic, guarded commands, abstract

interpretation, etc. (ask in office hours)

Motivation: Verification

● Many techniques for verification of computer programs have
been proposed
○ e.g., Floyd-Hoare logic, guarded commands, abstract

interpretation, etc. (ask in office hours)
● Unlike static type systems, these techniques have not been

widely-adopted outside of niche industries :(

Motivation: Verification

● Many techniques for verification of computer programs have
been proposed
○ e.g., Floyd-Hoare logic, guarded commands, abstract

interpretation, etc. (ask in office hours)
● Unlike static type systems, these techniques have not been

widely-adopted outside of niche industries :(
○ and computer programs remain full of bugs that a verifier

could have prevented…

Motivation: Verification

● Many techniques for verification of computer programs have
been proposed
○ e.g., Floyd-Hoare logic, guarded commands, abstract

interpretation, etc. (ask in office hours)
● Unlike static type systems, these techniques have not been

widely-adopted outside of niche industries :(
○ and computer programs remain full of bugs that a verifier

could have prevented…
● One of the biggest obstacles to the adoption of verification

technologies in practice is the need to write specifications
○ e.g., pre- and post-conditions, loop invariants, etc.

Pluggable Types as Verification

● Observation: programmers have already shown that they are
willing to write down static types.

Pluggable Types as Verification

● Observation: programmers have already shown that they are
willing to write down static types.
○ Insight: What if we allowed them to write down the

specifications that we need for verification as types?

Pluggable Types as Verification

● Observation: programmers have already shown that they are
willing to write down static types.
○ Insight: What if we allowed them to write down the

specifications that we need for verification as types?
○ Pluggable type systems allow us to do just that

Pluggable Types as Verification

● Observation: programmers have already shown that they are
willing to write down static types.
○ Insight: What if we allowed them to write down the

specifications that we need for verification as types?
○ Pluggable type systems allow us to do just that

● More formally, a pluggable type system extends a host type
system with a set of type qualifiers that model a property of
interest (usually “the program has no bugs of kind X”, for some X)

Pluggable Types as Verification

● Observation: programmers have already shown that they are
willing to write down static types.
○ Insight: What if we allowed them to write down the

specifications that we need for verification as types?
○ Pluggable type systems allow us to do just that

● More formally, a pluggable type system extends a host type
system with a set of type qualifiers that model a property of
interest (usually “the program has no bugs of kind X”, for some X)
○ each type qualifier refines the type in question

■ that is, each qualifier is “more specific” than the base type
(i.e., a subtype)

 @Positive int x

29

Pluggable Types: Terminology

 @Positive int x

30

Basetype

Pluggable Types: Terminology

 @Positive int x

31

BasetypeType qualifier

Pluggable Types: Terminology

 @Negative int x

32

BasetypeType qualifier

Pluggable Types: Terminology

 @NonConstant int x

33

BasetypeType qualifier

Pluggable Types: Terminology

 @Positive int x

34

BasetypeType qualifier

Pluggable Types: Terminology

 @Positive int x

35

BasetypeType qualifier

Qualified type

Pluggable Types: Terminology

● Developers already use static type systems, so they’re familiar
with the general idea of types => relatively easy to use (compared
to other verification techniques)

Pluggable Types: One Slide Summary

● Developers already use static type systems, so they’re familiar
with the general idea of types => relatively easy to use (compared
to other verification techniques)

● Type qualifiers encode property of interest
○ effectively a “second” type system

Pluggable Types: One Slide Summary

● Developers already use static type systems, so they’re familiar
with the general idea of types => relatively easy to use (compared
to other verification techniques)

● Type qualifiers encode property of interest
○ effectively a “second” type system

● Qualified types are like a Cartesian product of a type from the
pluggable type system and a type from the base type system

Pluggable Types: One Slide Summary

● Developers already use static type systems, so they’re familiar
with the general idea of types => relatively easy to use (compared
to other verification techniques)

● Type qualifiers encode property of interest
○ effectively a “second” type system

● Qualified types are like a Cartesian product of a type from the
pluggable type system and a type from the base type system

● Typechecking is naturally modular = fast
○ but this comes at a cost: programmers need to write types

Pluggable Types: One Slide Summary

Pluggable Types: Formalism

● Qualified types are like a Cartesian product of a type from the
pluggable type system and a type from the base type system
○ What does this actually mean?

Pluggable Types: Formalism

● Qualified types are like a Cartesian product of a type from the
pluggable type system and a type from the base type system
○ What does this actually mean?

● Analogy: each pluggable type system is like a dimension in a
traditional coordinate system:

Pluggable Types: Formalism

● Qualified types are like a Cartesian product of a type from the
pluggable type system and a type from the base type system
○ What does this actually mean?

● Analogy: each pluggable type system is like a dimension in a
traditional coordinate system:
○ the base type system is the first dimension

Pluggable Types: Formalism

● Qualified types are like a Cartesian product of a type from the
pluggable type system and a type from the base type system
○ What does this actually mean?

● Analogy: each pluggable type system is like a dimension in a
traditional coordinate system:
○ the base type system is the first dimension
○ each additional qualifier adds one more dimension

Pluggable Types: Formalism

● Qualified types are like a Cartesian product of a type from the
pluggable type system and a type from the base type system
○ What does this actually mean?

● Analogy: each pluggable type system is like a dimension in a
traditional coordinate system:
○ the base type system is the first dimension
○ each additional qualifier adds one more dimension
○ let’s see an example

Pluggable Types: Formalism

Pluggable Types: Formalism: Products

Object

Int Number

Real Rational

Consider this
simple type
hierarchy.

