Compiler Structure
Martin Kellogg

Today’s Agenda

e Social contract of a compiler
e Compiler frontends
o Lexing
o Parsing
m our first intermediate representation: abstract syntax
trees

Surprise Bioethics

“Primum non nocere”

Surprise Bioethics

“Primum non nocere” - “First,do no harm.

Surprise Bioethics

“Primum non nocere” - “First,do no harm.

e one of the key tenets of bioethics
o e.g., the Hippocratic Oath that doctors take

Surprise Bioethics

“Primum non nocere” - “First,do no harm.

e one of the key tenets of bioethics
o e.g., the Hippocratic Oath that doctors take
e alsoakeytenetincompilers:

[First Rule of Compilers: don’t change semantics]

Surprise Bioethics

“Primum non nocere” - “First,do no harm.

e one of the key tenets of bioethics
o e.g., the Hippocratic Oath that doctors take
e alsoakeytenetincompilers:

[First Rule of Compilers: don’t change semantics]

e i.e,don’t change the meaning of the program

Surprise Bioethics

“Primum non nocere” - “First,do no harm.

e one of the key tenets of bioethics
o e.g., the Hippocratic Oath that doctors take
e alsoakeytenetincompilers:

[First Rule of Compilers: don’t change semantics]

e i.e,don’t change the meaning of the program
e thisisthe contract that a compiler promises to its users

Syntax and Semantics

Definition: the of a programming language is how programs
are written down

e roughly “spelling and grammar”

Syntax and Semantics

Definition: the of a programming language is how programs
are written down

e roughly “spelling and grammar”

Definition: the semantics of a programming language explains what a
given program means

e Two relevant kinds of semantics (for now):

Syntax and Semantics

Definition: the of a programming language is how programs
are written down

e roughly “spelling and grammar”

Definition: the semantics of a programming language explains what a
given program means

e Two relevant kinds of semantics (for now):
o static semantics: roughly, the state space of the program

Syntax and Semantics

Definition: the of a programming language is how programs
are written down

e roughly “spelling and grammar”

Definition: the semantics of a programming language explains what a
given program means

e Two relevant kinds of semantics (for now):
o static semantics: roughly, the state space of the program
o dynamic semantics: in some specific execution, what does this
program actually evaluate to?

Why Two Semantics?

Why Two Semantics?

e Astatic semantics is useful for proving that certain behaviors do
or do not occur

Why Two Semantics?

e Astatic semantics is useful for proving that certain behaviors do
or do not occur
o e.g., typecheckingimplies a particular static semantics

Why Two Semantics?

e Astatic semantics is useful for proving that certain behaviors do
or do not occur
o e.g., typecheckingimplies a particular static semantics
o one way to think about this: the static semantics is the union
of the program’s dynamic semantics (for all possible inputs)

Why Two Semantics?

e Astatic semantics is useful for proving that certain behaviors do
or do not occur
o e.g., typecheckingimplies a particular static semantics
o one way to think about this: the static semantics is the union
of the program’s dynamic semantics (for all possible inputs)
e We want some dynamic semantics to be impossible!

Why Two Semantics?

e Astatic semantics is useful for proving that certain behaviors do
or do not occur
o e.g., typecheckingimplies a particular static semantics
o one way to think about this: the static semantics is the union
of the program’s dynamic semantics (for all possible inputs)
e We want some dynamic semantics to be impossible!
o e.g,1l + “hello” should not have a dynamic semantics

Why Two Semantics?

e Astatic semantics is useful for proving that certain behaviors do
or do not occur
o e.g., typecheckingimplies a particular static semantics
o one way to think about this: the static semantics is the union
of the program’s dynamic semantics (for all possible inputs)
e We want some dynamic semantics to be impossible!
o e.g,1l + “hello” should not have a dynamic semantics
m typechecking prevents this “program” from ever being
evaluated!

