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Today’s Agenda

● Social contract of a compiler
● Compiler frontends

○ Lexing
○ Parsing

■ our first intermediate representation: abstract syntax 
trees
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Surprise Bioethics

“Primum non nocere”  - “First, do no harm.”

● one of the key tenets of bioethics
○ e.g., the Hippocratic Oath that doctors take

● also a key tenet in compilers:

● i.e., don’t change the meaning of the program
● this is the contract that a compiler promises to its users

First Rule of Compilers: don’t change semantics
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Syntax and Semantics

Definition: the syntax of a programming language is how programs 
are written down

● roughly “spelling and grammar”

Definition: the semantics of a programming language explains what a 
given program means

● Two relevant kinds of semantics (for now):
○ static semantics: roughly, the state space of the program
○ dynamic semantics: in some specific execution, what does this 

program actually evaluate to?
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Why Two Semantics?

● A static semantics is useful for proving that certain behaviors do 
or do not occur
○ e.g., typechecking implies a particular static semantics
○ one way to think about this: the static semantics is the union 

of the program’s dynamic semantics (for all possible inputs)
● We want some dynamic semantics to be impossible!

○ e.g., 1 + “hello” should not have a dynamic semantics
■ typechecking prevents this “program” from ever being 

evaluated!
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Rules of Compilers

1. First, don’t change the semantics
● from the textbook:

The compiler must preserve the meaning of the program being compiled.

2. Second, try to improve the program (“try to help”)
● from the textbook:

The compiler must improve the input program in some discernible way.

This Rule is referring to the 
program’s static semantics: we 
must not change the program’s 
behavior for any input!

If there is ever a conflict 
between these Rules, which 
one takes precedence?
The First Rule!
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Traditional compiler/interpreter structure

Lexer Parser Typechecker
Code 

Generator
Optimizer

source
code

optimized 
assembly

PA2

Interpreter

PA3 PA4

rest of today: essential 
information about these 
frontend stages 
(hopefully review for 
most of you!)
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● Social contract of a compiler
● Compiler frontends

○ Lexing
○ Parsing

■ our first intermediate representation: abstract syntax 
trees
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Lexical analysis

● A lexical analyzer (or lexer) divides program text into “tokens”
○ i.e., it is a function of type  string -> token list

● A token is a syntactic category
○ in English:

■ “noun”, “verb”, “adjective”
○ in a programming language:

■ identifier, integer constant, keyword, whitespace
● Parsers rely on token distinctions

○ e.g., identifiers are treated differently than keywords
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● Note that tokens correspond to sets of strings
○ e.g., an identifier token is any string of letters or digits that 

starts with a letter (in most languages)
● A lexer needs to do two things:

○ recognize substrings that correspond to tokens
○ return the lexeme of the token

■ the lexeme is the specific substring
■ e.g., in Cool, myVar is an identifier token whose lexeme 

is “myVar”
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Lexical analysis: implementation

● Lexers usually discard “uninteresting” tokens that don’t 
contribute to parsing
○ e.g., whitespace or comments

● Lexing a string is typically implemented by reading the string 
from start to end, one token at a time
○ Lexers generally require some amount of lookahead to 

successfully partition a string
○ e.g., “i” vs “if”

looks like an identifier at first…but it’s actually a keyword
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Definition: Let Σ (“sigma”) be a set of characters. A language over Σ 
is a set of strings of characters drawn from Σ. Σ is called the 
alphabet.
● e.g., alphabet = English characters, language = valid English 

sentences
○ note that not every string of English characters is a valid 

sentence! E.g., “xagea’ iwej”
● for lexing, we care about the regular languages, which you 

might remember from your CS theory class
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Lexical analysis: regular languages

