
Compiler Structure
Martin Kellogg

Today’s Agenda

● Social contract of a compiler
● Compiler frontends

○ Lexing
○ Parsing

■ our first intermediate representation: abstract syntax
trees

Surprise Bioethics

“Primum non nocere”

Surprise Bioethics

“Primum non nocere” - “First, do no harm.”

Surprise Bioethics

“Primum non nocere” - “First, do no harm.”

● one of the key tenets of bioethics
○ e.g., the Hippocratic Oath that doctors take

Surprise Bioethics

“Primum non nocere” - “First, do no harm.”

● one of the key tenets of bioethics
○ e.g., the Hippocratic Oath that doctors take

● also a key tenet in compilers:

First Rule of Compilers: don’t change semantics

Surprise Bioethics

“Primum non nocere” - “First, do no harm.”

● one of the key tenets of bioethics
○ e.g., the Hippocratic Oath that doctors take

● also a key tenet in compilers:

● i.e., don’t change the meaning of the program

First Rule of Compilers: don’t change semantics

Surprise Bioethics

“Primum non nocere” - “First, do no harm.”

● one of the key tenets of bioethics
○ e.g., the Hippocratic Oath that doctors take

● also a key tenet in compilers:

● i.e., don’t change the meaning of the program
● this is the contract that a compiler promises to its users

First Rule of Compilers: don’t change semantics

Syntax and Semantics

Definition: the syntax of a programming language is how programs
are written down

● roughly “spelling and grammar”

Syntax and Semantics

Definition: the syntax of a programming language is how programs
are written down

● roughly “spelling and grammar”

Definition: the semantics of a programming language explains what a
given program means

● Two relevant kinds of semantics (for now):

Syntax and Semantics

Definition: the syntax of a programming language is how programs
are written down

● roughly “spelling and grammar”

Definition: the semantics of a programming language explains what a
given program means

● Two relevant kinds of semantics (for now):
○ static semantics: roughly, the state space of the program

Syntax and Semantics

Definition: the syntax of a programming language is how programs
are written down

● roughly “spelling and grammar”

Definition: the semantics of a programming language explains what a
given program means

● Two relevant kinds of semantics (for now):
○ static semantics: roughly, the state space of the program
○ dynamic semantics: in some specific execution, what does this

program actually evaluate to?

Why Two Semantics?

Why Two Semantics?

● A static semantics is useful for proving that certain behaviors do
or do not occur

Why Two Semantics?

● A static semantics is useful for proving that certain behaviors do
or do not occur
○ e.g., typechecking implies a particular static semantics

Why Two Semantics?

● A static semantics is useful for proving that certain behaviors do
or do not occur
○ e.g., typechecking implies a particular static semantics
○ one way to think about this: the static semantics is the union

of the program’s dynamic semantics (for all possible inputs)

Why Two Semantics?

● A static semantics is useful for proving that certain behaviors do
or do not occur
○ e.g., typechecking implies a particular static semantics
○ one way to think about this: the static semantics is the union

of the program’s dynamic semantics (for all possible inputs)
● We want some dynamic semantics to be impossible!

Why Two Semantics?

● A static semantics is useful for proving that certain behaviors do
or do not occur
○ e.g., typechecking implies a particular static semantics
○ one way to think about this: the static semantics is the union

of the program’s dynamic semantics (for all possible inputs)
● We want some dynamic semantics to be impossible!

○ e.g., 1 + “hello” should not have a dynamic semantics

Why Two Semantics?

● A static semantics is useful for proving that certain behaviors do
or do not occur
○ e.g., typechecking implies a particular static semantics
○ one way to think about this: the static semantics is the union

of the program’s dynamic semantics (for all possible inputs)
● We want some dynamic semantics to be impossible!

○ e.g., 1 + “hello” should not have a dynamic semantics
■ typechecking prevents this “program” from ever being

evaluated!

Rules of Compilers

Rules of Compilers

1. First, don’t change the semantics

Rules of Compilers

1. First, don’t change the semantics
● from the textbook:

The compiler must preserve the meaning of the program being compiled.

Rules of Compilers

1. First, don’t change the semantics
● from the textbook:

The compiler must preserve the meaning of the program being compiled.

