
Run-time Organization and
Operational Semantics

Martin Kellogg

Review: Run-time Organization

● An executing program is structured into several sections: code,
data (stack, heap), etc.

Review: Run-time Organization

● An executing program is structured into several sections: code,
data (stack, heap), etc.

● Virtual memory lets us pretend that each program has access to
the computer’s entire physical memory

Review: Virtual Memory Picture

code

other space

low addresses
0x00000000

high addresses
0x40000000

a program’s
virtual
memory:

Review: Run-time Organization

● An executing program is structured into several sections: code,
data (stack, heap), etc.

● Virtual memory lets us pretend that each program has access to
the computer’s entire physical memory
○ the OS and the hardware work hard to give us this abstraction

Review: Run-time Organization

● An executing program is structured into several sections: code,
data (stack, heap), etc.

● Virtual memory lets us pretend that each program has access to
the computer’s entire physical memory
○ the OS and the hardware work hard to give us this abstraction

● Our compiler needs to predict what the program will do and where
it will store data to emit the right instructions

Review: Run-time Organization

● An executing program is structured into several sections: code,
data (stack, heap), etc.

● Virtual memory lets us pretend that each program has access to
the computer’s entire physical memory
○ the OS and the hardware work hard to give us this abstraction

● Our compiler needs to predict what the program will do and where
it will store data to emit the right instructions
○ we generally use conventions to enable separate compilation

Review: Run-time Organization

● An executing program is structured into several sections: code,
data (stack, heap), etc.

● Virtual memory lets us pretend that each program has access to
the computer’s entire physical memory
○ the OS and the hardware work hard to give us this abstraction

● Our compiler needs to predict what the program will do and where
it will store data to emit the right instructions
○ we generally use conventions to enable separate compilation

● We’d like to generate code is that is both correct and fast

Review: Run-time Organization

● An executing program is structured into several sections: code,
data (stack, heap), etc.

● Virtual memory lets us pretend that each program has access to
the computer’s entire physical memory
○ the OS and the hardware work hard to give us this abstraction

● Our compiler needs to predict what the program will do and where
it will store data to emit the right instructions
○ we generally use conventions to enable separate compilation

● We’d like to generate code is that is both correct and fast
○ when these conflict, correctness comes first

Review: Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

(note that we know these assumptions are false in real life! See last lecture for details…)

Review: Assumptions About Execution

● Assumption (1): Execution is sequential; control moves from one
point in a program to another in a well-defined order

● Assumption (2): When a procedure is called, control eventually
returns to the point immediately after the call

(note that we know these assumptions are false in real life! See last lecture for details…)

Review: Activation Trees

● Definition: Each invocation of
some procedure P is an
activation of P

Review: Activation Trees

● Definition: Each invocation of
some procedure P is an
activation of P

● Assumption (2) requires that
procedure activations are
properly nested

Review: Activation Trees

● Definition: Each invocation of
some procedure P is an
activation of P

● Assumption (2) requires that
procedure activations are
properly nested

● As a result, we can depict
activation lifetimes as a tree

Review: Activation Trees

● Definition: Each invocation of
some procedure P is an
activation of P

● Assumption (2) requires that
procedure activations are
properly nested

● As a result, we can depict
activation lifetimes as a tree

● Example ->

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

main()

g() f()

g()

Activation Tree Notes

● The activation tree depends on run-time behavior
○ The activation tree may be different for every program input

● Since activations are properly nested, a stack can track currently
active procedures
○ This is the call stack

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

g()

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

f()

Activation Tree Example Revisited

● Let’s track activations with a stack on the example from before:

class Main {
 g() : Int { 1 };
 f() : Int { g() };
 main() : Int {{ g(); f(); }};
};

Stack

main()

f()

g()

Revised Memory Layout

code

low addresses
0x00000000

high addresses
0x40000000

a program’s
virtual
memory:

other space

Revised Memory Layout

code

low addresses
0x00000000

high addresses
0x40000000

a program’s
virtual
memory:

stack

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Activation Records

● On many machines the stack starts at higher
addresses and grows towards lower addresses

● The information needed to manage one
procedure activation is called an activation
record (AR) or frame

● If procedure F calls G, then G’s activation record
contains a mix of info about F and G.
○ F is “suspended” until G completes, at which

point F resumes.