Pluggable Types: Formalism: Products

Object

Int Number

Real Rational

Nullable Object

Nullable Int Nullable Number

Nullable Real Nullable Rational

We can extend it
upwards with a
Nullable qualifier…

Pluggable Types: Formalism: Products

Object

Int Number

Real Rational

+ Object

+ Int

+ Real + Rational

+ Number

Or we can extend it
downwards with a
positive qualifier…

Pluggable Types: Formalism: Products

Object

Int Number

Real Rational

Nullable Object

Nullable Int Nullable Number

Nullable Rational

+ Object

+ Int

+ Real + Rational

+ Number

Nullable Real

Or we can do both
at the same time!

● More formally, in a pluggable type system, every type is a product
type of a type qualifier and a base type.

Pluggable Types: Product Types

● More formally, in a pluggable type system, every type is a product
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a

moment)

Pluggable Types: Product Types

● More formally, in a pluggable type system, every type is a product
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a

moment)
● Instead of writing x : T, we write x : Q T

Pluggable Types: Product Types

● More formally, in a pluggable type system, every type is a product
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a

moment)
● Instead of writing x : T, we write x : Q T

○ T is the base type, Q is the type qualifier from the pluggable
type system of interest

Pluggable Types: Product Types

● More formally, in a pluggable type system, every type is a product
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a

moment)
● Instead of writing x : T, we write x : Q T

○ T is the base type, Q is the type qualifier from the pluggable
type system of interest

● We can extend this formalism arbitrarily, e.g., by writing x : Q
1

 Q
2

 T
○ (As long as Q

1
 and Q

2
 are from different type systems)

Pluggable Types: Product Types

● More formally, in a pluggable type system, every type is a product
type of a type qualifier and a base type.
○ A product type is a logical “and” of two types (more on this in a

moment)
● Instead of writing x : T, we write x : Q T

○ T is the base type, Q is the type qualifier from the pluggable
type system of interest

● We can extend this formalism arbitrarily, e.g., by writing x : Q
1

 Q
2

 T
○ (As long as Q

1
 and Q

2
 are from different type systems)

Pluggable Types: Product Types

Note that there is not really anything
special about T in this formalism - we can
view the base type system as just another
pluggable type that’s “in use by default”

Aside: Curry-Howard Correspondence

● I hinted that product types are “like” a logical AND gate

Aside: Curry-Howard Correspondence

● I hinted that product types are “like” a logical AND gate
● This relationship is one of the cornerstones of the Curry-Howard

correspondence between mathematical proofs and computer
programs

Aside: Curry-Howard Correspondence

● I hinted that product types are “like” a logical AND gate
● This relationship is one of the cornerstones of the Curry-Howard

correspondence between mathematical proofs and computer
programs
○ There is an isomorphism between the proof systems and the

models of computation: these two families of formalisms can be
considered as identical
■ (an isomorphism is a one-to-one correspondence between

the mathematical structures of two objects)

Aside: Curry-Howard Correspondence

● I hinted that product types are “like” a logical AND gate
● This relationship is one of the cornerstones of the Curry-Howard

correspondence between mathematical proofs and computer
programs
○ There is an isomorphism between the proof systems and the

models of computation: these two families of formalisms can be
considered as identical
■ (an isomorphism is a one-to-one correspondence between

the mathematical structures of two objects)
○ In other words: a proof is a program, and the formula it proves

is the type for the program

Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:

Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:
○ It is possible to “run” proofs, as we would computer programs

Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:
○ It is possible to “run” proofs, as we would computer programs

■ This implies that it’s possible to “co-develop” a program and
the proof of its correctness

Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:
○ It is possible to “run” proofs, as we would computer programs

■ This implies that it’s possible to “co-develop” a program and
the proof of its correctness

■ Interactive theorem provers like Rocq or Lean operationalize
this idea

Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:
○ It is possible to “run” proofs, as we would computer programs

■ This implies that it’s possible to “co-develop” a program and
the proof of its correctness

■ Interactive theorem provers like Rocq or Lean operationalize
this idea

○ A type system is just a way to write down a theorem about the
program

Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:
○ It is possible to “run” proofs, as we would computer programs

■ This implies that it’s possible to “co-develop” a program and
the proof of its correctness

■ Interactive theorem provers like Rocq or Lean operationalize
this idea

○ A type system is just a way to write down a theorem about the
program
■ Different type systems let us write down different

theorems

Aside: Curry-Howard Correspondence

● The Curry-Howard Correspondence has deep implications:
○ It is possible to “run” proofs, as we would computer programs

■ This implies that it’s possible to “co-develop” a program and
the proof of its correctness

■ Interactive theorem provers like Rocq or Lean operationalize
this idea

○ A type system is just a way to write down a theorem about the
program
■ Different type systems let us write down different

theorems

For more on this topic, ask
in office hours and/or take
CS 735 with me in Sp26.

Adding Pluggable Types to Cool

● The modifications to most of the type rules to support a pluggable
type system are straightforward: just add a qualifier term to each
type:
○ T -> Q T

Adding Pluggable Types to Cool

● The modifications to most of the type rules to support a pluggable
type system are straightforward: just add a qualifier term to each
type:
○ T -> Q T
○ Effectively, this requires the programmer to write a type

qualifier everywhere they write a type

Adding Pluggable Types to Cool

● The modifications to most of the type rules to support a pluggable
type system are straightforward: just add a qualifier term to each
type:
○ T -> Q T
○ Effectively, this requires the programmer to write a type

qualifier everywhere they write a type
● The subtyping and least upper bound rules are bit trickier (but not

much).

Adding Pluggable Types to Cool

● The modifications to most of the type rules to support a pluggable
type system are straightforward: just add a qualifier term to each
type:
○ T -> Q T
○ Effectively, this requires the programmer to write a type

qualifier everywhere they write a type
● The subtyping and least upper bound rules are bit trickier (but not

much).
○ We need to account for all possible cases

Adding Pluggable Types to Cool

Adding Pluggable Types to Cool: Subtyping

● Subtyping can generally be split into two parts:

Adding Pluggable Types to Cool: Subtyping

● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the

old subtyping rule

Adding Pluggable Types to Cool: Subtyping

● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the

old subtyping rule
○ the type qualifier part

Adding Pluggable Types to Cool: Subtyping

● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the

old subtyping rule
○ the type qualifier part

■ for this part, assume that the type
qualifiers are arranged into a lattice
(sound familiar?)