This Rule is referring to the
program’s static semantics: we
must not change the program’s
behavior for any input!

Rules of Compilers

1. First, don’t change the semantics
● from the textbook:

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve the program (“try to help”)

This Rule is referring to the
program’s static semantics: we
must not change the program’s
behavior for any input!

Rules of Compilers

1. First, don’t change the semantics
● from the textbook:

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve the program (“try to help”)
● from the textbook:

The compiler must improve the input program in some discernible way.

This Rule is referring to the
program’s static semantics: we
must not change the program’s
behavior for any input!

Rules of Compilers

1. First, don’t change the semantics
● from the textbook:

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve the program (“try to help”)
● from the textbook:

The compiler must improve the input program in some discernible way.

This Rule is referring to the
program’s static semantics: we
must not change the program’s
behavior for any input!

If there is ever a conflict
between these Rules, which
one takes precedence?

Rules of Compilers

1. First, don’t change the semantics
● from the textbook:

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve the program (“try to help”)
● from the textbook:

The compiler must improve the input program in some discernible way.

This Rule is referring to the
program’s static semantics: we
must not change the program’s
behavior for any input!

If there is ever a conflict
between these Rules, which
one takes precedence?
The First Rule!

Traditional compiler/interpreter structure

Lexer Parser Typechecker
Code

Generator
Optimizer

source
code

optimized
assemblyInterpreter

Traditional compiler/interpreter structure

Lexer Parser Typechecker
Code

Generator
Optimizer

source
code

optimized
assembly

PA2

Interpreter

PA3 PA4

Traditional compiler/interpreter structure

Lexer Parser Typechecker
Code

Generator
Optimizer

source
code

optimized
assembly

PA2

Interpreter

PA3 PA4

rest of today: essential
information about these
frontend stages
(hopefully review for
most of you!)

Today’s Agenda

● Social contract of a compiler
● Compiler frontends

○ Lexing
○ Parsing

■ our first intermediate representation: abstract syntax
trees

Lexical analysis

● A lexical analyzer (or lexer) divides program text into “tokens”

Lexical analysis

● A lexical analyzer (or lexer) divides program text into “tokens”
○ i.e., it is a function of type string -> token list

Lexical analysis

● A lexical analyzer (or lexer) divides program text into “tokens”
○ i.e., it is a function of type string -> token list

● A token is a syntactic category

Lexical analysis

● A lexical analyzer (or lexer) divides program text into “tokens”
○ i.e., it is a function of type string -> token list

● A token is a syntactic category
○ in English:

■ “noun”, “verb”, “adjective”

Lexical analysis

● A lexical analyzer (or lexer) divides program text into “tokens”
○ i.e., it is a function of type string -> token list

● A token is a syntactic category
○ in English:

■ “noun”, “verb”, “adjective”
○ in a programming language:

■ identifier, integer constant, keyword, whitespace

Lexical analysis

● A lexical analyzer (or lexer) divides program text into “tokens”
○ i.e., it is a function of type string -> token list

● A token is a syntactic category
○ in English:

■ “noun”, “verb”, “adjective”
○ in a programming language:

■ identifier, integer constant, keyword, whitespace
● Parsers rely on token distinctions

○ e.g., identifiers are treated differently than keywords

Lexical analysis: tokens

● Note that tokens correspond to sets of strings

Lexical analysis: tokens

● Note that tokens correspond to sets of strings
○ e.g., an identifier token is any string of letters or digits that

starts with a letter (in most languages)

Lexical analysis: tokens

● Note that tokens correspond to sets of strings
○ e.g., an identifier token is any string of letters or digits that

starts with a letter (in most languages)
● A lexer needs to do two things:

○ recognize substrings that correspond to tokens

Lexical analysis: tokens

● Note that tokens correspond to sets of strings
○ e.g., an identifier token is any string of letters or digits that

starts with a letter (in most languages)
● A lexer needs to do two things:

○ recognize substrings that correspond to tokens
○ return the lexeme of the token

■ the lexeme is the specific substring

Lexical analysis: tokens

● Note that tokens correspond to sets of strings
○ e.g., an identifier token is any string of letters or digits that

starts with a letter (in most languages)
● A lexer needs to do two things:

○ recognize substrings that correspond to tokens
○ return the lexeme of the token

