
Operational Semantics,
Part 2

Martin Kellogg

● Review: basics of operational semantics
● Operational semantics of Cool
● (if time): introduction to static analysis

○ further if time: get into abstract interpretation

Agenda

● Review: basics of operational semantics
● Operational semantics of Cool
● (if time): introduction to static analysis

○ further if time: get into abstract interpretation

Agenda

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

Review: High-level Idea of Op. Sem.

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

● Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values.

Review: High-level Idea of Op. Sem.

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

● Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values.
○ environment: names -> (abstract) locations
○ store: (abstract) locations -> values

Review: High-level Idea of Op. Sem.

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

● Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values.
○ environment: names -> (abstract) locations
○ store: (abstract) locations -> values

● We will specify Cool’s semantics via logical rules of inference
that specify how to compute the “next step” in the program

Review: High-level Idea of Op. Sem.

Review: Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:

Review: Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;
○ and E, the current variable environment;
○ and S, the current store;
○ and if the evaluation of e terminates, then
○ the returned value is v
○ and the new store is S’

Review: Operational Semantics for Base Values

 so, E, S ⊢ true : Bool(true), S

 so, E, S ⊢ false : Bool(false), S

 so, E, S ⊢ i : Int(i), S

i is any integer literal

 so, E, S ⊢ s : String(s, n), S

s is any string literal
n is the length of s

Review: Operational Semantics for Variables

 so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

● Note the double lookup of variables
○ First from name to location (at compile time)
○ Then from location to value (at run time)

Review: Operational Semantics for Assignments

 so, E, S ⊢ id <- e : v, S
2

 so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

● A three-step process:
○ Evaluate the right-hand side to get a value v and a new

store S
1

○ Fetch the location of the assigned variable
○ The result is the value v and an updated store S

2

Operational Semantics for Conditionals

 so, E, S ⊢ if e
1

 then e
2

 else e
3

 fi: v, S
2

Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

 so, E, S ⊢ if e
1

 then e
2

 else e
3

 fi: v, S
2

Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:

 so, E, S ⊢ if e
1

 then e
2

 else e
3

 fi: v, S
2

Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S

1

 so, E, S ⊢ if e
1

 then e
2

 else e
3

 fi: v, S
2

Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S

1

○ then e
2

 can be evaluated.

 so, E, S ⊢ if e
1

 then e
2

 else e
3

 fi: v, S
2

Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S

1

○ then e
2

 can be evaluated.
● The result of evaluating e

1
 is a boolean object

○ the type rules ensure this

 so, E, S ⊢ if e
1

 then e
2

 else e
3

 fi: v, S
2

Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S

1

○ then e
2

 can be evaluated.
● The result of evaluating e

1
 is a boolean object

○ the type rules ensure this
○ there is another, similar, rule for Bool(false)

 so, E, S ⊢ { e
1

 ; … ; e
n
 ; } : v

n
, S

n

Operational Semantics for Sequences
 so, E, S ⊢ e

1
 : v

1
, S

1

 so, E, S
1

 ⊢ e
2

 : v
2

, S
2

…
 so, E, S

n-1
 ⊢ e

n
 : v

n
, S

n

 so, E, S ⊢ { e
1

 ; … ; e
n
 ; } : v

n
, S

n

Operational Semantics for Sequences
 so, E, S ⊢ e

1
 : v

1
, S

1

 so, E, S
1

 ⊢ e
2

 : v
2

, S
2

…
 so, E, S

n-1
 ⊢ e

n
 : v

n
, S

n

● Again, the threading of the store expresses the intended
execution sequence

 so, E, S ⊢ { e
1

 ; … ; e
n
 ; } : v

n
, S

n

Operational Semantics for Sequences
 so, E, S ⊢ e

1
 : v

1
, S

1

 so, E, S
1

 ⊢ e
2

 : v
2

, S
2

…
 so, E, S

n-1
 ⊢ e

n
 : v

n
, S

n

● Again, the threading of the store expresses the intended
execution sequence

● Only the last value is used

 so, E, S ⊢ { e
1

 ; … ; e
n
 ; } : v

n
, S

n

Operational Semantics for Sequences
 so, E, S ⊢ e

1
 : v

1
, S

1

 so, E, S
1

 ⊢ e
2

 : v
2

, S
2

…
 so, E, S

n-1
 ⊢ e

n
 : v

n
, S

n

● Again, the threading of the store expresses the intended
execution sequence

● Only the last value is used
● But, all side-effects are collected (how?)

