
Intermediate
Representations (IRs)

Martin Kellogg

Agenda

● quiz
● what is an IR?

○ a taxonomy and toolbox
● three-address code (“TAC”, relevant to PA3c2)
● single static assignment form (“SSA”, maybe relevant to other

PAs…)

Agenda

● quiz
● what is an IR?

○ a taxonomy and toolbox
● three-address code (“TAC”, relevant to PA3c2)
● single static assignment form (“SSA”, maybe relevant to other

PAs…)

Agenda

● quiz
● what is an IR?

○ a taxonomy and toolbox
● three-address code (“TAC”, relevant to PA3c2)
● single static assignment form (“SSA”, maybe relevant to other

PAs…)

What’s an Intermediate Representation

Definition: an intermediate representation (IR) is any internal data
structure that a compiler uses for the facts that it derives about the
program.

What’s an Intermediate Representation

Definition: an intermediate representation (IR) is any internal data
structure that a compiler uses for the facts that it derives about the
program.
● this definition is intentionally broad, and it includes data

structures we’ve already talked about, including ASTs, CFGs, the
implementation/parent/class maps from PA2, etc.

What’s an Intermediate Representation

Definition: an intermediate representation (IR) is any internal data
structure that a compiler uses for the facts that it derives about the
program.
● this definition is intentionally broad, and it includes data

structures we’ve already talked about, including ASTs, CFGs, the
implementation/parent/class maps from PA2, etc.

● the IR is generally the canonical form that the compiler reasons
about (i.e., the compiler discards the source code)

What’s an Intermediate Representation

Definition: an intermediate representation (IR) is any internal data
structure that a compiler uses for the facts that it derives about the
program.
● this definition is intentionally broad, and it includes data

structures we’ve already talked about, including ASTs, CFGs, the
implementation/parent/class maps from PA2, etc.

● the IR is generally the canonical form that the compiler reasons
about (i.e., the compiler discards the source code)
○ this makes IR choice important - facts that are not in the IR

aren’t available to the compiler!

What’s an Intermediate Representation

Definition: an intermediate representation (IR) is any internal data
structure that a compiler uses for the facts that it derives about the
program.
● this definition is intentionally broad, and it includes data

structures we’ve already talked about, including ASTs, CFGs, the
implementation/parent/class maps from PA2, etc.

● the IR is generally the canonical form that the compiler reasons
about (i.e., the compiler discards the source code)
○ this makes IR choice important - facts that are not in the IR

aren’t available to the compiler!
● typically, a compiler uses different IRs for different tasks

How many IRs does a compiler need?

How many IRs does a compiler need?

● As many as are useful!
○ I know that’s not a very helpful answer…

How many IRs does a compiler need?

● As many as are useful!
○ I know that’s not a very helpful answer…

● Typically, a compiler will process IRs in stages
○ i.e., it will transform one IR into another, into another, etc.,

before eventually emitting code

How many IRs does a compiler need?

● As many as are useful!
○ I know that’s not a very helpful answer…

● Typically, a compiler will process IRs in stages
○ i.e., it will transform one IR into another, into another, etc.,

before eventually emitting code
● Different IRs are better suited to different tasks

How many IRs does a compiler need?

● As many as are useful!
○ I know that’s not a very helpful answer…

● Typically, a compiler will process IRs in stages
○ i.e., it will transform one IR into another, into another, etc.,

before eventually emitting code
● Different IRs are better suited to different tasks

○ for example, a CFG is useful for abstract interpretation or
dataflow analysis…

How many IRs does a compiler need?

● As many as are useful!
○ I know that’s not a very helpful answer…

● Typically, a compiler will process IRs in stages
○ i.e., it will transform one IR into another, into another, etc.,

before eventually emitting code
● Different IRs are better suited to different tasks

○ for example, a CFG is useful for abstract interpretation or
dataflow analysis…

○ …but would you use it for peephole optimizations? No, you
want something much closer to the target assembly

How many IRs does a compiler need?