■ the lexeme is the specific substring
■ e.g., in Cool, myVar is an identifier token whose lexeme

is “myVar”

Lexical analysis: implementation

● Lexers usually discard “uninteresting” tokens that don’t
contribute to parsing
○ e.g., whitespace or comments

Lexical analysis: implementation

● Lexers usually discard “uninteresting” tokens that don’t
contribute to parsing
○ e.g., whitespace or comments

● Lexing a string is typically implemented by reading the string
from start to end, one token at a time

Lexical analysis: implementation

● Lexers usually discard “uninteresting” tokens that don’t
contribute to parsing
○ e.g., whitespace or comments

● Lexing a string is typically implemented by reading the string
from start to end, one token at a time
○ Lexers generally require some amount of lookahead to

successfully partition a string
○ e.g., “i” vs “if”

Lexical analysis: implementation

● Lexers usually discard “uninteresting” tokens that don’t
contribute to parsing
○ e.g., whitespace or comments

● Lexing a string is typically implemented by reading the string
from start to end, one token at a time
○ Lexers generally require some amount of lookahead to

successfully partition a string
○ e.g., “i” vs “if”

looks like an identifier at first…

Lexical analysis: implementation

● Lexers usually discard “uninteresting” tokens that don’t
contribute to parsing
○ e.g., whitespace or comments

● Lexing a string is typically implemented by reading the string
from start to end, one token at a time
○ Lexers generally require some amount of lookahead to

successfully partition a string
○ e.g., “i” vs “if”

looks like an identifier at first…but it’s actually a keyword

Lexical analysis: theoretical grounding

Lexical analysis: theoretical grounding

Definition: Let Σ (“sigma”) be a set of characters. A language over Σ
is a set of strings of characters drawn from Σ. Σ is called the
alphabet.

Lexical analysis: theoretical grounding

Definition: Let Σ (“sigma”) be a set of characters. A language over Σ
is a set of strings of characters drawn from Σ. Σ is called the
alphabet.
● e.g., alphabet = English characters, language = valid English

sentences

Lexical analysis: theoretical grounding

Definition: Let Σ (“sigma”) be a set of characters. A language over Σ
is a set of strings of characters drawn from Σ. Σ is called the
alphabet.
● e.g., alphabet = English characters, language = valid English

sentences
○ note that not every string of English characters is a valid

sentence! E.g., “xagea’ iwej”

Lexical analysis: theoretical grounding

Definition: Let Σ (“sigma”) be a set of characters. A language over Σ
is a set of strings of characters drawn from Σ. Σ is called the
alphabet.
● e.g., alphabet = English characters, language = valid English

sentences
○ note that not every string of English characters is a valid

sentence! E.g., “xagea’ iwej”
● for lexing, we care about the regular languages, which you

might remember from your CS theory class

Lexical analysis: regular languages

Definition: a regular language is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.

Lexical analysis: regular languages

Definition: a regular language is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.
● More formally, the set of regular languages over some alphabet Σ is

defined as:
○ the empty language Ø is regular
○ for each s in Σ, the singleton set { s } is regular
○ if A is a regular language, then A* is a regular language
○ if A and B are regular languages, then A ∪ B and A • B are

regular

Lexical analysis: regular languages

Definition: a regular language is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.
● More formally, the set of regular languages over some alphabet Σ is

defined as:
○ the empty language Ø is regular
○ for each s in Σ, the singleton set { s } is regular
○ if A is a regular language, then A* is a regular language
○ if A and B are regular languages, then A ∪ B and A • B are

regular

This Kleene Star
operator indicates
repetition (“zero or
more times”)

Lexical analysis: regular languages

Definition: a regular language is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.
● More formally, the set of regular languages over some alphabet Σ is

defined as:
○ the empty language Ø is regular
○ for each s in Σ, the singleton set { s } is regular
○ if A is a regular language, then A* is a regular language
○ if A and B are regular languages, then A ∪ B and A • B are

regular

Union (“all the
strings in both A
and B”)

Lexical analysis: regular languages

Definition: a regular language is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.
● More formally, the set of regular languages over some alphabet Σ is

defined as:
○ the empty language Ø is regular
○ for each s in Σ, the singleton set { s } is regular
○ if A is a regular language, then A* is a regular language
○ if A and B are regular languages, then A ∪ B and A • B are

regular

Concatenation (“each string in A
followed by each string in B”)