Operational Semantics for While (1)

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
1

Operational Semantics for While (1)

 so, E, S ⊢ e
1

 : Bool(false), S
1

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
1

Operational Semantics for While (1)

 so, E, S ⊢ e
1

 : Bool(false), S
1

● If e
1

 evaluates to Bool(false), then the loop terminates
immediately

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
1

Operational Semantics for While (1)

 so, E, S ⊢ e
1

 : Bool(false), S
1

● If e
1

 evaluates to Bool(false), then the loop terminates
immediately
○ with the side-effects from the evaluation of e

1

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
1

Operational Semantics for While (1)

 so, E, S ⊢ e
1

 : Bool(false), S
1

● If e
1

 evaluates to Bool(false), then the loop terminates
immediately
○ with the side-effects from the evaluation of e

1

○ and with the (arbitrary) result of void

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
1

Operational Semantics for While (1)

 so, E, S ⊢ e
1

 : Bool(false), S
1

● If e
1

 evaluates to Bool(false), then the loop terminates
immediately
○ with the side-effects from the evaluation of e

1

○ and with the (arbitrary) result of void
● The type rules ensure that e

1
 evaluates to a boolean object

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
1

Operational Semantics for While (1)

 so, E, S ⊢ e
1

 : Bool(false), S
1

● If e
1

 evaluates to Bool(false), then the loop terminates
immediately
○ with the side-effects from the evaluation of e

1

○ and with the (arbitrary) result of void
● The type rules ensure that e

1
 evaluates to a boolean object

In-class exercise: given this rule for a false
loop guard, what do you think the rule for a
true loop guard looks like?
● In groups of 2 or 3, write down a rule.
● I will collect these; put your UCIDs/emails

on it (mostly graded on completion)

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
3

Operational Semantics for While (2)

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

 so, E, S
2

 ⊢ while e
1

 loop e
2

 pool : void, S
3

(for those reading later online, this is the answer to the in-class exercise on the previous slide)

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
3

Operational Semantics for While (2)

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

 so, E, S
2

 ⊢ while e
1

 loop e
2

 pool : void, S
3

● Note the sequencing (S -> S
1

 -> S
2

 -> S
3

)

(for those reading later online, this is the answer to the in-class exercise on the previous slide)

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
3

Operational Semantics for While (2)

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

 so, E, S
2

 ⊢ while e
1

 loop e
2

 pool : void, S
3

● Note the sequencing (S -> S
1

 -> S
2

 -> S
3

)
● Note how looping is expressed (recursively!)

○ Evaluation of a while loop is expressed in terms of evaluating a
while loop in another state

(for those reading later online, this is the answer to the in-class exercise on the previous slide)

 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
3

Operational Semantics for While (2)

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

 so, E, S
2

 ⊢ while e
1

 loop e
2

 pool : void, S
3

● Note the sequencing (S -> S
1

 -> S
2

 -> S
3

)
● Note how looping is expressed (recursively!)

○ Evaluation of a while loop is expressed in terms of evaluating a
while loop in another state

● The result of evaluating e
2

 is discarded; only the side-effects are kept

(for those reading later online, this is the answer to the in-class exercise on the previous slide)

Operational Semantics for Let (1)

 so, E, S
1

 ⊢ let id : T <- e
1

 in e
2

 : v
2

, S
2

Operational Semantics for Let (1)

 so, E, S ⊢ e
1

 : v
1

, S
1

 so, ?, ? ⊢ e
2

 : v
2

, S
2

 so, E, S
1

 ⊢ let id : T <- e
1

 in e
2

 : v
2

, S
2

Operational Semantics for Let (1)

 so, E, S ⊢ e
1

 : v
1

, S
1

 so, ?, ? ⊢ e
2

 : v
2

, S
2

● What is the context in which e
2

 should be evaluated?

 so, E, S
1

 ⊢ let id : T <- e
1

 in e
2

 : v
2

, S
2

Operational Semantics for Let (1)

 so, E, S ⊢ e
1

 : v
1

, S
1

 so, ?, ? ⊢ e
2

 : v
2

, S
2

● What is the context in which e
2

 should be evaluated?
○ Environment should be like E but with a new binding of id

to a fresh location lnew

 so, E, S
1

 ⊢ let id : T <- e
1

 in e
2

 : v
2

, S
2

Operational Semantics for Let (1)

 so, E, S ⊢ e
1

 : v
1

, S
1

 so, ?, ? ⊢ e
2

 : v
2

, S
2

● What is the context in which e
2

 should be evaluated?
○ Environment should be like E but with a new binding of id

to a fresh location lnew
○ Store like S

1
 but with lnew mapped to v

1

Operational Semantics for Let (2)