What’s in G’s AR when F calls G?
● G’s AR contains information

needed to resume execution
of F.

● G’s AR may also contain:
○ Actual parameters to G

(supplied by F)
○ G’s return value (needed

by F)
○ Space for G’s local

variables

Contents of a Typical AR (for some procedure G)

Contents of a Typical AR (for some procedure G)

● Space for G’s return value

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)
■ sometimes also called the frame pointer

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)
■ sometimes also called the frame pointer

● Machine status prior to calling G
○ Local variables
○ Register and program counter contents

Contents of a Typical AR (for some procedure G)

● Space for G’s return value
● Actual parameters
● Pointer to the previous activation record

○ This control link points back to the AR of F (caller of G)
■ sometimes also called the frame pointer

● Machine status prior to calling G
○ Local variables
○ Register and program counter contents

● Other temporary values

Revisiting An Example

class Main {
 g() : Int { 1 };
 f(x : Int) : Int {

if x = 0
 then g()
 else f(x - 1) (**)
fi

 };
 main() : Int {{
 f(3); (*) }};
};

Revisiting An Example

class Main {
 g() : Int { 1 };
 f(x : Int) : Int {

if x = 0
 then g()
 else f(x - 1) (**)
fi

 };
 main() : Int {{
 f(3); (*) }};
};

return address

control link

argument

space for result

AR for f:

Revisiting An Example: Stack after 2 Calls to f()

class Main {
 g() : Int { 1 };
 f(x : Int) : Int {

if x = 0
 then g()
 else f(x - 1) (**)
fi

 };
 main() : Int {{
 f(3); (*) }};
};

(**)

2

result

(*)

3

result

main()’s AR:

f()’s AR

f()’s AR

Notes on The Example

● main() has no argument or local variables and its result is “never”
used; its AR is uninteresting

Notes on The Example

● main() has no argument or local variables and its result is “never”
used; its AR is uninteresting

● (*) and (**) are return addresses of the invocations of f
○ The return address is where execution resumes after a

procedure call finishes

Notes on The Example

● main() has no argument or local variables and its result is “never”
used; its AR is uninteresting

● (*) and (**) are return addresses of the invocations of f
○ The return address is where execution resumes after a

procedure call finishes
● This is only one of many possible AR designs

○ Would also work for C, Pascal, FORTRAN, etc.

The Main Point

The Main Point

The compiler must determine, at compile-
time, the layout of activation records and

generate code that, when executed at run-
time, correctly accesses locations in those

activation records.

The Main Point

The compiler must determine, at compile-
time, the layout of activation records and

generate code that, when executed at run-
time, correctly accesses locations in those

activation records.

Thus, the AR layout and the compiler must be
designed together!

Discussion

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently
○ An organization is better if it improves execution speed or

simplifies code generation

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently
○ An organization is better if it improves execution speed or

simplifies code generation
■ This is an important tradeoff! On an embedded device

with fixed software, you might make different choices!

Discussion

● The advantage of placing the return value first in a frame is that
the caller can find it at a fixed offset from its own frame
○ The caller must write the return address there

● There is nothing magic about this organization!
○ Can rearrange order of frame elements
○ Can divide caller/callee responsibilities differently
○ An organization is better if it improves execution speed or

simplifies code generation
■ This is an important tradeoff! On an embedded device

with fixed software, you might make different choices!

● Real compilers hold as much of
the frame as possible in registers
○ Especially method result and

arguments
● Why?