● As many as are useful!
○ I know that’s not a very helpful answer…

● Typically, a compiler will process IRs in stages
○ i.e., it will transform one IR into another, into another, etc.,

before eventually emitting code
● Different IRs are better suited to different tasks

○ for example, a CFG is useful for abstract interpretation or
dataflow analysis…

○ …but would you use it for peephole optimizations? No, you
want something much closer to the target assembly

An example of a peephole
optimization is removing a
redundant store/load pair
that access the same address

IR Design
● The design space of IRs is very large

IR Design
● The design space of IRs is very large

○ In this lecture, I will survey some common ones

IR Design
● The design space of IRs is very large

○ In this lecture, I will survey some common ones
○ You are welcome to choose to use any or all of these in your

compiler (or invent your own)

IR Design
● The design space of IRs is very large

○ In this lecture, I will survey some common ones
○ You are welcome to choose to use any or all of these in your

compiler (or invent your own)
● IR design decisions impact the whole compiler

IR Design
● The design space of IRs is very large

○ In this lecture, I will survey some common ones
○ You are welcome to choose to use any or all of these in your

compiler (or invent your own)
● IR design decisions impact the whole compiler

○ desirable properties:

IR Design
● The design space of IRs is very large

○ In this lecture, I will survey some common ones
○ You are welcome to choose to use any or all of these in your

compiler (or invent your own)
● IR design decisions impact the whole compiler

○ desirable properties:
■ easy to generate
■ easy to manipulate
■ expressive
■ appropriate level of abstraction

IR Design
● The design space of IRs is very large

○ In this lecture, I will survey some common ones
○ You are welcome to choose to use any or all of these in your

compiler (or invent your own)
● IR design decisions impact the whole compiler

○ desirable properties:
■ easy to generate
■ easy to manipulate
■ expressive
■ appropriate level of abstraction

○ tradeoffs between these motivate different IRs at different
compilation stages

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)
■ Hybrids are common (e.g., control-flow graphs whose

nodes are basic blocks of linear code)

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)
■ Hybrids are common (e.g., control-flow graphs whose

nodes are basic blocks of linear code)
○ Abstraction Level

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)
■ Hybrids are common (e.g., control-flow graphs whose

nodes are basic blocks of linear code)
○ Abstraction Level

■ High-level, near to source language

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)
■ Hybrids are common (e.g., control-flow graphs whose

nodes are basic blocks of linear code)
○ Abstraction Level

■ High-level, near to source language
■ Low-level, closer to machine (exposes more details to

compiler)

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)
■ Hybrids are common (e.g., control-flow graphs whose

nodes are basic blocks of linear code)
○ Abstraction Level

■ High-level, near to source language
■ Low-level, closer to machine (exposes more details to

compiler)
○ Naming conventions

IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)
■ Hybrids are common (e.g., control-flow graphs whose

nodes are basic blocks of linear code)
○ Abstraction Level

■ High-level, near to source language
■ Low-level, closer to machine (exposes more details to

compiler)
○ Naming conventions

Think of our discussion today as a
toolbox of various well-known IRs.
When building your compiler, pick
and choose which ones are useful for
each task

Example: Representing an Array Reference

Example: Representing an Array Reference

source code: A[i,j]

Example: Representing an Array Reference

source code: A[i,j]

graphical
IR (tree):

Example: Representing an Array Reference

source code: A[i,j]

graphical
IR (tree):

high-level linear IR: t1 <- A[i,j]

Example: Representing an Array Reference

loadI 1 => r1
sub rj,r1 => r2
loadI 10 => r3
mult r2,r3 => r4
sub ri,r1 => r5
add r4,r5 => r6
loadI @A => r7
add r7,r6 => r8
load r8 => r9

source code: A[i,j]

graphical
IR (tree):

high-level linear IR: t1 <- A[i,j]

low-level
linear IR:

Levels of Abstraction

● Key design decision: how much detail to expose

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase:

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase:

■ Some semantic analysis & optimizations are easier with
high-level IRs close to the source code (e.g., an AST)

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase:

■ Some semantic analysis & optimizations are easier with
high-level IRs close to the source code (e.g., an AST)

■ Low-level usually preferred for other optimizations,
register allocation, code generation, etc.

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase:

■ Some semantic analysis & optimizations are easier with
high-level IRs close to the source code (e.g., an AST)

■ Low-level usually preferred for other optimizations,
register allocation, code generation, etc.

○ Structural (graphical) IRs are typically fairly high-level – but
are also used for low-level

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase:

■ Some semantic analysis & optimizations are easier with
high-level IRs close to the source code (e.g., an AST)

■ Low-level usually preferred for other optimizations,
register allocation, code generation, etc.

○ Structural (graphical) IRs are typically fairly high-level – but
are also used for low-level

○ Linear IRs are typically low-level

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase:

■ Some semantic analysis & optimizations are easier with
high-level IRs close to the source code (e.g., an AST)

■ Low-level usually preferred for other optimizations,
register allocation, code generation, etc.