Rules of Compilers

Rules of Compilers

1. First,don’t change the semantics

Rules of Compilers

1. First,don’t change the semantics
e from the textbook:

The compiler must preserve the meaning of the program being compiled.

This Rule is referring to the

program’s static semantics: we

1. First,don’t change the semantics| must not change the program’s
e from the textbook: \behavior for any input!)

Rules of Compilers

The compiler must preserve the meaning of the program being compiled.

. This Rule is referri h
BU|€S Of Compllers |s_ue,|s re.errlngto.t e
program's static semantics: we

1. First,don’t change the semantics| must not change the program’s
e from the textbook: \behavior for any input!)

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve the program (“try to help”)

. This Rule is referri h
BU|€S Of Compllers |s_ue,|s re.errlngto.t e
program's static semantics: we

1. First,don’t change the semantics| must not change the program’s
e from the textbook: \behavior for any input!)

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve the program (“try to help”)
e from the textbook:

The compiler must improve the input program in some discernible way.

Rules of Compilers

1. First, don’t change the semantics

e from the textbook:

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve tl-ﬁf there is ever a conflict

e from the textbook:

The compiler must improve the

This Rule is referring to the

\behavior for any input!

program’s static semantics: we
must not change the program’s

J

~

between these Rules, which
one takes precedence?

1y.

_ J

. This Rule is referri h
BU|€S Of Compllers |s_ue,|s re.errlngto.t e
program's static semantics: we

1. First,don’t change the semantics| must not change the program’s
e from the textbook: \behavior for any input!)

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve tl-ﬁf there is ever a conflict A
e from the textbook: between these Rules, which
. . one takes precedence?
The compiler must improve the 1y.

\The First Rule!)

Traditional compiler/interpreter structure

source
code

Code o
[Lexer HParserHTypecheckerHGeneratorH Optlmlzer]

Interpreter optimized
i assembly

Traditional compiler/interpreter structure

source
code

Code
[Lexer HParserHTypecheckerHGeneratorH Optlmlzer]

Interpreter OPtlml zed
i assembly

Traditional compiler/interpreter structure

source
code

Code
[[Lexer HParserH’[Typechecker]—»[GeneratorH Opt|m|zer]

rest of today: essential
information about these
frontend stages
(hopefully review for
most of you!)

optlmlzed

Interpreter] assembly

Today’s Agenda

e Social contract of acompiler
e Compiler frontends
o Lexing
o Parsing
m our first intermediate representation: abstract syntax
trees

Lexical analysis

e Alexical analyzer (or lexer) divides program text into “tokens”

Lexical analysis

e Alexical analyzer (or lexer) divides program text into “tokens”
o i.e,itisafunctionoftype string -> token list

Lexical analysis

e Alexical analyzer (or lexer) divides program text into “tokens”
o l.e.,itisafunctionoftype string -> token list
e Atokenisasyntactic category

Lexical analysis

e Alexical analyzer (or lexer) divides program text into “tokens”
o l.e.,itisafunctionoftype string -> token list

e Atokenisasyntactic category
o in English:

» o«

m “noun’, “verb” “adjective”

Lexical analysis

e Alexical analyzer (or lexer) divides program text into “tokens”
o i.e,itisafunctionoftype string -> token list
e Atokenisasyntactic category
o in English:
m ‘noun’, “verb” “adjective”
o inaprogramming language:

m identifier, integer constant, keyword, whitespace

Lexical analysis

e Alexical analyzer (or lexer) divides program text into “tokens”
o i.e,itisafunctionoftype string -> token list
e Atokenisa
o in English:
m ‘noun’, “verb” “adjective”
o inaprogramming language:
m identifier, integer constant, keyword, whitespace
e Parsersrely on token distinctions

o e.g. identifiers are treated differently than keywords

Lexical analysis: tokens

e Note that tokens correspond to of strings

Lexical analysis: tokens

e Note that tokens correspond to of strings
o e.g., anidentifier token is any string of letters or digits that
starts with a letter (in most languages)