Adding Pluggable Types to Cool: Subtyping

● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the

old subtyping rule
○ the type qualifier part

■ for this part, assume that the type
qualifiers are arranged into a lattice
(sound familiar?)

Adding Pluggable Types to Cool: Subtyping

Nullable T

Nonnull T

● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the

old subtyping rule
○ the type qualifier part

■ for this part, assume that the type
qualifiers are arranged into a lattice
(sound familiar?)

Adding Pluggable Types to Cool: Subtyping

Nullable T

Nonnull T

Any Int

+ Int

● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the

old subtyping rule
○ the type qualifier part

■ for this part, assume that the type
qualifiers are arranged into a lattice
(sound familiar?)

■ then, we can just read subtyping
information from the lattice

Adding Pluggable Types to Cool: Subtyping

Nullable T

Nonnull T

Any Int

+ Int

● Subtyping can generally be split into two parts:
○ the base types part, which just defers to the

old subtyping rule
○ the type qualifier part

■ for this part, assume that the type
qualifiers are arranged into a lattice
(sound familiar?)

■ then, we can just read subtyping
information from the lattice

Adding Pluggable Types to Cool: Subtyping

Nullable T

Nonnull T

Any Int

+ Int

If this looks similar to abstract
interpretation, that’s because it is
(Cousot proved it in POPL 1997).
Pluggable types can be viewed as
an alternative syntax for abstract
interpretation.

Adding Pluggable Types to Cool: LUB

● Least upper bounds can also be split between the base types and
the qualifiers:
○ LUB(Q

1
 T

1
, Q

2
 T

2
) = LUB(Q

1
, Q

2
) LUB(T

1
, T

2
)

Adding Pluggable Types to Cool: LUB

● Least upper bounds can also be split between the base types and
the qualifiers:
○ LUB(Q

1
 T

1
, Q

2
 T

2
) = LUB(Q

1
, Q

2
) LUB(T

1
, T

2
)

● Some pluggable type systems might have interactions between
qualifiers and base types.

Adding Pluggable Types to Cool: LUB

● Least upper bounds can also be split between the base types and
the qualifiers:
○ LUB(Q

1
 T

1
, Q

2
 T

2
) = LUB(Q

1
, Q

2
) LUB(T

1
, T

2
)

● Some pluggable type systems might have interactions between
qualifiers and base types.
○ e.g., it might not make sense to have a “positive string”

Adding Pluggable Types to Cool: LUB

● Least upper bounds can also be split between the base types and
the qualifiers:
○ LUB(Q

1
 T

1
, Q

2
 T

2
) = LUB(Q

1
, Q

2
) LUB(T

1
, T

2
)

● Some pluggable type systems might have interactions between
qualifiers and base types.
○ e.g., it might not make sense to have a “positive string”
○ in practice, this is fine - just treat like bottom

Adding Pluggable Types to Cool: LUB

Pluggable Types: Defaulting

● While it’s plausible to require programmers to write a type
qualifier at each type use, in practice that’s inconvenient

Pluggable Types: Defaulting

● While it’s plausible to require programmers to write a type
qualifier at each type use, in practice that’s inconvenient
○ instead, we’d like to pick sensible defaults for unqualified

types

Pluggable Types: Defaulting

● While it’s plausible to require programmers to write a type
qualifier at each type use, in practice that’s inconvenient
○ instead, we’d like to pick sensible defaults for unqualified

types
● For example, consider a nullability pluggable type system with

two qualifiers: Nullable and NonNull.

Pluggable Types: Defaulting

● While it’s plausible to require programmers to write a type
qualifier at each type use, in practice that’s inconvenient
○ instead, we’d like to pick sensible defaults for unqualified

types
● For example, consider a nullability pluggable type system with

two qualifiers: Nullable and NonNull.
○ if we see an unqualified type T, should we treat it as:

■ Nullable T?
■ or NonNull T?

Pluggable Types: Defaulting

● While it’s plausible to require programmers to write a type
qualifier at each type use, in practice that’s inconvenient
○ instead, we’d like to pick sensible defaults for unqualified

types
● For example, consider a nullability pluggable type system with

two qualifiers: Nullable and NonNull.
○ if we see an unqualified type T, should we treat it as:

■ Nullable T?
■ or NonNull T?

○ interestingly, either choice is correct! (Why?)

Pluggable Types: Defaulting

● Practical pluggable type systems use a specific defaulting scheme
called CLIMB-to-top

Pluggable Types: Defaulting: CLIMB-to-top

● Practical pluggable type systems use a specific defaulting scheme
called CLIMB-to-top
○ this approach uses a simple dataflow analysis to propagate

types within a method body

Pluggable Types: Defaulting: CLIMB-to-top

● Practical pluggable type systems use a specific defaulting scheme
called CLIMB-to-top
○ this approach uses a simple dataflow analysis to propagate

types within a method body
■ also saves user effort!

Pluggable Types: Defaulting: CLIMB-to-top

● Practical pluggable type systems use a specific defaulting scheme
called CLIMB-to-top
○ this approach uses a simple dataflow analysis to propagate

types within a method body
■ also saves user effort!

○ it defaults any location where dataflow discovers a qualifier
to that qualifier, regardless of the “usual” defaulting rules

Pluggable Types: Defaulting: CLIMB-to-top

● Practical pluggable type systems use a specific defaulting scheme
called CLIMB-to-top
○ this approach uses a simple dataflow analysis to propagate

types within a method body
■ also saves user effort!