Globals

Globals

● All references to a global variable must point to the same object
○ Can’t really store a global in an activation record

Globals

● All references to a global variable must point to the same object
○ Can’t really store a global in an activation record

● Globals are assigned a fixed address once
○ Variables with fixed address are “statically allocated”

Globals

● All references to a global variable must point to the same object
○ Can’t really store a global in an activation record

● Globals are assigned a fixed address once
○ Variables with fixed address are “statically allocated”

● Depending on the language, there may be other statically
allocated values

Memory Layout with Static Data

code

low addresses

high addresses

a program’s
virtual
memory:

stack

static data

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global
○ e.g., foo : Bar () { new Bar };

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global
○ e.g., foo : Bar () { new Bar };

■ this Bar value must survive deallocation of foo’s AR

Heap Storage

● A value that outlives the procedure that creates it cannot be kept
in the AR, even if it’s not a global
○ e.g., foo : Bar () { new Bar };

■ this Bar value must survive deallocation of foo’s AR
● Languages with dynamically-allocated data (such as Cool!) use a

heap to store such dynamic data

Summary

Summary

● The code area contains object code
○ For most languages, fixed size and read only

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

● Both the stack and the heap grow
● Compilers must take care that

they don’t grow into each other!
● Solution: start heap and stack at

opposite ends of memory, let
them grow towards each other

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

● Both the stack and the heap grow
● Compilers must take care that

they don’t grow into each other!
● Solution: start heap and stack at

opposite ends of memory, let
them grow towards each other

Summary

● The code area contains object code
○ For most languages, fixed size and read only

● The static area contains data (not code) with fixed addresses
(e.g., global data)
○ Fixed size, may be readable or writable

● The stack contains an AR for each currently active procedure
○ Each AR usually fixed size, contains locals

● The heap contains all other data
○ In C, heap is managed by malloc and free

● Both the stack and the heap grow
● Compilers must take care that

they don’t grow into each other!
● Solution: start heap and stack at

opposite ends of memory, let
them grow towards each other

Memory Layout with Heap

code

low addresses

high addresses

a program’s
virtual
memory:

stack

static data

heap

Your Own Heap

● In PA3, you’ll need to emit assembly code for things like:

let x = new Counter(5) in
let y = x in {
 x.increment(1);
 out_int(y.getCount()); // what does this print?
}

Your Own Heap

● In PA3, you’ll need to emit assembly code for things like:

let x = new Counter(5) in
let y = x in {
 x.increment(1);
 out_int(y.getCount()); // what does this print?
}

● You’ll need to use and manage an explicit heap (introduced today
and covered in more detail in later lectures). A heap maps
addresses (i.e., integers) to values.

Trivia Break: Computer Science

This living British computer scientist won the Turing award in 1980.
Born in 1934 to British parents living in Sri Lanka, he studied classics
as an undergraduate at Oxford and only began programming in
graduate school. He spent time while a graduate student at Moscow
State University in the Soviet Union as part of an exchange program,
where he studied under Andrey Kolmogorov. While his work is
foundational in program verification, he is best known for developing
the quicksort algorithm.

Trivia Break: Gaming

This game was originally designed by Gary Gygax and Dave Arneson in
the early 1970s, as a derivative of the miniature wargame Chainmail.
The main difference between it and its predecessor wargames is that
this game allows players to make a specific character to control, rather
than forcing players to control an entire military formation. Its
publication is commonly recognized as the beginning of the modern
tabletop role-playing genre, and it has deeply influenced both modern
tabletop and video games. The game is currently in its 5th edition, and
is published by Wizards of the Coast.

High-level Idea

High-level Idea

● An operational semantics is a precise way of specifying how to
evaluate a program.

High-level Idea

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

High-level Idea

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

● Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values.

High-level Idea

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

● Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values.

● We will specify Cool’s semantics via logical rules of inference
that specify how to compute the “next step” in the program
○ I warned you there was a relationship to type systems…

High-level Idea

● An operational semantics is a precise way of specifying how to
evaluate a program.
○ A formal semantics tells you what each expression means.

● Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values.