● We write lnew
= newloc(S) to say that lnew is a location that is

not already used in S

Operational Semantics for Let (2)

● We write lnew
= newloc(S) to say that lnew is a location that is

not already used in S
○ Think of newloc as the dynamic memory allocation

function (or as reserving stack space)

Operational Semantics for Let (2)

● We write lnew
= newloc(S) to say that lnew is a location that is

not already used in S
○ Think of newloc as the dynamic memory allocation

function (or as reserving stack space)
● This lets(haha) us write the correct let rule:

 so, E, S
1

 ⊢ let id : T <- e
1

 in e
2

 : v
2

, S
2

 so, E, S ⊢ e
1

 : v
1

, S
1

lnew = newloc(S
1
)

 so, E[lnew/id], S
1

[v
1

/lnew] ⊢ e
2

 : v
2

, S
2

Warning: The Going Gets Tough

● Now we're going to do some very difficult rules

Warning: The Going Gets Tough

● Now we're going to do some very difficult rules
○ new, dispatch

Warning: The Going Gets Tough

● Now we're going to do some very difficult rules
○ new, dispatch

● This may initially seem tricky
○ How could that possibly work?
○ What's going on here?

Warning: The Going Gets Tough

● Now we're going to do some very difficult rules
○ new, dispatch

● This may initially seem tricky
○ How could that possibly work?
○ What's going on here?

● Once you’ve studied them a bit, hopefully you’ll agree they’re
actually quite elegant
○ But they will probably not seem that way at first

Operational Semantics of new

● Consider the expression new T
● Its informal semantics are:

Operational Semantics of new

● Consider the expression new T
● Its informal semantics are:

○ Allocate new locations to hold the values for all attributes of
an object of class T
■ Essentially, allocate space for a new object

Operational Semantics of new

● Consider the expression new T
● Its informal semantics are:

○ Allocate new locations to hold the values for all attributes of
an object of class T
■ Essentially, allocate space for a new object

○ Initialize those locations with the default values of attributes

Operational Semantics of new

● Consider the expression new T
● Its informal semantics are:

○ Allocate new locations to hold the values for all attributes of
an object of class T
■ Essentially, allocate space for a new object

○ Initialize those locations with the default values of attributes
○ Evaluate the initializers and set the resulting attribute values

Operational Semantics of new

● Consider the expression new T
● Its informal semantics are:

○ Allocate new locations to hold the values for all attributes of
an object of class T
■ Essentially, allocate space for a new object

○ Initialize those locations with the default values of attributes
○ Evaluate the initializers and set the resulting attribute values
○ Return the newly allocated object

Default Values

● For each class A there is a default value denoted by D
A

Default Values

● For each class A there is a default value denoted by D
A

○ D
Int

 = Int(0)

Default Values

● For each class A there is a default value denoted by D
A

○ D
Int

 = Int(0)
○ D

Bool
 = Bool(0)

Default Values

● For each class A there is a default value denoted by D
A

○ D
Int

 = Int(0)
○ D

Bool
 = Bool(0)

○ D
String

 = String(0, “”)

Default Values

● For each class A there is a default value denoted by D
A

○ D
Int

 = Int(0)
○ D

Bool
 = Bool(0)

○ D
String

 = String(0, “”)
○ D

A
 = void for all other classes A

More Notation

More Notation

● For each class A we write

class(A) = (a
1

 : T
1

 <- e
1

, ..., a
n
 : T

n
 <- e

n
)

where

More Notation

● For each class A we write

class(A) = (a
1

 : T
1

 <- e
1

, ..., a
n
 : T

n
 <- e

n
)

where
● a

i
 are the attributes (including inherited ones)

More Notation

● For each class A we write

class(A) = (a
1

 : T
1

 <- e
1

, ..., a
n
 : T

n
 <- e

n
)

where
● a

i
 are the attributes (including inherited ones)

● T
i
 are their declared types

More Notation

● For each class A we write

class(A) = (a
1

 : T
1

 <- e
1

, ..., a
n
 : T

n
 <- e

n
)

where
● a

i
 are the attributes (including inherited ones)

● T
i
 are their declared types

● e
i
 are the initializers (including default values)

More Notation

● For each class A we write

class(A) = (a
1

 : T
1

 <- e
1

, ..., a
n
 : T

n
 <- e

n
)

where
● a

i
 are the attributes (including inherited ones)

● T
i
 are their declared types

● e
i
 are the initializers (including default values)

This is exactly the
class map from PA2!