○ it defaults any location where dataflow discovers a qualifier
to that qualifier, regardless of the “usual” defaulting rules
■ e.g., in Object x = null, x will be Nullable even if the

usual default is NonNull

Pluggable Types: Defaulting: CLIMB-to-top

● Practical pluggable type systems use a specific defaulting scheme
called CLIMB-to-top
○ this approach uses a simple dataflow analysis to propagate

types within a method body
■ also saves user effort!

○ it defaults any location where dataflow discovers a qualifier
to that qualifier, regardless of the “usual” defaulting rules
■ e.g., in Object x = null, x will be Nullable even if the

usual default is NonNull
○ there are a number of other subtleties which I’ll elide for time

Pluggable Types: Defaulting: CLIMB-to-top

● Many pluggable type systems exist to enforce some kind of
custom type rule (which might replace an existing rule)

Pluggable Types: Custom Type Rules

● Many pluggable type systems exist to enforce some kind of
custom type rule (which might replace an existing rule)
○ for example, a nullability type system might have a custom

rule that forbids dereferencing a type with a nullable
qualifier:

Pluggable Types: Custom Type Rules

Γ ⊢ e
1

 : NonNull T Γ ⊢ e
2

 : Q T

Γ ⊢ e
1

.e
2

: Q T
[Deref]

● Many pluggable type systems exist to enforce some kind of
custom type rule (which might replace an existing rule)
○ for example, a nullability type system might have a custom

rule that forbids dereferencing a type with a nullable
qualifier:

● These rules can be arbitrary, but generally the type system
designer chooses them to make some soundness proof work

Pluggable Types: Custom Type Rules

Γ ⊢ e
1

 : NonNull T Γ ⊢ e
2

 : Q T

Γ ⊢ e
1

.e
2

: Q T
[Deref]

Pluggable Types: Examples

● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

Pluggable Types: Examples

● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

● Equality tests (@Interned)
○ >200 problems in Xerces, Lucene, ...

Pluggable Types: Examples

● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

● Equality tests (@Interned)
○ >200 problems in Xerces, Lucene, ...

● Concurrency / locking (@GuardedBy)
○ >500 errors in BitcoinJ, Derby, Guava, Tomcat, ...

Pluggable Types: Examples

● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

● Equality tests (@Interned)
○ >200 problems in Xerces, Lucene, ...

● Concurrency / locking (@GuardedBy)
○ >500 errors in BitcoinJ, Derby, Guava, Tomcat, ...

● Array bounds (@IndexFor, @NonNegative, etc.)
○ defects in Google Guava, JFreeChart, …

Pluggable Types: Examples

● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

● Equality tests (@Interned)
○ >200 problems in Xerces, Lucene, ...

● Concurrency / locking (@GuardedBy)
○ >500 errors in BitcoinJ, Derby, Guava, Tomcat, ...

● Array bounds (@IndexFor, @NonNegative, etc.)
○ defects in Google Guava, JFreeChart, …

● Resource leaks (@MustCall)
○ defects in Zookeeper, Hadoop, HBase, …

Pluggable Types: Examples

● Null dereferences (@NonNull)
○ >200 errors in Google Collections, javac, ...

● Equality tests (@Interned)
○ >200 problems in Xerces, Lucene, ...

● Concurrency / locking (@GuardedBy)
○ >500 errors in BitcoinJ, Derby, Guava, Tomcat, ...

● Array bounds (@IndexFor, @NonNegative, etc.)
○ defects in Google Guava, JFreeChart, …

● Resource leaks (@MustCall)
○ defects in Zookeeper, Hadoop, HBase, …

Pluggable Types: Examples

These last two were
part of my PhD work!

Trivia Break: History of Mathematics

This Ancient Greek mathematician, physicist, engineer, astronomer,
and inventor from the ancient city of Syracuse in Sicily is regarded as
the greatest mathematician of ancient history. He anticipated
modern calculus and analysis by applying the concept of the infinitely
small and the method of exhaustion to derive and rigorously prove
many geometrical theorems. These include the area of a circle, the
surface area and volume of a sphere, the area of an ellipse, the area
under a parabola, the volume of a segment of a paraboloid of
revolution, the volume of a segment of a hyperboloid of revolution,
and the area of a spiral.

Pluggable Types: Deeper Dive Into Nullability

● Let’s consider one specific example in detail: nullability in Java
○ Tony Hoare’s “billion-dollar mistake” etc

Pluggable Types: Deeper Dive Into Nullability

● Let’s consider one specific example in detail: nullability in Java
○ Tony Hoare’s “billion-dollar mistake” etc

● While my examples in this section will all concern nullability,
many of the principles at play are applicable to any pluggable
typechecker

Pluggable Types: Deeper Dive Into Nullability

● Let’s consider one specific example in detail: nullability in Java
○ Tony Hoare’s “billion-dollar mistake” etc

● While my examples in this section will all concern nullability,
many of the principles at play are applicable to any pluggable
typechecker
○ I’ll try to point these out as we come to them, but as a hint

about exam questions - asking you about how one of these
principles might apply to a different type system would be
fair game

Pluggable Types: Deeper Dive Into Nullability

● Where is the defect in the following code?

Nullability: Whose Bug Is This?

● Where is the defect in the following code?
○ Whose fault: library implementer or client?

Nullability: Whose Bug Is This?

● Where is the defect in the following code?
○ Whose fault: library implementer or client?

String op(Data in) {
 return "transform: " + in.getF();
}

Nullability: Whose Bug Is This?

library

● Where is the defect in the following code?
○ Whose fault: library implementer or client?

String op(Data in) {
 return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

library

client

● Where is the defect in the following code?
○ Whose fault: library implementer or client?

String op(Data in) {
 return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

Cannot decide without
a specification!