Lexical analysis: tokens

e Note that tokens correspond to of strings
o e.g., anidentifier token is any string of letters or digits that
starts with a letter (in most languages)
e Alexer needs to do two things:
o recognize substrings that correspond to tokens

Lexical analysis: tokens

e Note that tokens correspond to of strings
o e.g., anidentifier token is any string of letters or digits that
starts with a letter (in most languages)
e Alexer needs to do two things:
o recognize substrings that correspond to tokens
o return the lexeme of the token
m thelexeme s the specific substring

Lexical analysis: tokens

e Note that tokens correspond to of strings
o e.g., anidentifier token is any string of letters or digits that
starts with a letter (in most languages)
e Alexer needs to do two things:
o recognize substrings that correspond to tokens
o return the lexeme of the token
m thelexeme s the specific substring
m eg,inCool,myVar is anidentifier token whose lexeme
is “myVar”

Lexical analysis: implementation

e Lexersusually “uninteresting” tokens that don'’t
contribute to parsing
o e.g., whitespace or comments

Lexical analysis: implementation

e Lexersusually “uninteresting” tokens that don'’t
contribute to parsing
o e.g., whitespace or comments

e |Lexingastringis typically implemented by reading the string
from start to end, one token at a time

Lexical analysis: implementation

e Lexersusually “uninteresting” tokens that don'’t

contribute to parsing
o e.g., whitespace or comments
e |Lexingastringis typically implemented by reading the string
from start to end, one token at a time
o Lexers generally require some amount of lookahead to

successfully partition a string

ey

o eg," i"vs“if”

Lexical analysis: implementation

e Lexersusually “uninteresting” tokens that don'’t
contribute to parsing
o e.g., whitespace or comments
e |Lexingastringis typically implemented by reading the string
from start to end, one token at a time
o Lexers generally require some amount of lookahead to

successfully partition a string

ey

o eg., " “i”"vs“if”
\ looks like an identifier at first...

Lexical analysis: implementation

e Lexersusually “uninteresting” tokens that don'’t
contribute to parsing
o e.g., whitespace or comments
e |Lexingastringis typically implemented by reading the string
from start to end, one token at a time
o Lexers generally require some amount of lookahead to

successfully partition a string

ey ((if”

o e.g.,"i"vs

looks like an identifier at first...but it’s actually a keyword

Lexical analysis: theoretical grounding

Lexical analysis: theoretical grounding

Definition: Let 2 (“sigma”) be a set of characters. A language over 2
is a set of strings of characters drawn from 2. 2 is called the
alphabet.

Lexical analysis: theoretical grounding

Definition: Let 2 (“sigma”) be a set of characters. A language over 2
is a set of strings of characters drawn from 2. 2 is called the

alphabet.
e e.g,alphabet = English characters, language = valid English

sentences

Lexical analysis: theoretical grounding

Definition: Let 2 (“sigma”) be a set of characters. A language over 2
is a set of strings of characters drawn from 2. 2 is called the
alphabet.
e e.g,alphabet = English characters, language = valid English
sentences
o note that not every string of English characters is a valid
sentence! E.g., “xagea’ iwej”

Lexical analysis: theoretical grounding

Definition: Let 2 (“sigma”) be a set of characters. A language over 2
is a set of strings of characters drawn from 2. 2 is called the
alphabet.
e e.g,alphabet = English characters, language = valid English
sentences
o note that not every string of English characters is a valid
sentence! E.g., “xagea’ iwej”
e for lexing, we care about the , which you
might remember from your CS theory class

Lexical analysis: regular languages

Definition: a regular language is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.