● We will specify Cool’s semantics via logical rules of inference
that specify how to compute the “next step” in the program
○ I warned you there was a relationship to type systems…

(Rest of) today’s plan:
● Motivation
● Notation
● The Rules

Motivation

Motivation

● We must specify for every Cool expression what happens when
it is evaluated

Motivation

● We must specify for every Cool expression what happens when
it is evaluated
○ This is the meaning of an expression

Motivation

● We must specify for every Cool expression what happens when
it is evaluated
○ This is the meaning of an expression

● The definition of a programming language is:

Motivation

● We must specify for every Cool expression what happens when
it is evaluated
○ This is the meaning of an expression

● The definition of a programming language is:
○ The tokens (lexical analysis)

Motivation

● We must specify for every Cool expression what happens when
it is evaluated
○ This is the meaning of an expression

● The definition of a programming language is:
○ The tokens (lexical analysis)
○ The grammar (syntactic analysis/parsing)

Motivation

● We must specify for every Cool expression what happens when
it is evaluated
○ This is the meaning of an expression

● The definition of a programming language is:
○ The tokens (lexical analysis)
○ The grammar (syntactic analysis/parsing)
○ The type rules (semantic analysis)

Motivation

● We must specify for every Cool expression what happens when
it is evaluated
○ This is the meaning of an expression

● The definition of a programming language is:
○ The tokens (lexical analysis)
○ The grammar (syntactic analysis/parsing)
○ The type rules (semantic analysis)
○ The evaluation rules (interpretation)

■ also: staged hints for compilation!

“Evaluation Rules” So Far

● So far, we specified the evaluation rules intuitively

“Evaluation Rules” So Far

● So far, we specified the evaluation rules intuitively
○ We described how dynamic dispatch behaved in words

■ e.g., “just like Java”

“Evaluation Rules” So Far

● So far, we specified the evaluation rules intuitively
○ We described how dynamic dispatch behaved in words

■ e.g., “just like Java”
○ We talked about scoping, variables, arithmetic expressions

■ e.g., “they work as expected”

“Evaluation Rules” So Far

● So far, we specified the evaluation rules intuitively
○ We described how dynamic dispatch behaved in words

■ e.g., “just like Java”
○ We talked about scoping, variables, arithmetic expressions

■ e.g., “they work as expected”
● Why isn’t this description good enough?

Assembly Language Semantics

● One option: just tell you how to compile it

Assembly Language Semantics

● One option: just tell you how to compile it
○ (but that would be helpful...)

Assembly Language Semantics

● One option: just tell you how to compile it
○ (but that would be helpful...)

● But assembly-language descriptions of language implementation
have too many irrelevant details

Assembly Language Semantics

● One option: just tell you how to compile it
○ (but that would be helpful...)

● But assembly-language descriptions of language implementation
have too many irrelevant details
○ Which way the stack grows

Assembly Language Semantics

● One option: just tell you how to compile it
○ (but that would be helpful...)

● But assembly-language descriptions of language implementation
have too many irrelevant details
○ Which way the stack grows
○ How integers are represented on a particular machine

Assembly Language Semantics

● One option: just tell you how to compile it
○ (but that would be helpful...)

● But assembly-language descriptions of language implementation
have too many irrelevant details
○ Which way the stack grows
○ How integers are represented on a particular machine
○ The particular instruction set of the architecture

Assembly Language Semantics

● One option: just tell you how to compile it
○ (but that would be helpful...)

● But assembly-language descriptions of language implementation
have too many irrelevant details
○ Which way the stack grows
○ How integers are represented on a particular machine
○ The particular instruction set of the architecture

● We need a complete but not overly restrictive specification

Programming Language Semantics

Programming Language Semantics

● There are many ways to specify programming language semantics

Programming Language Semantics

● There are many ways to specify programming language semantics
○ They are all equivalent but some are more suitable to various

tasks than others

Programming Language Semantics

● There are many ways to specify programming language semantics
○ They are all equivalent but some are more suitable to various

tasks than others

Definition: an operational semantics for a programming language L
describes the evaluation of programs in L on an abstract machine

Programming Language Semantics

● There are many ways to specify programming language semantics
○ They are all equivalent but some are more suitable to various

tasks than others

Definition: an operational semantics for a programming language L
describes the evaluation of programs in L on an abstract machine
● the abstract machine is a mathematical representation of

computation (where have we seen one of those before?)