Operational Semantics for new

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

if the desired type is
SELF_TYPE, use the
so object; otherwise
use the type named
in the expression (T)

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

fetch the template
for the class to
instantiate

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

make space for each
of its attributes (now,
we’ve allocated the
new object)

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

create a new value for the
newly-created object; make
each attribute point to the
appropriate new location (this
step is the start of initialization)

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

create a new store with each
new attribute location set to
the default value for its type

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

create a new environment
with only the attributes
in-scope (in which to
evaluate the initializers)

Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) = (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ; … ; a
n
 <- e

n
 ;} : v

n
, S

2

evaluate all of the initializers,
keeping the side-effects in S

2

Trivia Break: Real World Languages

English is the single-most widely-spoken and only official language in
this West African country, which, with over 230 million people, is the
most populous country in Africa (and its former capital, Lagos, is one
of Africa’s largest cities). The country’s linguistic diversity is a
microcosm of Africa as a whole, with significant numbers of native
speakers of languages from the three major African language
families: Afroasiatic, Nilo-Saharan and Niger-Congo.

Name the country and any one language of African origin that is
spoken there by at least 2 million people.

Trivia Break: Math

This Austrian mathematician moved to New Jersey in a rather circuitous way:

after the Anschluss in 1938, the Nazis found him - previously a lecturer at the

University of Vienna - fit for conscription. He fled across the Soviet Union,

sailed to Japan and then on to San Francisco, and then traveled across the US

to take up a position at the Institute for Advanced Study (IAS) in Princeton.

Toward the end of his own life, fellow IAS researcher Albert Einstein confided

that his "own work no longer meant much, that he came to the Institute

merely ... to have the privilege of walking home with [him]”. Though his work

spanned several areas of mathematics, philosophy, and logic, he is most

famous for his Incompleteness Theorem.

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

○ Evaluate e
0

 to the target object

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

○ Evaluate e
0

 to the target object
○ Let X be the dynamic type of the target object

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

○ Evaluate e
0

 to the target object
○ Let X be the dynamic type of the target object
○ Fetch from X the definition of f (with n args)

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

○ Evaluate e
0

 to the target object
○ Let X be the dynamic type of the target object
○ Fetch from X the definition of f (with n args)
○ Create n new locations and an environment that maps f’s

formal arguments to those locations

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

○ Evaluate e
0

 to the target object
○ Let X be the dynamic type of the target object
○ Fetch from X the definition of f (with n args)
○ Create n new locations and an environment that maps f’s

formal arguments to those locations
○ Initialize the locations with the actual arguments

Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

○ Evaluate e
0

 to the target object
○ Let X be the dynamic type of the target object
○ Fetch from X the definition of f (with n args)
○ Create n new locations and an environment that maps f’s

formal arguments to those locations
○ Initialize the locations with the actual arguments
○ Set self to the target object and evaluate f’s body

More Notation

● For a class A and a method f of A (possibly inherited) we write:

More Notation

● For a class A and a method f of A (possibly inherited) we write:

imp(A, f) = (x
1

, ..., x
n
, e

body
)

where:

More Notation

● For a class A and a method f of A (possibly inherited) we write:

imp(A, f) = (x
1

, ..., x
n
, e

body
)

where:
● x

i
are the names of the formal arguments

More Notation

● For a class A and a method f of A (possibly inherited) we write:

imp(A, f) = (x
1

, ..., x
n
, e

body
)

where:
● x

i
are the names of the formal arguments

● e
body

 is the body of the method

More Notation

● For a class A and a method f of A (possibly inherited) we write:

imp(A, f) = (x
1

, ..., x
n
, e

body
)

where:
● x

i
are the names of the formal arguments

● e
body

 is the body of the method

This is exactly the
implementation map
from PA2!