Lexical analysis: in practice

Lexical analysis: in practice

● In practice, we use a lexical analysis generator like ply, flex, or
ocamllex to build lexers for us

Lexical analysis: in practice

● In practice, we use a lexical analysis generator like ply, flex, or
ocamllex to build lexers for us
○ these tools take regular expressions as input…

Lexical analysis: in practice

● In practice, we use a lexical analysis generator like ply, flex, or
ocamllex to build lexers for us
○ these tools take regular expressions as input…
○ …and then convert into finite automata, which they implement

using lookup tables…

Lexical analysis: in practice

● In practice, we use a lexical analysis generator like ply, flex, or
ocamllex to build lexers for us
○ these tools take regular expressions as input…
○ …and then convert into finite automata, which they implement

using lookup tables…
○ to eventually generate performant lexing code

Trivia Break: Computing History

Around 825 CE, this Persian scientist and polymath wrote kitāb al-
ḥisāb al-hindī (“Book of Indian computation”) and kitab al-jam'
wa'l-tafriq al-ḥisāb al-hindī (“Addition and subtraction in Indian
arithmetic”). Despite these works later having a major influence on
computer science, he is best known for his popularizing treatise on
algebra (the “Al-Jabr”). The word “algorithm” is derived from his
name.

Today’s Agenda

● Social contract of a compiler
● Compiler frontends

○ Lexing
○ Parsing

■ our first intermediate representation: abstract syntax
trees

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

● Otherwise, it produces an error
○ e.g., “parse error on line 3”

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

● Otherwise, it produces an error
○ e.g., “parse error on line 3”

● Comparison of lexing vs. parsing:

Phase Input Output

Lexer Sequence of
characters

Sequence of tokens

Parser Sequence of tokens Parse tree

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

● Otherwise, it produces an error
○ e.g., “parse error on line 3”

● Comparison of lexing vs. parsing:

Phase Input Output

Lexer Sequence of
characters

Sequence of tokens

Parser Sequence of tokens Parse tree

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

● Otherwise, it produces an error
○ e.g., “parse error on line 3”

● Comparison of lexing vs. parsing:

Phase Input Output

Lexer Sequence of
characters

Sequence of tokens

Parser Sequence of tokens Parse tree

Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler

Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler
○ this is a powerful perspective: you know how to write

programs that manipulate data already

Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler
○ this is a powerful perspective: you know how to write

programs that manipulate data already
○ fundamentally, your compiler is just another program that

manipulates data - the only difference is that the data, in this
case, are also programs

Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler
○ this is a powerful perspective: you know how to write

programs that manipulate data already
○ fundamentally, your compiler is just another program that

manipulates data - the only difference is that the data, in this
case, are also programs

● So, how do we represent programs as data?

Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler
○ this is a powerful perspective: you know how to write

programs that manipulate data already
○ fundamentally, your compiler is just another program that

manipulates data - the only difference is that the data, in this
case, are also programs

● So, how do we represent programs as data?
○ there are many ways, but today we’ll discuss two…

Treating programs as data: two ways

#1: treat the program as a string

Treating programs as data: two ways

#1: treat the program as a string

● allows us to easily decide syntactic properties

Treating programs as data: two ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

Treating programs as data: two ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

● key downside: cannot use the program’s semantics

Treating programs as data: two ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

● key downside: cannot use the program’s semantics
○ semantics are relevant for properties related to context - that

is, where the question to be decided depends on the rest of the
program

Treating programs as data: two ways

#2: treat the program as a tree

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

● usually produced by a parser

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

● usually produced by a parser
● nodes in the tree represent syntactic constructs

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

● usually produced by a parser
● nodes in the tree represent syntactic constructs

○ parent-child relationships in the AST represent compound
expressions in the source code (e.g., a “plus node” might have
two children: the left and right side expressions)

Treating programs as data: AST example

Treating programs as data: AST example

plus nodes have children

Treating programs as data: AST example

grouping parentheses and
other disambiguation is no
longer necessary (AST is
unambiguous, unlike text)