● Specification option 1:
○ Non-null parameter

String op(@NonNull Data in) {
 return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

● Specification option 1:
○ Non-null parameter

String op(@NonNull Data in) {
 return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

with this specification, defect is here!

● Specification option 2:
○ Nullable parameter

String op(@Nullable Data in) {
 return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

● Specification option 2:
○ Nullable parameter

String op(@Nullable Data in) {
 return "transform: " + in.getF();
}

String s = op(null);

Nullability: Whose Bug Is This?

with this specification, defect
is here, instead!

Nullability: Basic Type System

● Two type qualifiers (= abstract values):

Nullability: Basic Type System

● Two type qualifiers (= abstract values):
○ @Nullable = might be null

Nullability: Basic Type System

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

Nullability: Basic Type System

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

● Default is @NonNull

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

● Nearly no annotations required in method bodies

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

● Nearly no annotations required in method bodies
○ dataflow analysis handles most cases (CLIMB-to-top)

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:

● Two type qualifiers (= abstract values):
○ @Nullable = might be null
○ @NonNull = definitely not null

● Default is @NonNull
○ requires fewer annotations
○ makes the dangerous case explicit
○ note: opposite of Java’s implicit default!

● Nearly no annotations required in method bodies
○ dataflow analysis handles most cases (CLIMB-to-top)
○ …except for e.g., generics: List<@Nullable String>

Nullability: Basic Type System
@Nullable

@NonNull

Lattice:

Nullability: Flow-Sensitive Type Refinement

● Dataflow analysis performs refinement within method bodies:

if (myField != null) {
myField.hashCode();

}

Nullability: Flow-Sensitive Type Refinement

● Dataflow analysis performs refinement within method bodies:

if (myField != null) {
myField.hashCode();

}

● No need to e.g., declare a new local variable

Nullability: Flow-Sensitive Type Refinement

● Dataflow analysis performs refinement within method bodies:

if (myField != null) {
myField.hashCode();

}

● No need to e.g., declare a new local variable
● This is the same “refinement” that we saw when we talked about

abstract interpretation earlier

Nullability: Flow-Sensitive Type Refinement

if (myField != null) {
method1();
myField.hashCode();

}

● What about the code above? Should it typecheck?

Nullability: Side-Effects

if (myField != null) {
method1();
myField.hashCode();

}

● What about the code above? Should it typecheck?
○ No! method1() could side-effect myField and set it to null

Nullability: Side-Effects

if (myField != null) {
method1();
myField.hashCode();

}

● What about the code above? Should it typecheck?
○ No! method1() could side-effect myField and set it to null
○ Three ways to tell the typechecker this is ok:

■ @SideEffectFree void method1() { ... }
■ @MonotonicNonNull myField;
■ @EnsuresNonNull("myField") method1() {...}

Nullability: Side-Effects

Nullability: Side-Effect Annotations

● Three annotations for methods:

Nullability: Side-Effect Annotations

● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state

Nullability: Side-Effect Annotations

● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state
○ @Deterministic

■ If called with == args again, gives == result

Nullability: Side-Effect Annotations

● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state
○ @Deterministic

■ If called with == args again, gives == result
○ @Pure

■ Both side-effect-free and deterministic

Nullability: Side-Effect Annotations

● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state
○ @Deterministic

■ If called with == args again, gives == result
○ @Pure

■ Both side-effect-free and deterministic
● These are method annotations, not type qualifiers

Nullability: Side-Effect Annotations

● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state
○ @Deterministic

■ If called with == args again, gives == result
○ @Pure

■ Both side-effect-free and deterministic
● These are method annotations, not type qualifiers

○ Checker Framework trusts rather than checks them by default

Nullability: Side-Effect Annotations

● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state
○ @Deterministic

■ If called with == args again, gives == result
○ @Pure

■ Both side-effect-free and deterministic
● These are method annotations, not type qualifiers

○ Checker Framework trusts rather than checks them by default
■ checking these with few false positives is an open problem

Nullability: Side-Effect Annotations

● Three annotations for methods:
○ @SideEffectFree

■ Does not modify externally-visible state
○ @Deterministic

■ If called with == args again, gives == result
○ @Pure

■ Both side-effect-free and deterministic
● These are method annotations, not type qualifiers

○ Checker Framework trusts rather than checks them by default
■ checking these with few false positives is an open problem

Nullability: Side-Effect Annotations

These can be used with any Checker
Framework checker, not just the
nullability checker

Nullability: Why @Deterministic?

● Consider the following code:

if (method2() != null) {
method2().hashCode();

}

Nullability: Why @Deterministic?

● Consider the following code:

if (method2() != null) {
method2().hashCode();

}

● This code is safe if and only if method2() returns the same value
every time we call it

Nullability: Why @Deterministic?

● Consider the following code:

if (method2() != null) {
method2().hashCode();

}

● This code is safe if and only if method2() returns the same value
every time we call it
○ @Deterministic exactly expresses this property

Nullability: Why @Deterministic?

● Consider the following code:

if (method2() != null) {
method2().hashCode();

}

● This code is safe if and only if method2() returns the same value
every time we call it
○ @Deterministic exactly expresses this property
○ Why might a method not be deterministic?

Nullability: Why @Deterministic?