Lexical analysis: regular languages

Definition: a is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.

e More formally, the set of regular languages over some alphabet 2 is
defined as:

O

O
O
O

the empty language @ is regular
foreachsin Z,thesingletonset{s}isregular
if A is aregular language, then A* is a regular language

if A and B are regular languages,then A U Band A e B are
regular

Lexical analysis: regular languages

Definition: a is a language that can
regular expression or, equivalently, by a deterministi

e More formally, the set of regular languages ove| repetition (“zero or
defined as:

O

O
O
O

This Kleene Star
operator indicates

more times”)

the empty language @ is regular
foreachsin 2, thesingleton set{ s }istegular
if Ais aregular language, the 3 regular language

if A and B are regular languages,then A U Band A e B are
regular

Lexical analysis: regular languages

Definition: a is a language that can be recognized by a
regular expression or, equivalently, by a deterministic finite automaton.

e More formally, the set of regular languages over some alphabet 2 is

defined as: o h
Union (“all the

o the empty language { stringsin both A

foreachsin 2, thesi| and B”) egular

O
o ifAisaregularlangua
O

regular

Lexical analysis: regular languages

Definition: a

is a language that can be recognized by a

regular expression or, equivalently, by a deterministic finite automaton.

e More formally, the set of regular languages over some alphabet 2 is
defined as:

O

O
O
O

the empty language {' - catenation (“each string in A

for eachsin 2, the si| followed by each string in B”)
if Ais aregular langua

if Aand B are regular languages,then A U Band A e |

3 are

regular

Lexical analysis: in practice

Lexical analysis: in practice

e |npractice, we use alexical analysis generator like ply, flex, or
ocamllex to build lexers for us

Lexical analysis: in practice

e |npractice, we use alexical analysis generator like ply, flex, or
ocamllex to build lexers for us
o these tools take regular expressions as input...

Lexical analysis: in practice

e |npractice, we use alexical analysis generator like ply, flex, or
ocamllex to build lexers for us
o these tools take regular expressions as input...
o ...and then convert into finite automata, which they implement
using lookup tables...

Lexical analysis: in practice

e |npractice, we use alexical analysis generator like ply, flex, or
ocamllex to build lexers for us
o these tools take regular expressions as input...
o ...and then convert into finite automata, which they implement
using lookup tables...
o toeventually generate performant lexing code

Trivia Break: Computing History

Around 825 CE, this Persian scientist and polymath wrote kitab al-
hisab al-hindr (“Book of Indian computation”) and kitab al-jam'
wa'l-tafrig al-hisab al-hindr (“Addition and subtraction in Indian
arithmetic”). Despite these works later having a major influence on
computer science, he is best known for his popularizing treatise on

algebra (the “Al-Jabr”). The word “algorithm” is derived from his
name.

Today’s Agenda

e Social contract of acompiler
e Compiler frontends
o Lexing
o Parsing
m our first intermediate representation: abstract syntax
trees

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

e Otherwise, it produces an error
o e.g., “parseerroronline3”

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

e Otherwise, it produces an error
o e.g., “parseerroronline3”
e Comparison of lexing vs. parsing:

Phase Input Output

Lexer

Parser

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

e Otherwise, it produces an error
o e.g., “parseerroronline3”
e Comparison of lexing vs. parsing:

Phase Input Output
Lexer Sequence of Sequence of tokens
characters

Parser

Parsing

Definition: A parser takes a sequence of tokens as input. If the input
is valid, it produces a abstract syntax tree (or derivation or parse tree).

e Otherwise, it produces an error
o e.g., “parseerroronline3”
e Comparison of lexing vs. parsing:

Phase Input Output
Lexer Sequence of Sequence of tokens
characters

Parser Sequence of tokens Parse tree

Parser Output: Abstract Syntax Trees (ASTs)

e |[mplicitinour discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler

Parser Output: Abstract Syntax Trees (ASTs)

e |[mplicitinour discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler

o thisis a powerful perspective: you know how to write
programs that data already

Parser Output: Abstract Syntax Trees (ASTs)

e |[mplicitinour discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the
compiler

o thisis a powerful perspective: you know how to write
programs that data already

o fundamentally, your compiler is just another program that
manipulates data - the only difference is that the data, in this
case, are also programs

Parser Output: Abstract Syntax Trees (ASTs)

e |[mplicitinour discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the

compiler
o thisis a powerful perspective: you know how to write
programs that data already

o fundamentally, your compiler is just another program that
manipulates data - the only difference is that the data, in this
case, are also programs

e So0,howdowe ?