Programming Language Semantics

● There are many ways to specify programming language semantics
○ They are all equivalent but some are more suitable to various

tasks than others

Definition: an operational semantics for a programming language L
describes the evaluation of programs in L on an abstract machine
● the abstract machine is a mathematical representation of

computation (where have we seen one of those before?)
● this semantics is most useful for specifying an implementation

○ and it’s what we’ll use for Cool

Aside: Other Kinds of Semantics

Aside: Other Kinds of Semantics

● In a denotational semantics, the meaning of a program is expressed
directly as a mathematical object

Aside: Other Kinds of Semantics

● In a denotational semantics, the meaning of a program is expressed
directly as a mathematical object
○ Elegant but quite complicated

Aside: Other Kinds of Semantics

● In a denotational semantics, the meaning of a program is expressed
directly as a mathematical object
○ Elegant but quite complicated
○ Popular among functional programmers (why?)

Aside: Other Kinds of Semantics

● In a denotational semantics, the meaning of a program is expressed
directly as a mathematical object
○ Elegant but quite complicated
○ Popular among functional programmers (why?)

● In an axiomatic semantics, the meaning of a program is expressed
by describing its effect on assertions about the program state

Aside: Other Kinds of Semantics

● In a denotational semantics, the meaning of a program is expressed
directly as a mathematical object
○ Elegant but quite complicated
○ Popular among functional programmers (why?)

● In an axiomatic semantics, the meaning of a program is expressed
by describing its effect on assertions about the program state
○ Useful for checking certain program correctness properties

■ e.g., that quicksort returns a sorted array

Aside: Other Kinds of Semantics

● In a denotational semantics, the meaning of a program is expressed
directly as a mathematical object
○ Elegant but quite complicated
○ Popular among functional programmers (why?)

● In an axiomatic semantics, the meaning of a program is expressed
by describing its effect on assertions about the program state
○ Useful for checking certain program correctness properties

■ e.g., that quicksort returns a sorted array
○ The foundation for many program verification tools

■ Ask me about Hoare logic in office hours to learn more!

Operational Semantics

Operational Semantics

● Once again we introduce a formal notation

Operational Semantics

● Once again we introduce a formal notation
○ Using logical rules of inference, cf. type rules

Operational Semantics

● Once again we introduce a formal notation
○ Using logical rules of inference, cf. type rules

● Recall the typing judgment:

context ⊢ e : T
(read as “in the given context, expression e has type T”)

Operational Semantics

● Once again we introduce a formal notation
○ Using logical rules of inference, cf. type rules

● Recall the typing judgment:

context ⊢ e : T
(read as “in the given context, expression e has type T”)

● We try something similar for evaluation:

context ⊢ e : v
 (read as “in the given context, expression e evaluates to value v”)

 context ⊢ e
1

 + e
2

 : 12

Example Operational Semantics Rule

 context ⊢ e
2

 : 7

 context ⊢ e
1

 : 5

 context ⊢ e
1

 + e
2

 : 12

Example Operational Semantics Rule

● In general the result of evaluating an expression depends on the
result of evaluating its subexpressions

 context ⊢ e
2

 : 7

 context ⊢ e
1

 : 5

 context ⊢ e
1

 + e
2

 : 12

Example Operational Semantics Rule

● In general the result of evaluating an expression depends on the
result of evaluating its subexpressions

● The logical rules specify everything that is needed to evaluate an
expression

 context ⊢ e
2

 : 7

 context ⊢ e
1

 : 5

Aside: Complexity of OpSem Rules

● The operational semantics inference rules
for Cool will become complicated
○ i.e., many hypotheses

Aside: Complexity of OpSem Rules

● The operational semantics inference rules
for Cool will become complicated
○ i.e., many hypotheses

● This may initially look daunting

Aside: Complexity of OpSem Rules

● The operational semantics inference rules
for Cool will become complicated
○ i.e., many hypotheses

● This may initially look daunting
○ Until you realize that the opsem rules

specify exactly how to build an
interpreter

Aside: Complexity of OpSem Rules

● The operational semantics inference rules
for Cool will become complicated
○ i.e., many hypotheses

● This may initially look daunting
○ Until you realize that the opsem rules

specify exactly how to build an
interpreter

● That is, every rule of inference in this
lecture is pseudocode for an interpreter

Aside: Complexity of OpSem Rules

● The operational semantics inference rules
for Cool will become complicated
○ i.e., many hypotheses

● This may initially look daunting
○ Until you realize that the opsem rules

specify exactly how to build an
interpreter

● That is, every rule of inference in this
lecture is pseudocode for an interpreter

These theory details matter!
Compiling correctly requires
you to match all of these rules
exactly…

What “Context” Is Needed?