Definition: a regular language is a language that can be recognized by a 
regular expression or, equivalently, by a deterministic finite automaton. 
● More formally, the set of regular languages over some alphabet Σ is 

defined as:
○ the empty language Ø is regular
○ for each s in  Σ, the singleton set { s } is regular
○ if A is a regular language, then A* is a regular language
○ if A and B are regular languages, then A ∪ B and A • B are 

regular

Concatenation (“each string in A 
followed by each string in B”)
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Lexical analysis: in practice

● In practice, we use a lexical analysis generator like ply, flex, or 
ocamllex to build lexers for us
○ these tools take regular expressions as input…
○ …and then convert into finite automata, which they implement 

using lookup tables…
○ to eventually generate performant lexing code



Trivia Break: Computing History

Around 825 CE, this Persian scientist and polymath wrote kitāb al-
ḥisāb al-hindī (“Book of Indian computation”) and kitab al-jam' 
wa'l-tafriq al-ḥisāb al-hindī (“Addition and subtraction in Indian 
arithmetic”). Despite these works later having a major influence on 
computer science, he is best known for his popularizing treatise on 
algebra (the “Al-Jabr”). The word “algorithm” is derived from his 
name.
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Parsing

Definition: A parser takes a sequence of tokens as input. If the input 
is valid, it produces a abstract syntax tree (or derivation or parse tree).

● Otherwise, it produces an error
○ e.g., “parse error on line 3”

● Comparison of lexing vs. parsing:

Phase Input Output

Lexer Sequence of 
characters

Sequence of tokens

Parser Sequence of tokens Parse tree



Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the 
compiler’s source language are data, from the perspective of the 
compiler



Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the 
compiler’s source language are data, from the perspective of the 
compiler
○ this is a powerful perspective: you know how to write 

programs that manipulate data already



Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the 
compiler’s source language are data, from the perspective of the 
compiler
○ this is a powerful perspective: you know how to write 

programs that manipulate data already
○ fundamentally, your compiler is just another program that 

manipulates data - the only difference is that the data, in this 
case, are also programs



Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the 
compiler’s source language are data, from the perspective of the 
compiler
○ this is a powerful perspective: you know how to write 

programs that manipulate data already
○ fundamentally, your compiler is just another program that 

manipulates data - the only difference is that the data, in this 
case, are also programs

● So, how do we represent programs as data?



Parser Output: Abstract Syntax Trees (ASTs)

● Implicit in our discussion of compilation so far: programs in the 
compiler’s source language are data, from the perspective of the 
compiler
○ this is a powerful perspective: you know how to write 

programs that manipulate data already
○ fundamentally, your compiler is just another program that 

manipulates data - the only difference is that the data, in this 
case, are also programs

● So, how do we represent programs as data?
○ there are many ways, but today we’ll discuss two…
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Treating programs as data: two ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

● key downside: cannot use the program’s semantics
○ semantics are relevant for properties related to context - that 

is, where the question to be decided depends on the rest of the 
program
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Treating programs as data: two ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based 
representation of a program’s syntactic structure

● usually produced by a parser
● nodes in the tree represent syntactic constructs

○ parent-child relationships in the AST represent compound 
expressions in the source code (e.g., a “plus node” might have 
two children: the left and right side expressions)
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Treating programs as data: AST example

grouping parentheses and 
other disambiguation is no 
longer necessary (AST is 
unambiguous, unlike text)

In PA2, you will take 
this structure as input 
and annotate each 
node with a type
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Parsing: errors

● Not all sequences of tokens are programs and correspond to an 
AST. E.g.:
○ then x * / + 3 while x ; y z then

● The parser must distinguish between valid and invalid sequences 
of tokens

● We need:
○ A language or formalism to describe valid sequences of 

tokens
○ A method (i.e., an algorithm) for distinguishing between valid 

and invalid token sequences
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Aside: computability theory

Definition: an algorithm is a finite sequence of mathematically 
rigorous instructions, typically used to solve a class of specific 
problems or to perform a computation. [Wikipedia’s Algorithm]