Nullability: Lazy Initialization

● Another way to prove that a value is persistent across
side-effects is the @MonotonicNonNull type annotation, written
on a field type

Nullability: Lazy Initialization

● Another way to prove that a value is persistent across
side-effects is the @MonotonicNonNull type annotation, written
on a field type
○ Might be null or non-null

Nullability: Lazy Initialization

● Another way to prove that a value is persistent across
side-effects is the @MonotonicNonNull type annotation, written
on a field type
○ Might be null or non-null
○ May only be (re-)assigned a non-null value

Nullability: Lazy Initialization

● Another way to prove that a value is persistent across
side-effects is the @MonotonicNonNull type annotation, written
on a field type
○ Might be null or non-null
○ May only be (re-)assigned a non-null value

● Purpose: avoid re-checking

Nullability: Lazy Initialization

● Another way to prove that a value is persistent across
side-effects is the @MonotonicNonNull type annotation, written
on a field type
○ Might be null or non-null
○ May only be (re-)assigned a non-null value

● Purpose: avoid re-checking
● Once non-null, always non-null

○ Example: Singleton pattern

Nullability: Lazy Initialization

● Another way to prove that a value is persistent across
side-effects is the @MonotonicNonNull type annotation, written
on a field type
○ Might be null or non-null
○ May only be (re-)assigned a non-null value

● Purpose: avoid re-checking
● Once non-null, always non-null

○ Example: Singleton pattern
● Fields with this type don’t need to be “unrefined” at

possibly-side-effecting method calls

Nullability: Lazy Initialization

Nullability: Method Pre- and Post-conditions

● More method annotations that express facts that a method
requires or guarantees about program elements other than
parameters/return values (e.g., in-scope fields)

Nullability: Method Pre- and Post-conditions

● More method annotations that express facts that a method
requires or guarantees about program elements other than
parameters/return values (e.g., in-scope fields)
○ @RequiresNonNull (pre-condition)

Nullability: Method Pre- and Post-conditions

● More method annotations that express facts that a method
requires or guarantees about program elements other than
parameters/return values (e.g., in-scope fields)
○ @RequiresNonNull (pre-condition)
○ @EnsuresNonNull (post-condition)

Nullability: Method Pre- and Post-conditions

● More method annotations that express facts that a method
requires or guarantees about program elements other than
parameters/return values (e.g., in-scope fields)
○ @RequiresNonNull (pre-condition)
○ @EnsuresNonNull (post-condition)
○ @EnsuresNonNullIf (conditional post-condition)

Nullability: Method Pre- and Post-conditions

● More method annotations that express facts that a method
requires or guarantees about program elements other than
parameters/return values (e.g., in-scope fields)
○ @RequiresNonNull (pre-condition)
○ @EnsuresNonNull (post-condition)
○ @EnsuresNonNullIf (conditional post-condition)

● Example:
@EnsuresNonNullIf(expression="#1", result=true)

 public boolean equals(@Nullable Object obj) { ... }

Nullability: Method Pre- and Post-conditions

Nullability: Qualifier Polymorphism

/** Interns a String, and handles null. */
@PolyNull String intern(@PolyNull String a) {
 if (a == null) {
 return null;
 }
 return a.intern();
}

Nullability: Qualifier Polymorphism

/** Interns a String, and handles null. */
@PolyNull String intern(@PolyNull String a) {
 if (a == null) {
 return null;
 }
 return a.intern();
}

● Like defining two overloaded methods:
○ @NonNull String intern(@NonNull String a) {...}

○ @Nullable String intern(@Nullable String a) {...}

Nullability: Qualifier Polymorphism

● It’s possible for an @NonNull field to contain null at run time!
How?

Nullability: Initialization

● It’s possible for an @NonNull field to contain null at run time!
How?

● Consider the following code:
@NonNull String name;
MyClass() { // constructor

 ... this.name.hashCode() ...
}

Nullability: Initialization

● It’s possible for an @NonNull field to contain null at run time!
How?

● Consider the following code:
@NonNull String name;
MyClass() { // constructor

 ... this.name.hashCode() ...
}

● Problem: Java initializes all non-primitive fields to null during
object initialization, before running the constructor

Nullability: Initialization

● It’s possible for an @NonNull field to contain null at run time!
How?

● Consider the following code:
@NonNull String name;
MyClass() { // constructor

 ... this.name.hashCode() ...
}

● Problem: Java initializes all non-primitive fields to null during
object initialization, before running the constructor
○ Does Cool do this? How do you know?

Nullability: Initialization

● It’s possible for an @NonNull field to contain null at run time!
How?

● Consider the following code:
@NonNull String name;
MyClass() { // constructor

 ... this.name.hashCode() ...
}

● Problem: Java initializes all non-primitive fields to null during
object initialization, before running the constructor
○ Does Cool do this? How do you know?

■ (new operational semantics rule)

Nullability: Initialization

● So, another type system tracks the initialization status of each
object:

Nullability: Initialization

● So, another type system tracks the initialization status of each
object:
○ @Initialized = constructor has completed

Nullability: Initialization

● So, another type system tracks the initialization status of each
object:
○ @Initialized = constructor has completed
○ @UnderInitialization(Frame.class)

■ Frame’s constructor is currently executing

Nullability: Initialization

● So, another type system tracks the initialization status of each
object:
○ @Initialized = constructor has completed
○ @UnderInitialization(Frame.class)

■ Frame’s constructor is currently executing
○ @UnknownInitialization(Frame.class)

■ Might be initialized or under initialization

Nullability: Initialization

● So, another type system tracks the initialization status of each
object:
○ @Initialized = constructor has completed
○ @UnderInitialization(Frame.class)

■ Frame’s constructor is currently executing
○ @UnknownInitialization(Frame.class)

■ Might be initialized or under initialization
● Type rule for initialization: cannot dereference fields (even

nonnull fields!) until the object is @Initialized

Nullability: Initialization

● So, another type system tracks the initialization status of each
object:
○ @Initialized = constructor has completed
○ @UnderInitialization(Frame.class)

■ Frame’s constructor is currently executing
○ @UnknownInitialization(Frame.class)

■ Might be initialized or under initialization
● Type rule for initialization: cannot dereference fields (even

nonnull fields!) until the object is @Initialized
○ What’s the type hierarchy/lattice for these?