Parser Output: Abstract Syntax Trees (ASTs)

e |[mplicitinour discussion of compilation so far: programs in the
compiler’s source language are data, from the perspective of the

compiler
o thisis a powerful perspective: you know how to write
programs that data already

o fundamentally, your compiler is just another program that
manipulates data - the only difference is that the data, in this
case, are also programs

e So0,howdowe ?
o there are many ways, but today we'll discuss two...

Treating programs as data: two ways

#1: treat the program as a string

Treating programs as data: two ways

#1: treat the program as a string

e allows usto easily decide properties

Treating programs as data: two ways

#1: treat the program as a string

e allows usto easily decide properties
o for example, checking if a program contains the text “foo”

Treating programs as data: two ways

#1: treat the program as a string

e allows usto easily decide properties
o for example, checking if a program contains the text “foo”
e keydownside: cannot use the program’s semantics

Treating programs as data: two ways

#1: treat the program as a string

e allows usto easily decide properties
o for example, checking if a program contains the text “foo”
e keydownside: cannot use the program’s semantics
o semantics are relevant for properties related to - that
is, where the question to be decided depends on the rest of the
program

Treating programs as data: two ways

#2: treat the program as a tree

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

e usually produced by a parser

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

e usually produced by a parser
e nodesinthe tree represent syntactic constructs

Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

e usually produced by a parser
e nodesinthe tree represent syntactic constructs
o parent-child relationships in the AST represent

in the source code (e.g., a “plus node” might have
two children: the left and right side expressions)

Treating programs as data: AST example

Example: 5 + (2 + 3)

-+

<
<

Treating programs as data: AST example

Example: 5 + (2 + 3)

+

plus nodes have children

[L

J

<
<

Treating programs as data: AST example

Example: 5 +[(2 + 3)

+

<

<

1\

<

<

grouping parentheses and
other disambiguation is no
longer necessary (AST is
unambiguous, unlike text)

Treating programs as data: AST example

Example: 5 +[(2 + 3)

+

<

<

1\

<

<

grouping parentheses and
other disambiguation is no
longer necessary (AST is
unambiguous, unlike text)

qn PA2, you will take
this structure as input
and annotate each

knode with a type

~

J

Parsing: errors

e Not all sequences of tokens are programs and correspond to an
AST.E.g.:

o then x * / + 3 while x ; y z then

Parsing: errors

e Not all sequences of tokens are programs and correspond to an
AST.E.g.:

o then x * / + 3 while x ; y z then
e The parser must distinguish between valid and invalid sequences

of tokens

Parsing: errors

e Not all sequences of tokens are programs and correspond to an
AST.E.g.:

o then x * / + 3 while x ; y z then
e The parser must distinguish between valid and invalid sequences

of tokens

e Weneed:
o Alanguage or formalism to describe valid sequences of

tokens

Parsing: errors

e Not all sequences of tokens are programs and correspond to an
AST.E.g.:

o then x * / + 3 while x ; y z then
e The parser must distinguish between valid and invalid sequences

of tokens

e We need:
o Alanguage or formalism to describe valid sequences of
tokens
o A method (i.e., an) for distinguishing between valid

and invalid token sequences

Aside: computability theory

Definition: an algorithm is a finite sequence of mathematically
rigorous instructions, typically used to solve a class of specific
problems or to perform a computation. (wikipedia's Algorithm