Operational Semantics for Method Dispatch

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

evaluate all of the
arguments

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

evaluate the receiver
object (= object on
which method is called)

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

find the receiver’s type
and attributes

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

find formals and body

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

call by reference or by
value?

Aside: Call by Reference vs Call by Value

Aside: Call by Reference vs Call by Value

● Cool uses call by reference
○ when a function is called, only the pointer to each argument is

copied
○ modifications to the arguments are reflected at the call-site

Aside: Call by Reference vs Call by Value

● Cool uses call by reference
○ when a function is called, only the pointer to each argument is

copied
○ modifications to the arguments are reflected at the call-site

● The alternative is call by value
○ when a function is called, a full copy of each argument is

passed to the callee
○ this is fine for e.g., integers, but for objects it gets expensive

quickly

Aside: Call by Reference vs Call by Value

● Cool uses call by reference
○ when a function is called, only the pointer to each argument is

copied
○ modifications to the arguments are reflected at the call-site

● The alternative is call by value
○ when a function is called, a full copy of each argument is

passed to the callee
○ this is fine for e.g., integers, but for objects it gets expensive

quickly
● Which does C support?

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

call by reference, only
allocate space for
copies of the pointers

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

new environment, with
the formals and the
attributes of the
receiver in-scope

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

new environment, with
the formals and the
attributes of the
receiver in-scope

Do you think the order
matters here? What could
go wrong if the formals
were after the attributes?

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

new store with formals
pointing to the actual
arguments

 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1

: v
1

, S
1

so, E, S
1

 ⊢ e
2

: v
2

, S
2

 … so, E, S
n-1

 ⊢ e
n

: v
n
, S

n

 so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body

: v, S
n+3

Operational Semantics for Method Dispatch

finally, evaluate the
body

Notes on OpSem for Dispatch

● The body of the method is invoked with:

Notes on OpSem for Dispatch

● The body of the method is invoked with:
○ E’ mapping formal arguments and self’s attributes

Notes on OpSem for Dispatch

● The body of the method is invoked with:
○ E’ mapping formal arguments and self’s attributes
○ S

n+2
 like the caller’s except with actual arguments bound to

the locations allocated for formals

Notes on OpSem for Dispatch

● The body of the method is invoked with:
○ E’ mapping formal arguments and self’s attributes
○ S

n+2
 like the caller’s except with actual arguments bound to

the locations allocated for formals
● The notion of the activation frame is implicit

○ New locations are allocated for actual arguments

Notes on OpSem for Dispatch

● The body of the method is invoked with:
○ E’ mapping formal arguments and self’s attributes
○ S

n+2
 like the caller’s except with actual arguments bound to

the locations allocated for formals
● The notion of the activation frame is implicit

○ New locations are allocated for actual arguments
● The semantics of static dispatch is similar except the

implementation of f is taken from the specified class

Run-time Errors

Run-time Errors

● The operational semantics do not cover all possible cases!

Run-time Errors

● The operational semantics do not cover all possible cases!
● Consider for example this bit from the dispatch rule:

● What happens if imp(X, f) is not defined?

…

so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

…

Run-time Errors

● The operational semantics do not cover all possible cases!
● Consider for example this bit from the dispatch rule:

● What happens if imp(X, f) is not defined?
○ It cannot be! Type safety theorem guarantees it :)

…

so, E, S
n
 ⊢ e

0
: v

0
, S

n+1

v
0

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

…

Run-time Errors

● There are some run-time errors that the typechecker does not
try to prevent (but it could - we’ll get to it in a few minutes)

Run-time Errors

● There are some run-time errors that the typechecker does not
try to prevent (but it could - we’ll get to it in a few minutes)

○ dispatching on void
○ division by zero
○ substring out of range
○ heap overflow

Run-time Errors

● There are some run-time errors that the typechecker does not
try to prevent (but it could - we’ll get to it in a few minutes)

○ dispatching on void
○ division by zero
○ substring out of range
○ heap overflow

● In such cases the execution must abort gracefully

Run-time Errors

● There are some run-time errors that the typechecker does not
try to prevent (but it could - we’ll get to it in a few minutes)

○ dispatching on void
○ division by zero
○ substring out of range
○ heap overflow

● In such cases the execution must abort gracefully
○ i.e., with an error message rather than a segfault

Run-time Errors

● There are some run-time errors that the typechecker does not
try to prevent (but it could - we’ll get to it in a few minutes)

○ dispatching on void
○ division by zero
○ substring out of range
○ heap overflow

● In such cases the execution must abort gracefully
○ i.e., with an error message rather than a segfault
○ implication: you must generate code in PA3 that checks for

run-time errors!

