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● An operational semantics is a precise way of specifying how to 
evaluate a program.
○ A formal semantics tells you what each expression means.

● Meaning depends on context: a variable environment will map 
variables to memory locations and a store will map memory 
locations to values.
○ environment: names -> (abstract) locations
○ store: (abstract) locations -> values

● We will specify Cool’s semantics via logical rules of inference 
that specify how to compute the “next step” in the program

Review: High-level Idea of Op. Sem.
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Review: Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;
○ and E, the current variable environment;
○ and S, the current store;
○ and if the evaluation of e terminates, then
○ the returned value is v
○ and the new store is S’



Review: Operational Semantics for Base Values

           so, E, S ⊢ true : Bool(true), S

           so, E, S ⊢ false : Bool(false), S

           so, E, S ⊢ i : Int(i), S

i is any integer literal

           so, E, S ⊢ s : String(s, n), S

s is any string literal
n is the length of s



Review: Operational Semantics for Variables

                   so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

● Note the double lookup of variables
○ First from name to location (at compile time)
○ Then from location to value (at run time)



Review: Operational Semantics for Assignments

                so, E, S ⊢ id <- e : v, S
2

  so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

● A three-step process:
○ Evaluate the right-hand side to get a value v and a new 

store S
1

○ Fetch the location of the assigned variable
○ The result is the value v and an updated store S

2
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1
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● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S
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 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S

1

○ then e
2

 can be evaluated.
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Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S

1

○ then e
2

 can be evaluated.
● The result of evaluating e

1
 is a boolean object

○ the type rules ensure this
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Operational Semantics for Conditionals

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

● The “threading” of the store enforces an evaluation sequence:
○ e

1
 must be evaluated first to produce S

1

○ then e
2

 can be evaluated.
● The result of evaluating e

1
 is a boolean object

○ the type rules ensure this
○ there is another, similar, rule for Bool(false)
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n
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n
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Operational Semantics for Sequences
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1
 : v

1
, S
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n
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● Again, the threading of the store expresses the intended 
execution sequence
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Operational Semantics for Sequences
 so, E, S ⊢ e

1
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1
, S

1

 so, E, S
1
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2
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n-1
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n
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n
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● Again, the threading of the store expresses the intended 
execution sequence

● Only the last value is used
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Operational Semantics for Sequences
 so, E, S ⊢ e

1
 : v

1
, S

1

 so, E, S
1

 ⊢ e
2

 : v
2

, S
2

…
 so, E, S

n-1
 ⊢ e

n
 : v

n
, S

n

● Again, the threading of the store expresses the intended 
execution sequence

● Only the last value is used
● But, all side-effects are collected (how?)
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Operational Semantics for While (1)

 so, E, S ⊢ e
1

 : Bool(false), S
1

● If e
1

 evaluates to Bool(false), then the loop terminates 
immediately
○ with the side-effects from the evaluation of  e

1

○ and with the (arbitrary) result of void
● The type rules ensure that  e

1
 evaluates to a boolean object

In-class exercise: given this rule for a false 
loop guard, what do you think the rule for a 
true loop guard looks like?
● In groups of 2 or 3, write down a rule.
● I will collect these; put your UCIDs/emails  

on it (mostly graded on completion)
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Operational Semantics for While (2)

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

 so, E, S
2

 ⊢ while e
1

 loop e
2

 pool : void, S
3

● Note the sequencing (S -> S
1

 -> S
2

 -> S
3

)
● Note how looping is expressed (recursively!)

○ Evaluation of a while loop is expressed in terms of evaluating a 
while loop in another state

(for those reading later online, this is the answer to the in-class exercise on the previous slide)



 so, E, S ⊢ while e
1

 loop e
2

 pool : void, S
3

Operational Semantics for While (2)

 so, E, S ⊢ e
1

 : Bool(true), S
1

 so, E, S
1

 ⊢ e
2

 : v, S
2

 so, E, S
2

 ⊢ while e
1

 loop e
2

 pool : void, S
3

● Note the sequencing (S -> S
1

 -> S
2

 -> S
3

)
● Note how looping is expressed (recursively!)