https://en.wikipedia.org/wiki/Algorithm

Aside: computability theory

Definition: an algorithm is a finite sequence of mathematically
rigorous instructions, typically used to solve a class of specific
problems or to perform a computation. (wikipedia's Algorithm

e when we talk about algorithms in Computer Science, we

generally are referring to the computable functions, which are
the formalized analogue of the intuitive notion above

https://en.wikipedia.org/wiki/Algorithm

Aside: computability theory

Definition: an algorithm is a finite sequence of mathematically
rigorous instructions, typically used to solve a class of specific
problems or to perform a computation. (wikipedia's Algorithm

e when we talk about algorithms in Computer Science, we
generally are referring to the computable functions, which are
the formalized analogue of the intuitive notion above

o afunctionis if there exists an algorithm that can
do the job of the function which we can execute in one of our

models of computation (e.g., the lambda calculus or a Turing
machine)

https://en.wikipedia.org/wiki/Algorithm

Parsing Theory

e So, what’s the formalism for parsing?

Parsing Theory

e So, what’s the formalism for parsing?
o Regular expressions/DFAs (as we used for lexing) don’t work

Parsing Theory

e So, what’s the formalism for parsing?
o Regular expressions/DFAs (as we used for lexing) don’t work
m because parsing requires !

Parsing Theory

e So, what’s the formalism for parsing?
o Regular expressions/DFAs (as we used for lexing) don’t work
m because parsing requires !
m e.g., weneed tocheck if parentheses are matched

Parsing Theory

e So, what’s the formalism for parsing?
o Regular expressions/DFAs (as we used for lexing) don’t work
m because parsing requires !
m e.g., weneed tocheck if parentheses are matched
e Perhaps you recall from your CS theory class what kind of
formalism is appropriate for checking the language of balanced
parentheses?

Parsing Theory

e So, what’s the formalism for parsing?
o Regular expressions/DFAs (as we used for lexing) don’t work
m because parsing requires !
m e.g., weneed tocheck if parentheses are matched
e Perhaps you recall from your CS theory class what kind of
formalism is appropriate for checking the language of balanced
parentheses?
o the context-free grammars or pushdown automata

Parsing Theory: Context-free Grammars

e How dowe know? Programming languages have recursive
structure

Parsing Theory: Context-free Grammars

e How dowe know? Programming languages have recursive
structure

e E.g,consider the language of arithmetic expressions with
integers, +, * and ()

Parsing Theory: Context-free Grammars

How do we know? Programming languages have recursive
structure
E.g., consider the language of arithmetic expressions with
integers, +,* and ()
An expression in this language is either:
o aninteger
o an expression followed by “+” followed by an expression
o anexpression followed by “*” followed by an expression
o a‘(‘followed by an expression followed by ‘)’

Parsing Theory: Context-free Grammars

e How dowe know? Programming languages have recursive
structure
e E.g,consider the language of arithmetic expressions with
integers, +,* and ()
e Anexpression in thislanguage is either:
o aninteger
o an expression followed by “+” followed by an expression
o anexpression followed by “*” followed by an expression
o a‘(‘followed by an expression followed by ‘)’
e 5,543, (5+3)*7 are expressions in this language

Parsing Theory: Context-free Grammars

e An alternative notation for the language on the last slide:
o E->int
o E->E+E
o E->E*E
o E->(E)

Parsing Theory: Context-free Grammars

e An alternative notation for the language on the last slide:
o E->int
o E->E+E
o E->E*E
o E->(E)
e We canview theserules as rewrite rules

Parsing Theory: Context-free Grammars

e An alternative notation for the language on the last slide:
o E->int
o E->E+E
o E->E*E
o E->(E)
e We canview theserules as rewrite rules
o We start with E and replace occurrences of E with some
right-hand side

Parsing Theory: Context-free Grammars

e An alternative notation for the language on the last slide:
o E->int
o E->E+E
o E->E*E
o E->(E)
e We canview theserules as rewrite rules
o We start with E and replace occurrences of E with some
right-hand side
o Eventually, we'll derive an actual program in the language