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

● Consider the evaluation of y <- x + 1

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

● Consider the evaluation of y <- x + 1
○ We need to keep track of values of variables

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

● Consider the evaluation of y <- x + 1
○ We need to keep track of values of variables
○ We need to let variables change their values during execution

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

● Consider the evaluation of y <- x + 1
○ We need to keep track of values of variables
○ We need to let variables change their values during execution

● We track variables and their values with:

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

● Consider the evaluation of y <- x + 1
○ We need to keep track of values of variables
○ We need to let variables change their values during execution

● We track variables and their values with:
○ an environment, which tells us at what address in memory is the

value of a variable stored; and

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

● Consider the evaluation of y <- x + 1
○ We need to keep track of values of variables
○ We need to let variables change their values during execution

● We track variables and their values with:
○ an environment, which tells us at what address in memory is the

value of a variable stored; and
○ a store, which tells us what contents each memory location

holds

What “Context” Is Needed?

● Operational semantics requires contexts to handle variables
○ Analogy: Γ, the type environment

● Consider the evaluation of y <- x + 1
○ We need to keep track of values of variables
○ We need to let variables change their values during execution

● We track variables and their values with:
○ an environment, which tells us at what address in memory is the

value of a variable stored; and
○ a store, which tells us what contents each memory location

holds

Why do you think we need to
separate the environment and
the store? (Hint: which is static?
Dynamic?)

Variable Environments

Definition: A variable environment is a map from variable names to
locations.

Variable Environments

Definition: A variable environment is a map from variable names to
locations.
● Tells in what memory location the value of a variable is stored

Variable Environments

Definition: A variable environment is a map from variable names to
locations.
● Tells in what memory location the value of a variable is stored

○ “Locations” = Memory Addresses

Variable Environments

Definition: A variable environment is a map from variable names to
locations.
● Tells in what memory location the value of a variable is stored

○ “Locations” = Memory Addresses
● Environment tracks in-scope variables only

Variable Environments

Definition: A variable environment is a map from variable names to
locations.
● Tells in what memory location the value of a variable is stored

○ “Locations” = Memory Addresses
● Environment tracks in-scope variables only
● Example environment:

E = [a : l1, b : l2]

Variable Environments

Definition: A variable environment is a map from variable names to
locations.
● Tells in what memory location the value of a variable is stored

○ “Locations” = Memory Addresses
● Environment tracks in-scope variables only
● Example environment:

E = [a : l1, b : l2]
● To lookup a variable a in environment E we write E(a)

Lost?

● Environments may seem hostile and
unforgiving

Lost?

● Environments may seem hostile and
unforgiving

● But soon, they’ll feel just like home!

Lost?

● Environments may seem hostile and
unforgiving

● But soon, they’ll feel just like home!
● Remember, an environment is:

Names -> Locations

Stores

Definition: a store maps memory locations to values

Stores

Definition: a store maps memory locations to values
● Example store:

S = [l1 -> 5, l2 -> 7]

Stores

Definition: a store maps memory locations to values
● Example store:

S = [l1 -> 5, l2 -> 7]
● To lookup the contents of a location l1 in store S we write S(l1)

Stores

Definition: a store maps memory locations to values
● Example store:

S = [l1 -> 5, l2 -> 7]
● To lookup the contents of a location l1 in store S we write S(l1)
● To perform an assignment of the value 23 to location l1 we

write S[23/l1]

Stores

Definition: a store maps memory locations to values
● Example store:

S = [l1 -> 5, l2 -> 7]
● To lookup the contents of a location l1 in store S we write S(l1)
● To perform an assignment of the value 23 to location l1 we

write S[23/l1]
○ This denotes a new store S’ such that S’(l1) = 23 and

S’(l) = S(l) if l ≠ l1

Lost?