Nullability: Initialization

● Nullability checker in the CF also has a type system for tracking
which values are known to be keys in which maps

Nullability: Auxiliary Type Systems

● Nullability checker in the CF also has a type system for tracking
which values are known to be keys in which maps
○ Map.get() can return null in general, but map operations

are so common that we need to handle the common case

Nullability: Auxiliary Type Systems

● Nullability checker in the CF also has a type system for tracking
which values are known to be keys in which maps
○ Map.get() can return null in general, but map operations

are so common that we need to handle the common case
○ @KeyFor(“m”) means “this value is definitely a valid key in

map m, so calling Map.get() on this value will return
something nonnull”

Nullability: Auxiliary Type Systems

● Nullability checker in the CF also has a type system for tracking
which values are known to be keys in which maps
○ Map.get() can return null in general, but map operations

are so common that we need to handle the common case
○ @KeyFor(“m”) means “this value is definitely a valid key in

map m, so calling Map.get() on this value will return
something nonnull”

● These sort of auxiliary type systems are a common pattern in
practical typecheckers

Nullability: Auxiliary Type Systems

● Nullability checker in the CF also has a type system for tracking
which values are known to be keys in which maps
○ Map.get() can return null in general, but map operations

are so common that we need to handle the common case
○ @KeyFor(“m”) means “this value is definitely a valid key in

map m, so calling Map.get() on this value will return
something nonnull”

● These sort of auxiliary type systems are a common pattern in
practical typecheckers
○ My first project in grad school had 7!

Nullability: Auxiliary Type Systems

Nullability: Warning Suppression

● Practical checkers still have false positives

Nullability: Warning Suppression

● Practical checkers still have false positives
○ Users need ways to suppress them easily, or they won’t use

the tools

Nullability: Warning Suppression

● Practical checkers still have false positives
○ Users need ways to suppress them easily, or they won’t use

the tools
● Two main ways:

Nullability: Warning Suppression

● Practical checkers still have false positives
○ Users need ways to suppress them easily, or they won’t use

the tools
● Two main ways:

○ Casts. A cast in “regular Java” (without a pluggable
typechecker) is already used to suppress a warning from the
regular type system
■ Can also write a type qualifier in the casted-to type

Nullability: Warning Suppression

● Practical checkers still have false positives
○ Users need ways to suppress them easily, or they won’t use

the tools
● Two main ways:

○ Casts. A cast in “regular Java” (without a pluggable
typechecker) is already used to suppress a warning from the
regular type system
■ Can also write a type qualifier in the casted-to type

○ Explicit warning suppressions via @SuppressWarnings
■ More flexible and easier to read

Nullability: Warning Suppression

Nullability: Effectiveness

Nullability: Effectiveness

Pluggable Types: State-of-the-Art

● Extant type systems are pretty good

Pluggable Types: State-of-the-Art

● Extant type systems are pretty good
○ Nullness Checker I’ve just shown is in wide use

Pluggable Types: State-of-the-Art

● Extant type systems are pretty good
○ Nullness Checker I’ve just shown is in wide use
○ Uber’s NullAway is a big competitor

■ “No false negatives in practice”

Pluggable Types: State-of-the-Art

● Extant type systems are pretty good
○ Nullness Checker I’ve just shown is in wide use
○ Uber’s NullAway is a big competitor

■ “No false negatives in practice”
○ Type systems for other problems (e.g., resource leaks)

becoming more popular

Pluggable Types: State-of-the-Art

● Extant type systems are pretty good
○ Nullness Checker I’ve just shown is in wide use
○ Uber’s NullAway is a big competitor

■ “No false negatives in practice”
○ Type systems for other problems (e.g., resource leaks)

becoming more popular
● Big problem: getting people to use them

Pluggable Types: State-of-the-Art

● Extant type systems are pretty good
○ Nullness Checker I’ve just shown is in wide use
○ Uber’s NullAway is a big competitor

■ “No false negatives in practice”
○ Type systems for other problems (e.g., resource leaks)

becoming more popular
● Big problem: getting people to use them

○ Annotation burden for legacy code is the most serious issue

Pluggable Types: State-of-the-Art

● Extant type systems are pretty good
○ Nullness Checker I’ve just shown is in wide use
○ Uber’s NullAway is a big competitor

■ “No false negatives in practice”
○ Type systems for other problems (e.g., resource leaks)

becoming more popular
● Big problem: getting people to use them

○ Annotation burden for legacy code is the most serious issue
○ Now I’m going to talk about some ongoing research work

Pluggable Types: State-of-the-Art

Solution: Type Inference

● Traditional type inference: constraint solving

202

Solution: Type Inference

● Traditional type inference: constraint solving
○ Problem: need a new constraint system for each type system

203

Solution: Type Inference

● Traditional type inference: constraint solving
○ Problem: need a new constraint system for each type system

● Recent work has proposed 3 alternative type inference techniques:
○ Checker Framework Whole-Program Inference (ASE 2023)
○ NullAway Annotator (FSE 2023)
○ NullGTN (arxiv 2024)

204

CF Whole-Program Inference (ASE 2023)

205

CF Whole-Program Inference (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies

206
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF Whole-Program Inference (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables

207
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF Whole-Program Inference (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis

208
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF Whole-Program Inference (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

209
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF Whole-Program Inference (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

● Key idea: iteratively run local inference and propagate results

210
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF Whole-Program Inference (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

● Key idea: iteratively run local inference and propagate results
○ Advantage: works with any typechecker built on a framework

“for free” (no per-typechecker code required)

211
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF WPI: Example
class DataHandler {
 Data data = null;
 +@EnsuresNonNull(expr={"this.data"})
 void lazyInit() {
 if (data == null)
 data = new Data(...);
 }
 String serialize() {
 lazyInit();
 return data.toString(); // safe
 }
}

212
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF WPI: Example
class DataHandler {
 +@Nullable Data data = null;
 +@EnsuresNonNull(expr={"this.data"})
 void lazyInit() {
 if (data == null)
 data = new Data(...);
 }
 String serialize() {
 lazyInit();
 return data.toString(); // safe
 }
}

213
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

local dataflow proves
that null can flow into
this field

CF WPI: Example
class DataHandler {
 +@Nullable Data data = null;
 +@EnsuresNonNull(expr={"this.data"})
 void lazyInit() {
 if (data == null)
 data = new Data(...);
 }
 String serialize() {
 lazyInit();
 return data.toString(); // safe
 }
}

214
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF also supports postcondition
annotations (WPI advantage!)