Parsing Theory: Context-free Grammars

e An alternative notation for the language on the last slide:

O

O

O

O

E->int
E->E+E
E->E*E
E->(E)

fNote that there is no series of

\

rewrites that allows us to obtain an

invalid program (e.g., with

kmismatched parentheses). Why? Y

e We canview these rules as rewrite rules
o We start with E and replace occurrences of E with some

o Eventually, we'll derive an actual program in the language

right-hand side

Parsing Theory: Context-free Grammars

e The notation onthe previous slide is exactly a context-free
grammar.

Parsing Theory: Context-free Grammars

e The notation onthe previous slide is exactly a context-free
grammar.
e Officially, a context-free grammar consists of:

Parsing Theory: Context-free Grammars

e The notation onthe previous slide is exactly a context-free
grammar.
e Officially, a context-free grammar consists of:
o A set of non-terminals N
m Written in uppercase in these notes

Parsing Theory: Context-free Grammars

e The notation onthe previous slide is exactly a context-free
grammar.
e Officially, a context-free grammar consists of:
o A set of non-terminals N
m Written in uppercase in these notes
o Asetof T
m Lowercase or punctuation in these notes

Parsing Theory: Context-free Grammars

e The notation onthe previous slide is exactly a context-free
grammar.
e Officially, a context-free grammar consists of:
o A set of non-terminals N
m Written in uppercase in these notes
o Asetof T
m Lowercase or punctuation in these notes
o Astart symbol S (a non-terminal)

Parsing Theory: Context-free Grammars

e The notation onthe previous slide is exactly a context-free
grammar.
e Officially, a context-free grammar consists of:

O

A set of non-terminals N
m Written in uppercase in these notes
A set of T
m Lowercase or punctuation in these notes
A start symbol S (a non-terminal)
A set of productions (rewrite rules)

Parsing Theory: Context-free Grammars
e Context-free grammar example:

o E->int

o E->E+E

o E->E*E

o E->(E)

Parsing Theory: Context-free Grammars
e Context-free grammar example:

o E->int

o E->E+E

o E->E*E

o E->(E)
e E istheonlynon-terminal

Parsing Theory: Context-free Grammars
e Context-free grammar example:
o E->int
o E->E+E
o E->E*E
o E->(E)
e E istheonlynon-terminal
e int,+ * (,and) are the terminals
o called terminals because they are never replaced

Parsing Theory: Context-free Grammars
e Context-free grammar example:
o E->int
o E->E+E
o E->E*E
o E->(E)
e E istheonlynon-terminal
e int,+ * (,and) are the terminals
o called terminals because they are never replaced
e each bullet above is one of the rewrite rules (productions)

Parsing Theory: Context-free Grammars
e Context-free grammar example:
o E->int
o E->E+E
o E->E*E
o E->(E)
e E istheonlynon-terminal
e int,+ * (,and) are the terminals
o called terminals because they are never replaced
e each bullet above is one of the rewrite rules (productions)
e by convention, the first non-terminal in the first production is the
start symbol

Parsing Theory: Derivations

e Aderivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals

Parsing Theory: Derivations

e Aderivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals

o aderivation can bedrawn as a tree

Parsing Theory: Derivations

e Aderivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals

o aderivation can bedrawn as a tree
m startsymbolistheroot

Parsing Theory: Derivations

e Aderivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals

o aderivation can bedrawn as a tree
m startsymbolistheroot
m for each production, add children for each symbol on the
right-hand side of the rule as children of the left-hand
side non-terminal

Parsing Theory: Derivations

e Aderivation is a sequence of productions, starting from the start
symbol of the context-free grammar, that produces a string of
only terminals

o aderivation can bedrawn as a tree
m startsymbolistheroot
m for each production, add children for each symbol on the
right-hand side of the rule as children of the left-hand
side non-terminal
o this derivation to the AST!