○ Evaluation of a while loop is expressed in terms of evaluating a 
while loop in another state

● The result of evaluating e
2

 is discarded; only the side-effects are kept

(for those reading later online, this is the answer to the in-class exercise on the previous slide)
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● What is the context in which e
2

 should be evaluated?
○ Environment should be like E but with a new binding of id 

to a fresh location lnew
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Operational Semantics for Let (1)

 so, E, S ⊢ e
1

 :  v
1

, S
1

 so, ?, ? ⊢ e
2

 :  v
2

, S
2

● What is the context in which e
2

 should be evaluated?
○ Environment should be like E but with a new binding of id 

to a fresh location lnew
○ Store like S

1
 but with lnew mapped to v

1
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Operational Semantics for Let (2)

● We write lnew 
= newloc(S) to say that lnew is a location that is 

not already used in S
○ Think of newloc as the dynamic memory allocation 

function (or as reserving stack space)
● This lets(haha) us write the correct let rule:

 so, E, S
1

 ⊢ let id : T <-  e
1

 in e
2

 : v
2

, S
2

 so, E, S ⊢ e
1

 :  v
1

, S
1

lnew = newloc(S
1
)

 so, E[lnew/id], S
1

[v
1

/lnew] ⊢ e
2

 :  v
2

, S
2
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Warning: The Going Gets Tough

● Now we're going to do some very difficult rules
○ new, dispatch

● This may initially seem tricky
○ How could that possibly work?
○ What's going on here?

● Once you’ve studied them a bit, hopefully you’ll agree they’re 
actually quite elegant
○ But they will probably not seem that way at first
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Operational Semantics of new 

● Consider the expression new T
● Its informal semantics are:

○ Allocate new locations to hold the values for all attributes of 
an object of class T
■ Essentially, allocate space for a new object

○ Initialize those locations with the default values of attributes
○ Evaluate the initializers and set the resulting attribute values
○ Return the newly allocated object
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Default Values

● For each class A there is a default value denoted by D
A

○ D
Int

 = Int(0)
○ D

Bool
 = Bool(0)

○ D
String

 = String(0, “”)
○ D

A
 = void for all other classes A
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More Notation

● For each class A we write

class(A) = (a
1

 : T
1

 <- e
1

, ..., a
n
 : T

n
 <- e

n
) 

where
● a

i
 are the attributes (including inherited ones) 

● T
i
 are their declared types

● e
i
 are the initializers (including default values)

This is exactly the 
class map from PA2!
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Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2



Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2

if the desired type is 
SELF_TYPE, use the 
so object; otherwise 
use the type named 
in the expression (T)



Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2

fetch the template 
for the class to 
instantiate



Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2

make space for each 
of its attributes (now, 
we’ve allocated the 
new object)



Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2

create a new value for the 
newly-created object; make 
each attribute point to the 
appropriate new location (this 
step is the start of initialization)



Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2

create a new store with each 
new attribute location set to 
the default value for its type



Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2

create a new environment 
with only the attributes 
in-scope (in which to 
evaluate the initializers)



Operational Semantics for new

 so, E, S ⊢ new T : v, S
2

 T
0

 = if T = SELF_TYPE and so = X(...) then X else T
class(T

0
) =  (a

1
 : T

1
 <- e

1
, … , a

n
 : T

n
 <- e

n
)

∀ i ∈ [1…n], li = newloc(S)
v = T

0
(a

1
 = l1, … , a

n
 = ln)

S
1

 = S[D
T1

/l1, … , D
Tn

/ln]

E’ = [a
1

 : l1, … , a
n
 : ln]

 so, E’, S
1

 ⊢ {a
1

 <- e
1

 ;  …  ; a
n
 <- e

n
 ;} : v

n
, S

2

evaluate all of the initializers, 
keeping the side-effects in S

2



Trivia Break: Real World Languages

English is the single-most widely-spoken and only official language in 
this West African country, which, with over 230 million people, is the 
most populous country in Africa (and its former capital, Lagos, is one 
of Africa’s largest cities). The country’s linguistic diversity is a 
microcosm of Africa as a whole, with significant numbers of native 
speakers of languages from the three major African language 
families: Afroasiatic, Nilo-Saharan and Niger-Congo. 

Name the country and any one language of African origin that is 
spoken there by at least 2 million people.



Trivia Break: Math

This Austrian mathematician moved to New Jersey in a rather circuitous way: 

after the Anschluss in 1938, the Nazis found him - previously a lecturer at the 

University of Vienna - fit for conscription. He fled across the Soviet Union, 

sailed to Japan and then on to San Francisco, and then traveled across the US 

to take up a position at the Institute for Advanced Study (IAS) in Princeton. 