● Environments may seem hostile and
unforgiving

● But soon, they’ll feel just like home!
● Remember, an environment is:

Names -> Locations
● And a store is:

Locations -> Values

Cool Values

Cool Values

● All values in Cool are objects

Cool Values

● All values in Cool are objects
○ All objects are instances of some class (the dynamic type of

the object)

Cool Values

● All values in Cool are objects
○ All objects are instances of some class (the dynamic type of

the object)
● To denote a Cool object we use the notation X(a

1
 = l1, ..., a

n
 =

ln) where:

Cool Values

● All values in Cool are objects
○ All objects are instances of some class (the dynamic type of

the object)
● To denote a Cool object we use the notation X(a

1
 = l1, ..., a

n
 =

ln) where:
○ X is the dynamic type of the object (type tag)

Cool Values

● All values in Cool are objects
○ All objects are instances of some class (the dynamic type of

the object)
● To denote a Cool object we use the notation X(a

1
 = l1, ..., a

n
 =

ln) where:
○ X is the dynamic type of the object (type tag)
○ the a

i
 are the attributes (including those inherited)

Cool Values

● All values in Cool are objects
○ All objects are instances of some class (the dynamic type of

the object)
● To denote a Cool object we use the notation X(a

1
 = l1, ..., a

n
 =

ln) where:
○ X is the dynamic type of the object (type tag)
○ the a

i
 are the attributes (including those inherited)

○ the li are the locations where the values of attributes are
stored

Cool Values (continued)

● Special cases (without named attributes):

Cool Values (continued)

● Special cases (without named attributes):
○ Int(5) the integer 5

Cool Values (continued)

● Special cases (without named attributes):
○ Int(5) the integer 5
○ Bool(true) the boolean true

Cool Values (continued)

● Special cases (without named attributes):
○ Int(5) the integer 5
○ Bool(true) the boolean true
○ String(4, “Cool”) the string “Cool” of length 4

Cool Values (continued)

● Special cases (without named attributes):
○ Int(5) the integer 5
○ Bool(true) the boolean true
○ String(4, “Cool”) the string “Cool” of length 4

● There is a special value void that is a member of all types

Cool Values (continued)

● Special cases (without named attributes):
○ Int(5) the integer 5
○ Bool(true) the boolean true
○ String(4, “Cool”) the string “Cool” of length 4

● There is a special value void that is a member of all types
○ No operations can be performed on it

■ Except for the test isvoid

Cool Values (continued)

● Special cases (without named attributes):
○ Int(5) the integer 5
○ Bool(true) the boolean true
○ String(4, “Cool”) the string “Cool” of length 4

● There is a special value void that is a member of all types
○ No operations can be performed on it

■ Except for the test isvoid
○ Concrete implementations might use NULL here

Operational Rules of Cool

Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:

Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;

Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;
○ and E, the current variable environment;

Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;
○ and E, the current variable environment;
○ and S, the current store;

Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;
○ and E, the current variable environment;
○ and S, the current store;
○ and if the evaluation of e terminates, then

Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;
○ and E, the current variable environment;
○ and S, the current store;
○ and if the evaluation of e terminates, then
○ the returned value is v

Operational Rules of Cool

● The evaluation judgment is

so, E, S ⊢ e : v, S’

● read as:
○ Given so, the current value of the self object;
○ and E, the current variable environment;
○ and S, the current store;
○ and if the evaluation of e terminates, then
○ the returned value is v
○ and the new store is S’

Notes on Evaluation Judgment

● The “result” of evaluating an expression is not only a value but
also a new store

Notes on Evaluation Judgment

● The “result” of evaluating an expression is not only a value but
also a new store

● Changes to the store model side-effects
○ side-effects = assignments to mutable variables

Notes on Evaluation Judgment

● The “result” of evaluating an expression is not only a value but
also a new store

● Changes to the store model side-effects
○ side-effects = assignments to mutable variables

● The variable environment does not change
○ Nor does the value of “self”