○ Structural (graphical) IRs are typically fairly high-level – but
are also used for low-level

○ Linear IRs are typically low-level
○ But these generalizations don’t always hold

Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase:

■ Some semantic analysis & optimizations are easier with
high-level IRs close to the source code (e.g., an AST)

■ Low-level usually preferred for other optimizations,
register allocation, code generation, etc.

○ Structural (graphical) IRs are typically fairly high-level – but
are also used for low-level

○ Linear IRs are typically low-level
○ But these generalizations don’t always hold

One view: source code is just another
IR that we happen to expose to
programmers
● high-level of abstraction, linear

Graphical IRs

Graphical IRs

● A graphical IR is any IR that is represented as a graph (or tree,
flowchart, or other “graphical” structure)

Graphical IRs

● A graphical IR is any IR that is represented as a graph (or tree,
flowchart, or other “graphical” structure)

● Nodes and edges typically reflect structure of the program
○ E.g., control flow, data dependence, caller/callee

Graphical IRs

● A graphical IR is any IR that is represented as a graph (or tree,
flowchart, or other “graphical” structure)

● Nodes and edges typically reflect structure of the program
○ E.g., control flow, data dependence, caller/callee

● May be large (especially syntax trees)

Graphical IRs

● A graphical IR is any IR that is represented as a graph (or tree,
flowchart, or other “graphical” structure)

● Nodes and edges typically reflect structure of the program
○ E.g., control flow, data dependence, caller/callee

● May be large (especially syntax trees)
● High-level examples: syntax trees, directed-acyclic graphs (DAGs)

○ Common in early phases of compilers

Graphical IRs

● A graphical IR is any IR that is represented as a graph (or tree,
flowchart, or other “graphical” structure)

● Nodes and edges typically reflect structure of the program
○ E.g., control flow, data dependence, caller/callee

● May be large (especially syntax trees)
● High-level examples: syntax trees, directed-acyclic graphs (DAGs)

○ Common in early phases of compilers
● Other examples: control flow graphs, data dependency graphs, and

call graphs
○ Often used in semantic analysis, optimization, and code

generation

DAGs?

DAGs?

● Can use a directed acyclic graph to store
a variation on the AST

DAGs?

● Can use a directed acyclic graph to store
a variation on the AST
○ to capture shared substructures

DAGs?

● Can use a directed acyclic graph to store
a variation on the AST
○ to capture shared substructures

● Example: (a * 2) + ((a * 2) * b)

DAGs?

● Can use a directed acyclic graph to store
a variation on the AST
○ to capture shared substructures

● Example: (a * 2) + ((a * 2) * b)
● Pros: saves space, exposes redundant

sub-expressions

DAGs?

● Can use a directed acyclic graph to store
a variation on the AST
○ to capture shared substructures

● Example: (a * 2) + ((a * 2) * b)
● Pros: saves space, exposes redundant

sub-expressions
○ why might it be useful to expose

redundant sub-expressions?

DAGs?

● Can use a directed acyclic graph to store
a variation on the AST
○ to capture shared substructures

● Example: (a * 2) + ((a * 2) * b)
● Pros: saves space, exposes redundant

sub-expressions
○ why might it be useful to expose

redundant sub-expressions?
● Cons: less flexibility if part of tree should

be changed

DAGs?

● Can use a directed acyclic graph to store
a variation on the AST
○ to capture shared substructures

● Example: (a * 2) + ((a * 2) * b)
● Pros: saves space, exposes redundant

sub-expressions
○ why might it be useful to expose

redundant sub-expressions?
● Cons: less flexibility if part of tree should

be changed
● Ask me about egraphs in OH

Data Dependency Graphs

Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes
indicates that they reference common data

Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes
indicates that they reference common data

● Examples:

Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes
indicates that they reference common data

● Examples:
○ Block A defines x then B reads it (RAW – read after write)

Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes
indicates that they reference common data

● Examples:
○ Block A defines x then B reads it (RAW – read after write)
○ Block A reads x then B writes it (WAR – “anti- dependence”)

Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes
indicates that they reference common data

● Examples:
○ Block A defines x then B reads it (RAW – read after write)
○ Block A reads x then B writes it (WAR – “anti- dependence”)
○ Blocks A and B both write x (WAW)

■ order of blocks must reflect original program semantics

Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes
indicates that they reference common data

● Examples:
○ Block A defines x then B reads it (RAW – read after write)
○ Block A reads x then B writes it (WAR – “anti- dependence”)
○ Blocks A and B both write x (WAW)