● when we talk about algorithms in Computer Science, we 
generally are referring to the computable functions, which are 
the formalized analogue of the intuitive notion above
○ a function is computable if there exists an algorithm that can 

do the job of the function which we can execute in one of our 
models of computation (e.g., the lambda calculus or a Turing 
machine)

https://en.wikipedia.org/wiki/Algorithm
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Parsing Theory

● So, what’s the formalism for parsing?
○ Regular expressions/DFAs (as we used for lexing) don’t work

■ because parsing requires context!
■ e.g., we need to check if parentheses are matched

● Perhaps you recall from your CS theory class what kind of 
formalism is appropriate for checking the language of balanced 
parentheses?
○ the context-free grammars or pushdown automata
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Parsing Theory: Context-free Grammars

● How do we know?  Programming languages have recursive 
structure

● E.g., consider the language of arithmetic expressions with 
integers, +, *, and ( )

● An expression in this language is either:
○ an integer
○ an expression followed by “+” followed by an expression
○ an expression followed by “*” followed by an expression
○ a ‘(‘ followed by an expression followed by ‘)’

● 5 , 5+3, (5+3)*7 are expressions in this language
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● An alternative notation for the language on the last slide: 
○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> ( E )

● We can view these rules as rewrite rules
○ We start with E and replace occurrences of E with some 

right-hand side
○ Eventually, we’ll derive an actual program in the language

Note that there is no series of 
rewrites that allows us to obtain an 
invalid program (e.g., with 
mismatched parentheses). Why?
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Parsing Theory: Context-free Grammars

● The notation on the previous slide is exactly a context-free 
grammar. 

● Officially, a context-free grammar consists of:
○ A set of non-terminals N

■ Written in uppercase in these notes
○ A set of terminals T

■ Lowercase or punctuation in these notes
○ A start symbol S (a non-terminal)
○ A set of productions (rewrite rules)
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Parsing Theory: Context-free Grammars
● Context-free grammar example: 

○ E -> int
○ E -> E + E
○ E -> E * E
○ E -> ( E )

● E is the only non-terminal
● int, +, *, (, and ) are the terminals

○ called terminals because they are never replaced
● each bullet above is one of the rewrite rules (productions)
● by convention, the first non-terminal in the first production is the 

start symbol
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Parsing Theory: Derivations

● A derivation is a sequence of productions, starting from the start 
symbol of the context-free grammar, that produces a string of 
only terminals
○ a derivation can be drawn as a tree

■ start symbol is the root
■ for each production, add children for each symbol on the 

right-hand side of the rule as children of the left-hand 
side non-terminal

○ this derivation exactly corresponds to the AST!
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Parser History

● In the early days of computing, parsing was the most expensive 
part of a compiler
○ e.g., consider original FORTRAN:

■ no semantic analysis or typechecking
■ little optimization
■ code generation is syntax-directed

● Therefore, a lot of early compilers research was focused on 
improving parsing
○ e.g., LL(1) vs LR grammars, Earley parsing, etc.

■ we aren’t going to cover these in this class!
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● These days, parsing is considered a mostly-solved problem
○ semantic analysis and optimization times dominate
○ parsing is fast enough that it’s not worth optimizing further

● Automatic parser generators (e.g., bison or ocamlyacc) can 
produce a parser implementation from a context-free grammar
○ production compilers, though, typically use a custom recursive 

descent parser
■ that is, compiler engineers prioritize simplicity over having 

a fast parser (the speed gains are no longer worthwhile for 
the technical debt)

Takeaway for you: 
you can assume 
that it’s relatively 
easy to get an AST
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● PA1 (all four languages!) due today
● My OH this week are modified:

○ I will hold OH today instead of Wednesday, 4-5pm
○ if you need to meet later in the week, send me an email and 

we’ll arrange something
● Don’t forget: PA2c1 is due Friday

○ this is a testing assignment: you’ll just write Cool programs
● The course staff has become aware of a bug in the Apple Silicon 

builds for Cool related to newlines
○ No fix is available. Use Ubuntu instead.