Treating programs as data: AST example

grouping parentheses and
other disambiguation is no
longer necessary (AST is
unambiguous, unlike text)

In PA2, you will take
this structure as input
and annotate each
node with a type

Parsing: errors

● Not all sequences of tokens are programs and correspond to an
AST. E.g.:
○ then x * / + 3 while x ; y z then

Parsing: errors

● Not all sequences of tokens are programs and correspond to an
AST. E.g.:
○ then x * / + 3 while x ; y z then

● The parser must distinguish between valid and invalid sequences
of tokens

Parsing: errors

● Not all sequences of tokens are programs and correspond to an
AST. E.g.:
○ then x * / + 3 while x ; y z then

● The parser must distinguish between valid and invalid sequences
of tokens

● We need:
○ A language or formalism to describe valid sequences of

tokens

Parsing: errors

● Not all sequences of tokens are programs and correspond to an
AST. E.g.:
○ then x * / + 3 while x ; y z then

● The parser must distinguish between valid and invalid sequences
of tokens

● We need:
○ A language or formalism to describe valid sequences of

tokens
○ A method (i.e., an algorithm) for distinguishing between valid

and invalid token sequences

Aside: computability theory

Definition: an algorithm is a finite sequence of mathematically
rigorous instructions, typically used to solve a class of specific
problems or to perform a computation. [Wikipedia’s Algorithm]

https://en.wikipedia.org/wiki/Algorithm

Aside: computability theory

Definition: an algorithm is a finite sequence of mathematically
rigorous instructions, typically used to solve a class of specific
problems or to perform a computation. [Wikipedia’s Algorithm]

● when we talk about algorithms in Computer Science, we
generally are referring to the computable functions, which are
the formalized analogue of the intuitive notion above

https://en.wikipedia.org/wiki/Algorithm

Aside: computability theory

Definition: an algorithm is a finite sequence of mathematically
rigorous instructions, typically used to solve a class of specific
problems or to perform a computation. [Wikipedia’s Algorithm]

● when we talk about algorithms in Computer Science, we
generally are referring to the computable functions, which are
the formalized analogue of the intuitive notion above
○ a function is computable if there exists an algorithm that can

do the job of the function which we can execute in one of our
models of computation (e.g., the lambda calculus or a Turing
machine)

https://en.wikipedia.org/wiki/Algorithm

Parsing Theory

● So, what’s the formalism for parsing?

Parsing Theory

● So, what’s the formalism for parsing?
○ Regular expressions/DFAs (as we used for lexing) don’t work

Parsing Theory

● So, what’s the formalism for parsing?
○ Regular expressions/DFAs (as we used for lexing) don’t work

■ because parsing requires context!

Parsing Theory

● So, what’s the formalism for parsing?
○ Regular expressions/DFAs (as we used for lexing) don’t work

■ because parsing requires context!
■ e.g., we need to check if parentheses are matched

Parsing Theory

● So, what’s the formalism for parsing?
○ Regular expressions/DFAs (as we used for lexing) don’t work

■ because parsing requires context!
■ e.g., we need to check if parentheses are matched

● Perhaps you recall from your CS theory class what kind of
formalism is appropriate for checking the language of balanced
parentheses?

Parsing Theory

● So, what’s the formalism for parsing?
○ Regular expressions/DFAs (as we used for lexing) don’t work

■ because parsing requires context!
■ e.g., we need to check if parentheses are matched

● Perhaps you recall from your CS theory class what kind of
formalism is appropriate for checking the language of balanced
parentheses?
○ the context-free grammars or pushdown automata

Parsing Theory: Context-free Grammars

● How do we know? Programming languages have recursive
structure

Parsing Theory: Context-free Grammars

● How do we know? Programming languages have recursive
structure

● E.g., consider the language of arithmetic expressions with
integers, +, *, and ()

Parsing Theory: Context-free Grammars

● How do we know? Programming languages have recursive
structure

● E.g., consider the language of arithmetic expressions with
integers, +, *, and ()

● An expression in this language is either:
○ an integer
○ an expression followed by “+” followed by an expression
○ an expression followed by “*” followed by an expression
○ a ‘(‘ followed by an expression followed by ‘)’