■ order of blocks must reflect original program semantics
● These dependencies restrict what reorderings the compiler can

do

Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes
indicates that they reference common data

● Examples:
○ Block A defines x then B reads it (RAW – read after write)
○ Block A reads x then B writes it (WAR – “anti- dependence”)
○ Blocks A and B both write x (WAW)

■ order of blocks must reflect original program semantics
● These dependencies restrict what reorderings the compiler can

do
● Data dependency graph is most often used in conjunction with

another IR to facilitate optimizations, but it has other uses too…

Call Graphs

Call Graphs

● A call graph represents the runtime transfers of control between
procedures

Call Graphs

● A call graph represents the runtime transfers of control between
procedures
○ one node for each procedure and one edge for each distinct

procedure call site

Call Graphs

● A call graph represents the runtime transfers of control between
procedures
○ one node for each procedure and one edge for each distinct

procedure call site
○ e.g., if the code calls q from three textually distinct sites in p;

the call graph has three edges (p, q), one for each call site

Call Graphs

● A call graph represents the runtime transfers of control between
procedures
○ one node for each procedure and one edge for each distinct

procedure call site
○ e.g., if the code calls q from three textually distinct sites in p;

the call graph has three edges (p, q), one for each call site
● Call graphs are useful if you want to do inter-procedural analysis

Call Graphs

● A call graph represents the runtime transfers of control between
procedures
○ one node for each procedure and one edge for each distinct

procedure call site
○ e.g., if the code calls q from three textually distinct sites in p;

the call graph has three edges (p, q), one for each call site
● Call graphs are useful if you want to do inter-procedural analysis

○ that is, analysis that requires you to reason about more than
one procedure at the same time

Call Graphs

● A call graph represents the runtime transfers of control between
procedures
○ one node for each procedure and one edge for each distinct

procedure call site
○ e.g., if the code calls q from three textually distinct sites in p;

the call graph has three edges (p, q), one for each call site
● Call graphs are useful if you want to do inter-procedural analysis

○ that is, analysis that requires you to reason about more than
one procedure at the same time

○ during codegen, you probably don’t need to do this, but it
might be useful for optimization

Trivia Break: International Relations

This ancient Athenian historian and general chronicled the
fifth-century BC war between Athens and Sparta in his History of the
Peloponnesian War. He is considered by some to be the first modern
political theorist, because of his claims to have applied strict standards
of impartiality and evidence-gathering and analysis of cause and
effect, without reference to intervention by the gods. The Melian
dialogue from his work is regarded as a seminal text of international
relations theory.

Linear IRs

Linear IRs

● Pseudo-code for some abstract machine

Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure

Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure
○ Level of abstraction varies

Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure
○ Level of abstraction varies

● Simple, compact data structures
○ Commonly used: arrays, linked structures

Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure
○ Level of abstraction varies

● Simple, compact data structures
○ Commonly used: arrays, linked structures

● Examples:

Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure
○ Level of abstraction varies

● Simple, compact data structures
○ Commonly used: arrays, linked structures

● Examples:
○ three-address code (“TAC”), which we’ll see some examples of

in a few minutes (and which you must generate for PA3c2

Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure
○ Level of abstraction varies

● Simple, compact data structures
○ Commonly used: arrays, linked structures

● Examples:
○ three-address code (“TAC”), which we’ll see some examples of in

a few minutes (and which you must generate for PA3c2
○ stack machine code, which we’ll see a long example of in a later

lecture

Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure
○ Level of abstraction varies

● Simple, compact data structures
○ Commonly used: arrays, linked structures

● Examples:
○ three-address code (“TAC”), which we’ll see some examples of

in a few minutes (and which you must generate for PA3c2
○ stack machine code, which we’ll see a long example of in a later

lecture
○ single static assignment form, which we’ll see briefly today too

Linear IRs: abstraction level

● Linear IRs can be close to the source language, very low-level, or
somewhere in between.

Linear IRs: abstraction level

● Linear IRs can be close to the source language, very low-level, or
somewhere in between.

● Consider, for example, linear IRs for C array reference

 a[i][j+2]

Linear IRs: abstraction level

● Linear IRs can be close to the source language, very low-level, or
somewhere in between.