Toward the end of his own life, fellow IAS researcher Albert Einstein confided 

that his "own work no longer meant much, that he came to the Institute 

merely ... to have the privilege of walking home with [him]”. Though his work 

spanned several areas of mathematics, philosophy, and logic, he is most 

famous for his Incompleteness Theorem.
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Operational Semantics of Method Dispatch

● Consider the expression e0.f(e1,...,en)
● Its informal semantics are:

○ Evaluate the arguments in order e
1

, … , e
n

○ Evaluate e
0

 to the target object
○ Let X be the dynamic type of the target object
○ Fetch from X the definition of f (with n args)
○ Create n new locations and an environment that maps f’s 

formal arguments to those locations
○ Initialize the locations with the actual arguments
○ Set self to the target object and evaluate f’s body
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More Notation

● For a class A and a method f of A (possibly inherited) we write:

imp(A, f) = (x
1

, ..., x
n
, e

body
)

where:
● x

i  
are the names of the formal arguments 

● e
body

 is the body of the method

This is exactly the 
implementation map 
from PA2!
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evaluate all of the 
arguments
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find the receiver’s type 
and attributes



 so, E, S ⊢ e
0
.f(e

1
,...,e

n
) : v, S

n+3

 so, E, S ⊢ e
1 

: v
1

, S
1

so, E, S
1

 ⊢ e
2 

: v
2

, S
2

 …        so, E, S
n-1

 ⊢ e
n 

: v
n
, S

n

 so, E, S
n
 ⊢ e

0 
: v

0
, S

n+1

v
0 

= X(a
1

 = l1, … , a
m

 = lm)

imp(X, f) = (x
1

, ..., x
n
, e

body
)

∀ i ∈ [1…n], lxi = newloc(S
n+1
)

E’ = [x
1

 : lx1, … , x
n
 : lxn, a

1
 : l1, … , a

m
 : lm]

S
n+2

 = S
n+1

[v
1

/lx1, … , v
n
/lxn]

v
0

, E’, S
n+2

 ⊢ e
body 

: v, S
n+3

Operational Semantics for Method Dispatch

find formals and body
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call by reference, only 
allocate space for 
copies of the pointers
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Operational Semantics for Method Dispatch

new environment, with 
the formals and the 
attributes of the 
receiver in-scope

Do you think the order 
matters here? What could 
go wrong if the formals 
were after the attributes?
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new store with formals 
pointing to the actual 
arguments
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finally, evaluate the 
body
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Notes on OpSem for Dispatch

● The body of the method is invoked with:
○ E’ mapping formal arguments and self’s attributes 
○ S

n+2
 like the caller’s except with actual arguments bound to 

the locations allocated for formals
● The notion of the activation frame is implicit

○ New locations are allocated for actual arguments
● The semantics of static dispatch is similar except the 

implementation of f is taken from the specified class
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● The operational semantics do not cover all possible cases!
● Consider for example this bit from the dispatch rule:

● What happens if imp(X, f) is not defined?
○ It cannot be! Type safety theorem guarantees it :)
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Run-time Errors

● There are some run-time errors that the typechecker does not 
try to prevent (but it could - we’ll get to it in a few minutes)

○ dispatching on void
○ division by zero
○ substring out of range
○ heap overflow

● In such cases the execution must abort gracefully
○ i.e., with an error message rather than a segfault
○ implication: you must generate code in PA3 that checks for 

run-time errors!



Summary of Operational Semantics



Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified



Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified

● Operational rules contain a lot of details
○ Read them carefully!



Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified

● Operational rules contain a lot of details
○ Read them carefully!

● Most languages do not have a well-specified operational 
semantics :(



Summary of Operational Semantics

● Operational rules are very precise
○ Nothing is left unspecified

● Operational rules contain a lot of details
○ Read them carefully!

● Most languages do not have a well-specified operational 
semantics :(

● When portability is important, an operational semantics is 
essential
○ But typically not using the exact notation we used for Cool



● Review: basics of operational semantics
● Operational semantics of Cool
● (if time): introduction to static analysis

○ further if time: get into abstract interpretation

Agenda
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Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for 
particular properties
○ Without actually running the program! 
○ Bonus: we don't need test cases!