Notes on Evaluation Judgment

● The “result” of evaluating an expression is not only a value but
also a new store

● Changes to the store model side-effects
○ side-effects = assignments to mutable variables

● The variable environment does not change
○ Nor does the value of “self”

● The operational semantics specifically allows for
non-terminating evaluations

Notes on Evaluation Judgment

● The “result” of evaluating an expression is not only a value but
also a new store

● Changes to the store model side-effects
○ side-effects = assignments to mutable variables

● The variable environment does not change
○ Nor does the value of “self”

● The operational semantics specifically allows for
non-terminating evaluations

● We’ll define one rule for each kind of expression

Operational Semantics for Base Values

 so, E, S ⊢ true : Bool(true), S

Operational Semantics for Base Values

 so, E, S ⊢ true : Bool(true), S

 so, E, S ⊢ false : Bool(false), S

Operational Semantics for Base Values

 so, E, S ⊢ true : Bool(true), S

 so, E, S ⊢ false : Bool(false), S

 so, E, S ⊢ i : Int(i), S

i is any integer literal

Operational Semantics for Base Values

 so, E, S ⊢ true : Bool(true), S

 so, E, S ⊢ false : Bool(false), S

 so, E, S ⊢ i : Int(i), S

i is any integer literal

 so, E, S ⊢ s : String(s, n), S

s is any string literal
n is the length of s

Operational Semantics for Base Values

● note: no side-effects in these
cases (i.e., the store doesn’t
change)

 so, E, S ⊢ true : Bool(true), S

 so, E, S ⊢ false : Bool(false), S

 so, E, S ⊢ i : Int(i), S

i is any integer literal

 so, E, S ⊢ s : String(s, n), S

s is any string literal
n is the length of s

Operational Semantics for Variables

Operational Semantics for Variables

 so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

Operational Semantics for Variables

 so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

● Note the double lookup of variables

Operational Semantics for Variables

 so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

● Note the double lookup of variables
○ First from name to location (at compile time)

Operational Semantics for Variables

 so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

● Note the double lookup of variables
○ First from name to location (at compile time)
○ Then from location to value (at run time)

Operational Semantics for Variables

 so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

● Note the double lookup of variables
○ First from name to location (at compile time)
○ Then from location to value (at run time)

● The store does not change

Operational Semantics for Variables

 so, E, S ⊢ id : v, S

E(id) = lid S(lid) = v

● Note the double lookup of variables
○ First from name to location (at compile time)
○ Then from location to value (at run time)

● The store does not change
● One special case:

 so, E, S ⊢ self : so, S

Operational Semantics for Assignments

Operational Semantics for Assignments

 so, E, S ⊢ id <- e : v, S
2

 so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

Operational Semantics for Assignments

 so, E, S ⊢ id <- e : v, S
2

 so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

● A three-step process:

Operational Semantics for Assignments

 so, E, S ⊢ id <- e : v, S
2

 so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

● A three-step process:
○ Evaluate the right-hand side to get a value v and a new

store S
1

Operational Semantics for Assignments

 so, E, S ⊢ id <- e : v, S
2

 so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

● A three-step process:
○ Evaluate the right-hand side to get a value v and a new

store S
1

○ Fetch the location of the assigned variable

Operational Semantics for Assignments

 so, E, S ⊢ id <- e : v, S
2

 so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

● A three-step process:
○ Evaluate the right-hand side to get a value v and a new

store S
1

○ Fetch the location of the assigned variable
○ The result is the value v and an updated store S

2

Operational Semantics for Assignments

 so, E, S ⊢ id <- e : v, S
2

 so, E, S ⊢ e : v, S
1

E(id) = lid S
2

 = S
1

[v/lid]

● A three-step process:
○ Evaluate the right-hand side to get a value v and a new

store S
1

○ Fetch the location of the assigned variable
○ The result is the value v and an updated store S

2

● The environment doesn’t change

Course Announcements

● PA2c2 still due next Monday
○ requires typechecking + semantic analysis of everything but

expressions
○ if you haven’t started yet, I’m now very worried for you