Parser History

e |ntheearly days of computing, parsing was the most expensive
part of a compiler

Parser History

e |ntheearly days of computing, parsing was the most expensive
part of a compiler
o e.g., consider original FORTRAN:
m nhosemantic analysis or typechecking
m little optimization
m code generation is syntax-directed

Parser History

e |ntheearly days of computing, parsing was the most expensive
part of a compiler
o e.g., consider original FORTRAN:
m nhosemantic analysis or typechecking
m little optimization
m code generation is syntax-directed
e Therefore, alot of early compilers research was focused on
improving parsing

Parser History

e |ntheearly days of computing, parsing was the most expensive
part of a compiler
o e.g., consider original FORTRAN:
m nhosemantic analysis or typechecking
m little optimization
m code generation is syntax-directed
e Therefore, alot of early compilers research was focused on
improving parsing
o e.g.,LL(1)vs LR grammars, Earley parsing, etc.
m we aren’t going to cover these in this class!

Parser History

e These days, parsing is considered a mostly-solved problem

Parser History

e These days, parsing is considered a mostly-solved problem
o semantic analysis and optimization times dominate

Parser History

e These days, parsing is considered a mostly-solved problem
o semantic analysis and optimization times dominate
o parsingis fast enough that it’s not worth optimizing further

Parser History

e These days, parsing is considered a mostly-solved problem
o semantic analysis and optimization times dominate
o parsingis fast enough that it’'s not worth optimizing further
e Automatic parser generators (e.g., bison or ocamlyacc)can
produce a parser implementation from a context-free grammar

Parser History

e These days, parsing is considered a mostly-solved problem
o semantic analysis and optimization times dominate
o parsingis fast enough that it’'s not worth optimizing further
e Automatic parser generators (e.g., bison or ocamlyacc)can
produce a parser implementation from a context-free grammar
o production compilers, though, typically use a custom recursive
descent parser

Parser History

e These days, parsing is considered a mostly-solved problem
o semantic analysis and optimization times dominate
o parsingis fast enough that it’'s not worth optimizing further
e Automatic parser generators (e.g., bison or ocamlyacc)can
produce a parser implementation from a context-free grammar
o production compilers, though, typically use a custom recursive
descent parser
m thatis,compiler engineers prioritize over having
a fast parser (the speed gains are no longer worthwhile for
the technical debt)

Parser History

e These days, parsing is considered a mostly-solved problem
o semantic analysis and optimization times d¢' 1 xeaway for you: |
o parsing is fast enough that it's not worth op| you can assume
e Automatic parser generators (e.g., bison or ocd thatit'srelatively
produce a parser implementation from a conte casy tS geianssl
o production compilers, though, typically use a custom recursive
descent parser
m thatis,compiler engineers prioritize over having
a fast parser (the speed gains are no longer worthwhile for
the technical debt)

Course Announcements

e PA1 (all four languages!) due today

Course Announcements

e PA1 (all four languages!) due today
e My OH this week are modified:
o | will hold OH today instead of Wednesday, 4-5pm
o if you need to meet later in the week, send me an email and
we'll arrange something

Course Announcements

e PA1 (all four languages!) due today
e My OH this week are modified:
o | will hold OH today instead of Wednesday, 4-5pm
o if you need to meet later in the week, send me an email and
we'll arrange something
e Don'’t forget: PA2c1 is due Friday
o thisis atesting assignment: you'll just write Cool programs

Course Announcements

e PA1 (all four languages!) due today
e My OH this week are modified:
o | will hold OH today instead of Wednesday, 4-5pm
o if you need to meet later in the week, send me an email and
we'll arrange something
e Don'’t forget: PA2c1 is due Friday
o thisis atesting assignment: you'll just write Cool programs
e The course staff has become aware of a bug in the Apple Silicon
builds for Cool related to newlines
o No fixis available. Use Ubuntu instead.