This is especially true for certain 
kinds of hard-to-test-for defects 
that might not be apparent even 
if you do exercise them, such as 
resource leaks
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What does static analysis do well?

● Defects that result from inconsistently following simple, 
mechanical design rules
○ Security: buffer overruns, input validation 
○ Memory safety: null pointers, initialized data 
○ Resource leaks: memory, OS resources 
○ API Protocols: device drivers, GUI frameworks 
○ Exceptions: arithmetic, library, user-defined 
○ Encapsulation: internal data, private functions 
○ Data races: two threads, one variable

There are rules for 
doing each of these 
things correctly, and a 
static analysis can 
automate those rules.
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What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does 

execute the program
● an abstraction, in this context, is a selective representation of the 

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!

We have already encountered one 
kind of static analysis in this class: 
type systems. Type systems aren’t 
special - they are just a very common 
static analysis.
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● Execute program (over some inputs)
○ The compiler provides the semantics 

● Observe executions
○ Requires instrumentation infrastructure

● Analyze results

This means that we don’t need 
an external model of what the 
computer does!
(Since your compiler faithfully 
implements the OpSem, right?)

Alternative: Dynamic Analysis
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● Can be as fast as execution (over a test suite, and allowing for 
data collection)
○ Example: aliasing 

● Precise: no abstraction or approximation
● Unsound: results may not generalize to future executions

○ Describes execution environment or test suite

Dynamic Analysis Properties
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● Slow to analyze large models of state, so use abstraction
● Conservative: account for abstracted-away state 
● Sound: (weak) properties are guaranteed to be true

○ Some static analyses are not sound, but static analyses can be 
made sound

Static Analysis Properties
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● Any analysis problem can be solved with either a static or a 
dynamic analysis
○ e.g., consider type safety: no memory corruption or operations 

on wrong types of values
■ Static type-checking (e.g., Java, Cool)
■ Dynamic type-checking (e.g., Python)

● This insight gives us a kind of “PL incompleteness theorem”: either 
you can know something precisely about one execution (via 
dynamic analysis) or imprecisely about every execution (via static 
analysis)

Analogous Analyses



Static vs Dynamic Analyses

Dynamic analyses:

● Concrete execution 
○ slow if exhaustive 

● Precise 
○ no approximation 

● Unsound 
○ does not generalize

Static analyses:

● Abstract domain 
○ slow if precise 

● Conservative 
○ due to abstraction 

● Sound 
○ due to conservatism
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● Observe every possible execution! 
● Problem: infinite number of executions 
● Solution: test case selection and generation

○ Efficiency tweaks to an algorithm that works perfectly in 
theory but exhausts resources in practice

Sound Dynamic Analysis?
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● Reason over full program state!
● Problem: infinite number of executions
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● Reason over full program state!
● Problem: infinite number of executions
● Solution: data or execution abstraction

○ Efficiency tweaks to an algorithm that works perfectly in 
theory but exhausts resources in practice

Precise Static Analysis?



Different Subsets

● Dynamic analysis focuses on a subset of executions



● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.

Different Subsets



● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free

Different Subsets



● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

Different Subsets



● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

○ more precise for data or control described by the abstraction

Different Subsets



● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

○ more precise for data or control described by the abstraction
○ typically conservative / pessimistic elsewhere

■ i.e., assume that unmodeled state is unsafe

Different Subsets
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● Proper introduction to one formalism for static analysis
○ abstract interpretation (which I will call “AI” constantly to 

upset you and Sam Altman)
● Many other formalisms exists

○ including type systems (which we’ve already discussed)
○ formally, abstract interpretation is expressive enough that 

you can describe any static analysis using it
■ that said, you probably don’t want to
■ ask me more about Patrick Cousot’s work in OH

Next Time On…



Course Announcements

● PA2c2 due today
○ if you haven’t started yet, you almost certainly won’t finish in 

time (come talk to me about it)
● I’ll hold two short OH today for those who want to see a test 

case before PA2c2:
○ right after class (11:25-11:55am)
○ 4:30-5pm

● PA2 (full) is due next Monday (one week from today!)



● Review: basics of operational semantics
● Operational semantics of Cool
● (if time): introduction to static analysis

○ further if time: get into abstract interpretation

Agenda