CF WPI: Example
class DataHandler {
 +@Nullable Data data = null;
 +@EnsuresNonNull(expr={"this.data"})
 void lazyInit() {
 if (data == null)
 data = new Data(...);
 }
 String serialize() {
 lazyInit();
 return data.toString(); // safe
 }
}

215
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

CF also supports postcondition
annotations (WPI advantage!),
enabling verification of this code

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

216

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

● Iterative, bounded-depth search for annotation set that minimizes
checker warnings
○ With some optimizations to reduce the search space

217

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

● Iterative, bounded-depth search for annotation set that minimizes
checker warnings
○ With some optimizations to reduce the search space

● Only implementation is for NullAway (FSE ‘19, developed at Uber)

218

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

● Iterative, bounded-depth search for annotation set that minimizes
checker warnings
○ With some optimizations to reduce the search space

● Only implementation is for NullAway (FSE ‘19, developed at Uber)
○ Only infers @Nullable annotations

219

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator: Example

220

class DataHandler {
 Data data = null;
 +@EnsuresNonNull(expr={"this.data"})
 void lazyInit() {
 if (data == null)
 data = new Data(...);
 }
 String serialize() {
 lazyInit();
 return data.toString(); // safe
 }
}

(same example from a few slides ago…)

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator: Example

221

class DataHandler {
 Data data = null;
 +@EnsuresNonNull(expr={"this.data"})
 void lazyInit() {
 if (data == null)
 data = new Data(...);
 }
 String serialize() {
 lazyInit();
 return data.toString(); // safe
 }
}

(same example from a few slides ago…)

Annotator considers adding an
@Nullable annotation, but does not:
doing so would not decrease the error
count

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator: Example

222

class DataHandler {
 Data data = null;
 +@EnsuresNonNull(expr={"this.data"})
 void lazyInit() {
 if (data == null)
 data = new Data(...);
 }
 String serialize() {
 lazyInit();
 return data.toString(); // safe
 }
}

(same example from a few slides ago…)

Annotator considers adding an
@Nullable annotation, but does not:
doing so would not decrease the error
count (new error here)

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator: Another Example

223

class MyActivity {
 Name name;
 Address addr;
 MyActivity() {
 name = null; addr = null; }
 @Initializer
 void onStart() { name = defaultName(); }
 void doFirst() { name.showFirst(); }
 void doLast() {
 name.showLast();
 if (addr != null) addr.show();
} }

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator: Another Example

224

class MyActivity {
 Name name;
 Address addr;
 MyActivity() {
 name = null; addr = null; }
 @Initializer
 void onStart() { name = defaultName(); }
 void doFirst() { name.showFirst(); }
 void doLast() {
 name.showLast();
 if (addr != null) addr.show();
} }

Annotator does not add @Nullable to
name, because it would add two new
errors (correct answer!)

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullAway Annotator: Another Example

225

class MyActivity {
 Name name;
 +@Nullable Address addr;
 MyActivity() {
 name = null; addr = null; }
 @Initializer
 void onStart() { name = defaultName(); }
 void doFirst() { name.showFirst(); }
 void doLast() {
 name.showLast();
 if (addr != null) addr.show();
} }

However, it does add
@Nullable to addr (always
null-checked before use)

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model

226

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations

227

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would

228

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would
● Trained on ~32k classes with at least one @Nullable annotation

from GitHub
○ Data from many sources: checkers, documentation, etc.

229

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

NullGTN (arxiv 2024/ongoing work)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would
● Trained on ~32k classes with at least one @Nullable annotation

from GitHub
○ Data from many sources: checkers, documentation, etc.

● Only infers @Nullable

230

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullGTN: Example

public int sumLengths(
 int [] v1,
 int [] v2) {
 int result = 0;
 result += (v1 == null) ? 0 : v1.length;
 result += (v2 == null) ? 0 : v2.length;
 return result;
}

231

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

NullGTN: Example

public int sumLengths(
 int +@Nullable [] v1,
 int +@Nullable [] v2) {
 int result = 0;
 result += (v1 == null) ? 0 : v1.length;
 result += (v2 == null) ? 0 : v2.length;
 return result;
}

232

NullGTN can infer
@Nullable here even if
there are no call sites

Key Differences

233

Key Differences

● CF WPI implementation is the only one that supports multiple
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

234

Key Differences

● CF WPI implementation is the only one that supports multiple
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

235

Implication: comparison has to be focused
on nullability type systems, for now

Key Differences

● CF WPI implementation is the only one that supports multiple
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

● Only NullGTN can possibly annotate entrypoint parameters
○ (Assuming no test cases)
○ In WPI’s evaluation, this was the largest cause of missed

human-written annotations (11%)

236

Pluggable Types in Practice

● checkerframework.org has a few dozen checkers
○ also practical to build your own!

http://checkerframework.org

Pluggable Types in Practice

● checkerframework.org has a few dozen checkers
○ also practical to build your own!

● Specialized checkers are now being built at tech companies
○ e.g., NullAway at Uber

http://checkerframework.org

Pluggable Types in Practice

● checkerframework.org has a few dozen checkers
○ also practical to build your own!

● Specialized checkers are now being built at tech companies
○ e.g., NullAway at Uber

● If we can get type inference working, maybe these will be in
widespread use in a few more years :)

http://checkerframework.org