Summary of Operational Semantics

Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified

Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified

● Operational rules contain a lot of details
○ Read them carefully!

Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified

● Operational rules contain a lot of details
○ Read them carefully!

● Most languages do not have a well-specified operational
semantics :(

Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified

● Operational rules contain a lot of details
○ Read them carefully!

● Most languages do not have a well-specified operational
semantics :(

● When portability is important, an operational semantics is
essential
○ But typically not using the exact notation we used for Cool

● Review: basics of operational semantics
● Operational semantics of Cool
● (if time): introduction to static analysis

○ further if time: get into abstract interpretation

Agenda

Motivation: many defects are hard to test for

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!
○ Bonus: we don't need test cases!

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!
○ Bonus: we don't need test cases!

This is especially true for certain
kinds of hard-to-test-for defects
that might not be apparent even
if you do exercise them, such as
resource leaks

What does static analysis do well?

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules
○ Security: buffer overruns, input validation
○ Memory safety: null pointers, initialized data
○ Resource leaks: memory, OS resources
○ API Protocols: device drivers, GUI frameworks
○ Exceptions: arithmetic, library, user-defined
○ Encapsulation: internal data, private functions
○ Data races: two threads, one variable

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules
○ Security: buffer overruns, input validation
○ Memory safety: null pointers, initialized data
○ Resource leaks: memory, OS resources
○ API Protocols: device drivers, GUI frameworks
○ Exceptions: arithmetic, library, user-defined
○ Encapsulation: internal data, private functions
○ Data races: two threads, one variable

There are rules for
doing each of these
things correctly, and a
static analysis can
automate those rules.

What is a static analysis?

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program
● an abstraction, in this context, is a selective representation of the

program that is simpler to analyze

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program
● an abstraction, in this context, is a selective representation of the

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program
● an abstraction, in this context, is a selective representation of the

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!

We have already encountered one
kind of static analysis in this class:
type systems. Type systems aren’t
special - they are just a very common
static analysis.

Alternative: Dynamic Analysis

● Execute program (over some inputs)
○ The compiler provides the semantics

Alternative: Dynamic Analysis

● Execute program (over some inputs)
○ The compiler provides the semantics

● Observe executions
○ Requires instrumentation infrastructure

Alternative: Dynamic Analysis

Alternative: Dynamic Analysis

● Execute program (over some inputs)
○ The compiler provides the semantics

● Observe executions
○ Requires instrumentation infrastructure

● Analyze results

● Execute program (over some inputs)
○ The compiler provides the semantics

● Observe executions
○ Requires instrumentation infrastructure

● Analyze results

This means that we don’t need
an external model of what the
computer does!
(Since your compiler faithfully
implements the OpSem, right?)

Alternative: Dynamic Analysis

Dynamic Analysis Properties

● Can be as fast as execution (over a test suite, and allowing for
data collection)
○ Example: aliasing

Dynamic Analysis Properties

● Can be as fast as execution (over a test suite, and allowing for
data collection)
○ Example: aliasing

● Precise: no abstraction or approximation

Dynamic Analysis Properties

● Can be as fast as execution (over a test suite, and allowing for
data collection)
○ Example: aliasing

● Precise: no abstraction or approximation
● Unsound: results may not generalize to future executions

○ Describes execution environment or test suite

Dynamic Analysis Properties

Static Analysis Properties

● Slow to analyze large models of state, so use abstraction

Static Analysis Properties

● Slow to analyze large models of state, so use abstraction
● Conservative: account for abstracted-away state

Static Analysis Properties

● Slow to analyze large models of state, so use abstraction
● Conservative: account for abstracted-away state
● Sound: (weak) properties are guaranteed to be true

○ Some static analyses are not sound, but static analyses can be
made sound

Static Analysis Properties

Static vs Dynamic Analyses

Dynamic analyses: Static analyses:

Dynamic analyses:

● Concrete execution
○ slow if exhaustive

Static analyses:

● Abstract domain
○ slow if precise

Static vs Dynamic Analyses

Dynamic analyses:

● Concrete execution
○ slow if exhaustive

● Precise
○ no approximation

Static analyses:

● Abstract domain
○ slow if precise

● Conservative
○ due to abstraction

Static vs Dynamic Analyses

Dynamic analyses:

● Concrete execution
○ slow if exhaustive

● Precise
○ no approximation

● Unsound
○ does not generalize

Static analyses:

● Abstract domain
○ slow if precise

● Conservative
○ due to abstraction

● Sound
○ due to conservatism

Static vs Dynamic Analyses

● Any analysis problem can be solved with either a static or a
dynamic analysis

Analogous Analyses

● Any analysis problem can be solved with either a static or a
dynamic analysis
○ e.g., consider type safety: no memory corruption or operations

on wrong types of values
■ Static type-checking (e.g., Java, Cool)
■ Dynamic type-checking (e.g., Python)

Analogous Analyses

● Any analysis problem can be solved with either a static or a
dynamic analysis
○ e.g., consider type safety: no memory corruption or operations

on wrong types of values
■ Static type-checking (e.g., Java, Cool)
■ Dynamic type-checking (e.g., Python)

● This insight gives us a kind of “PL incompleteness theorem”: either
you can know something precisely about one execution (via
dynamic analysis) or imprecisely about every execution (via static
analysis)

Analogous Analyses

Static vs Dynamic Analyses

Dynamic analyses:

● Concrete execution
○ slow if exhaustive

● Precise
○ no approximation

● Unsound
○ does not generalize

Static analyses:

● Abstract domain
○ slow if precise

● Conservative
○ due to abstraction

● Sound
○ due to conservatism

Sound Dynamic Analysis?

● Observe every possible execution!

Sound Dynamic Analysis?

● Observe every possible execution!
● Problem: infinite number of executions

Sound Dynamic Analysis?

● Observe every possible execution!
● Problem: infinite number of executions
● Solution: test case selection and generation

○ Efficiency tweaks to an algorithm that works perfectly in
theory but exhausts resources in practice

Sound Dynamic Analysis?

Precise Static Analysis?

● Reason over full program state!

Precise Static Analysis?

● Reason over full program state!
● Problem: infinite number of executions

Precise Static Analysis?

● Reason over full program state!
● Problem: infinite number of executions
● Solution: data or execution abstraction

○ Efficiency tweaks to an algorithm that works perfectly in
theory but exhausts resources in practice

Precise Static Analysis?

Different Subsets

● Dynamic analysis focuses on a subset of executions

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that

random input produces, etc.

Different Subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free

Different Subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

Different Subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

○ more precise for data or control described by the abstraction

Different Subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

○ more precise for data or control described by the abstraction
○ typically conservative / pessimistic elsewhere

■ i.e., assume that unmodeled state is unsafe

Different Subsets

● Proper introduction to one formalism for static analysis
○ abstract interpretation (which I will call “AI” constantly to

upset you and Sam Altman)

Next Time On…

● Proper introduction to one formalism for static analysis
○ abstract interpretation (which I will call “AI” constantly to

upset you and Sam Altman)
● Many other formalisms exists

Next Time On…

● Proper introduction to one formalism for static analysis
○ abstract interpretation (which I will call “AI” constantly to

upset you and Sam Altman)
● Many other formalisms exists

○ including type systems (which we’ve already discussed)

Next Time On…

● Proper introduction to one formalism for static analysis
○ abstract interpretation (which I will call “AI” constantly to

upset you and Sam Altman)
● Many other formalisms exists

○ including type systems (which we’ve already discussed)
○ formally, abstract interpretation is expressive enough that

you can describe any static analysis using it

Next Time On…

● Proper introduction to one formalism for static analysis
○ abstract interpretation (which I will call “AI” constantly to

upset you and Sam Altman)
● Many other formalisms exists

○ including type systems (which we’ve already discussed)
○ formally, abstract interpretation is expressive enough that

you can describe any static analysis using it
■ that said, you probably don’t want to
■ ask me more about Patrick Cousot’s work in OH

Next Time On…

Course Announcements

● PA2c2 due today
○ if you haven’t started yet, you almost certainly won’t finish in

time (come talk to me about it)
● I’ll hold two short OH today for those who want to see a test

case before PA2c2:
○ right after class (11:25-11:55am)
○ 4:30-5pm

● PA2 (full) is due next Monday (one week from today!)

● Review: basics of operational semantics
● Operational semantics of Cool
● (if time): introduction to static analysis

○ further if time: get into abstract interpretation

Agenda