Parsing Theory: Context-free Grammars

● How do we know? Programming languages have recursive
structure

● E.g., consider the language of arithmetic expressions with
integers, +, *, and ()

● An expression in this language is either:
○ an integer
○ an expression followed by “+” followed by an expression
○ an expression followed by “*” followed by an expression
○ a ‘(‘ followed by an expression followed by ‘)’

● 5 , 5+3, (5+3)*7 are expressions in this language

Parsing Theory: Context-free Grammars

● An alternative notation for the language on the last slide:
○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

Parsing Theory: Context-free Grammars

● An alternative notation for the language on the last slide:
○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● We can view these rules as rewrite rules

Parsing Theory: Context-free Grammars

● An alternative notation for the language on the last slide:
○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● We can view these rules as rewrite rules
○ We start with E and replace occurrences of E with some

right-hand side

Parsing Theory: Context-free Grammars

● An alternative notation for the language on the last slide:
○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● We can view these rules as rewrite rules
○ We start with E and replace occurrences of E with some

right-hand side
○ Eventually, we’ll derive an actual program in the language

Parsing Theory: Context-free Grammars

● An alternative notation for the language on the last slide:
○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● We can view these rules as rewrite rules
○ We start with E and replace occurrences of E with some

right-hand side
○ Eventually, we’ll derive an actual program in the language

Note that there is no series of
rewrites that allows us to obtain an
invalid program (e.g., with
mismatched parentheses). Why?

Parsing Theory: Context-free Grammars

● The notation on the previous slide is exactly a context-free
grammar.

Parsing Theory: Context-free Grammars

● The notation on the previous slide is exactly a context-free
grammar.

● Officially, a context-free grammar consists of:

Parsing Theory: Context-free Grammars

● The notation on the previous slide is exactly a context-free
grammar.

● Officially, a context-free grammar consists of:
○ A set of non-terminals N

■ Written in uppercase in these notes

Parsing Theory: Context-free Grammars

● The notation on the previous slide is exactly a context-free
grammar.

● Officially, a context-free grammar consists of:
○ A set of non-terminals N

■ Written in uppercase in these notes
○ A set of terminals T

■ Lowercase or punctuation in these notes

Parsing Theory: Context-free Grammars

● The notation on the previous slide is exactly a context-free
grammar.

● Officially, a context-free grammar consists of:
○ A set of non-terminals N

■ Written in uppercase in these notes
○ A set of terminals T

■ Lowercase or punctuation in these notes
○ A start symbol S (a non-terminal)

Parsing Theory: Context-free Grammars

● The notation on the previous slide is exactly a context-free
grammar.

● Officially, a context-free grammar consists of:
○ A set of non-terminals N

■ Written in uppercase in these notes
○ A set of terminals T

■ Lowercase or punctuation in these notes
○ A start symbol S (a non-terminal)
○ A set of productions (rewrite rules)

Parsing Theory: Context-free Grammars
● Context-free grammar example:

○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

Parsing Theory: Context-free Grammars
● Context-free grammar example:

○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● E is the only non-terminal

Parsing Theory: Context-free Grammars
● Context-free grammar example:

○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● E is the only non-terminal
● int, +, *, (, and) are the terminals

○ called terminals because they are never replaced

Parsing Theory: Context-free Grammars
● Context-free grammar example:

○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● E is the only non-terminal
● int, +, *, (, and) are the terminals

○ called terminals because they are never replaced
● each bullet above is one of the rewrite rules (productions)

Parsing Theory: Context-free Grammars
● Context-free grammar example:

○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> (E)

● E is the only non-terminal
● int, +, *, (, and) are the terminals

○ called terminals because they are never replaced
● each bullet above is one of the rewrite rules (productions)
● by convention, the first non-terminal in the first production is the

start symbol

Parsing Theory: Derivations

● A derivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals

Parsing Theory: Derivations

● A derivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals
○ a derivation can be drawn as a tree

Parsing Theory: Derivations

● A derivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals
○ a derivation can be drawn as a tree

■ start symbol is the root

Parsing Theory: Derivations

● A derivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals
○ a derivation can be drawn as a tree

■ start symbol is the root
■ for each production, add children for each symbol on the

right-hand side of the rule as children of the left-hand
side non-terminal

Parsing Theory: Derivations

● A derivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals
○ a derivation can be drawn as a tree

■ start symbol is the root
■ for each production, add children for each symbol on the

right-hand side of the rule as children of the left-hand
side non-terminal

○ this derivation exactly corresponds to the AST!

Parser History

● In the early days of computing, parsing was the most expensive
part of a compiler

Parser History

● In the early days of computing, parsing was the most expensive
part of a compiler
○ e.g., consider original FORTRAN:

■ no semantic analysis or typechecking
■ little optimization
■ code generation is syntax-directed

Parser History

● In the early days of computing, parsing was the most expensive
part of a compiler
○ e.g., consider original FORTRAN:

■ no semantic analysis or typechecking
■ little optimization
■ code generation is syntax-directed

● Therefore, a lot of early compilers research was focused on
improving parsing

Parser History

● In the early days of computing, parsing was the most expensive
part of a compiler
○ e.g., consider original FORTRAN:

■ no semantic analysis or typechecking
■ little optimization
■ code generation is syntax-directed

● Therefore, a lot of early compilers research was focused on
improving parsing
○ e.g., LL(1) vs LR grammars, Earley parsing, etc.

■ we aren’t going to cover these in this class!

Parser History

● These days, parsing is considered a mostly-solved problem

Parser History

● These days, parsing is considered a mostly-solved problem
○ semantic analysis and optimization times dominate

Parser History

● These days, parsing is considered a mostly-solved problem
○ semantic analysis and optimization times dominate
○ parsing is fast enough that it’s not worth optimizing further

Parser History

● These days, parsing is considered a mostly-solved problem
○ semantic analysis and optimization times dominate
○ parsing is fast enough that it’s not worth optimizing further

● Automatic parser generators (e.g., bison or ocamlyacc) can
produce a parser implementation from a context-free grammar

Parser History

● These days, parsing is considered a mostly-solved problem
○ semantic analysis and optimization times dominate
○ parsing is fast enough that it’s not worth optimizing further

● Automatic parser generators (e.g., bison or ocamlyacc) can
produce a parser implementation from a context-free grammar
○ production compilers, though, typically use a custom recursive

descent parser

Parser History

● These days, parsing is considered a mostly-solved problem
○ semantic analysis and optimization times dominate
○ parsing is fast enough that it’s not worth optimizing further

● Automatic parser generators (e.g., bison or ocamlyacc) can
produce a parser implementation from a context-free grammar
○ production compilers, though, typically use a custom recursive

descent parser
■ that is, compiler engineers prioritize simplicity over having

a fast parser (the speed gains are no longer worthwhile for
the technical debt)

Parser History

● These days, parsing is considered a mostly-solved problem
○ semantic analysis and optimization times dominate
○ parsing is fast enough that it’s not worth optimizing further

● Automatic parser generators (e.g., bison or ocamlyacc) can
produce a parser implementation from a context-free grammar
○ production compilers, though, typically use a custom recursive

descent parser
■ that is, compiler engineers prioritize simplicity over having

a fast parser (the speed gains are no longer worthwhile for
the technical debt)

Takeaway for you:
you can assume
that it’s relatively
easy to get an AST

Course Announcements

● PA1 (all four languages!) due today

Course Announcements

● PA1 (all four languages!) due today
● My OH this week are modified:

○ I will hold OH today instead of Wednesday, 4-5pm
○ if you need to meet later in the week, send me an email and

we’ll arrange something

Course Announcements

● PA1 (all four languages!) due today
● My OH this week are modified:

○ I will hold OH today instead of Wednesday, 4-5pm
○ if you need to meet later in the week, send me an email and

we’ll arrange something
● Don’t forget: PA2c1 is due Friday

○ this is a testing assignment: you’ll just write Cool programs

Course Announcements

● PA1 (all four languages!) due today
● My OH this week are modified:

○ I will hold OH today instead of Wednesday, 4-5pm
○ if you need to meet later in the week, send me an email and

we’ll arrange something
● Don’t forget: PA2c1 is due Friday

○ this is a testing assignment: you’ll just write Cool programs
● The course staff has become aware of a bug in the Apple Silicon

builds for Cool related to newlines
○ No fix is available. Use Ubuntu instead.