● Consider, for example, linear IRs for C array reference

 a[i][j+2]

● A high-level linear IR might represent this very similarly to
source code:

 t1 <- a[i,j+2]

Linear IRs: abstraction level

● A “medium level” IR:

t1 <- j + 2
t2 <- i * 20
t3 <- t1 + t2
t4 <- 4 * t3
t5 <- addr a
t6 <- t5 + t4
t7 <- *t6

Linear IRs: abstraction level

● A “medium level” IR:

t1 <- j + 2
t2 <- i * 20
t3 <- t1 + t2
t4 <- 4 * t3
t5 <- addr a
t6 <- t5 + t4
t7 <- *t6

still retains basic symbolic info
about variables

Linear IRs: abstraction level

● A “medium level” IR:

t1 <- j + 2
t2 <- i * 20
t3 <- t1 + t2
t4 <- 4 * t3
t5 <- addr a
t6 <- t5 + t4
t7 <- *t6

still retains basic symbolic info
about variables

● A “low level” IR:

r1 <- [fp-4]
r2 <- r1 + 2
r3 <- [fp-8]
r4 <- r3 * 20
r5 <- r4 + r2
r6 <- 4 * r5
r7 <- fp – 216
f1 <- [r7+r6]

Linear IRs: abstraction level

● A “medium level” IR:

t1 <- j + 2
t2 <- i * 20
t3 <- t1 + t2
t4 <- 4 * t3
t5 <- addr a
t6 <- t5 + t4
t7 <- *t6

still retains basic symbolic info
about variables

● A “low level” IR:

r1 <- [fp-4]
r2 <- r1 + 2
r3 <- [fp-8]
r4 <- r3 * 20
r5 <- r4 + r2
r6 <- 4 * r5
r7 <- fp – 216
f1 <- [r7+r6]

exposes all details of the low-level
layout; explicit memory references
and calculations

Linear IRs: abstraction level tradeoffs

Linear IRs: abstraction level tradeoffs

● High-level: good for some high-level optimizations, semantic
checking; but can’t optimize things that are hidden – like address
arithmetic for array subscripting

Linear IRs: abstraction level tradeoffs

● High-level: good for some high-level optimizations, semantic
checking; but can’t optimize things that are hidden – like address
arithmetic for array subscripting

● Low-level: need for good code generation and resource utilization
in back end but loses some semantic knowledge (e.g., variables,
data aggregates, source relationships are usually missing)

Linear IRs: abstraction level tradeoffs

● High-level: good for some high-level optimizations, semantic
checking; but can’t optimize things that are hidden – like address
arithmetic for array subscripting

● Low-level: need for good code generation and resource utilization
in back end but loses some semantic knowledge (e.g., variables,
data aggregates, source relationships are usually missing)

● Medium-level: more detail but keeps more higher-level semantic
information – great for machine-independent optimizations. Many
(all?) optimizing compilers work at this level

Linear IRs: abstraction level tradeoffs

● High-level: good for some high-level optimizations, semantic
checking; but can’t optimize things that are hidden – like address
arithmetic for array subscripting

● Low-level: need for good code generation and resource utilization
in back end but loses some semantic knowledge (e.g., variables,
data aggregates, source relationships are usually missing)

● Medium-level: more detail but keeps more higher-level semantic
information – great for machine-independent optimizations. Many
(all?) optimizing compilers work at this level

● Many compilers use all 3 in different phases

Linear IRs: stack machines

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode
● Advantages:

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode
● Advantages:

○ Compact; mostly 0-address opcodes (great if sent via network)

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode
● Advantages:

○ Compact; mostly 0-address opcodes (great if sent via network)
○ Easy to generate; easy to write a front-end compiler, leaving

the “heavy lifting” and optimizations to the JIT

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode
● Advantages:

○ Compact; mostly 0-address opcodes (great if sent via network)
○ Easy to generate; easy to write a front-end compiler, leaving

the “heavy lifting” and optimizations to the JIT
○ Simple to interpret or compile to machine code

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode
● Advantages:

○ Compact; mostly 0-address opcodes (great if sent via network)
○ Easy to generate; easy to write a front-end compiler, leaving

the “heavy lifting” and optimizations to the JIT
○ Simple to interpret or compile to machine code

● Disadvantages:

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode
● Advantages:

○ Compact; mostly 0-address opcodes (great if sent via network)
○ Easy to generate; easy to write a front-end compiler, leaving

the “heavy lifting” and optimizations to the JIT
○ Simple to interpret or compile to machine code

● Disadvantages:
○ Somewhat inconvenient/difficult to optimize directly

Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode
● Advantages:

○ Compact; mostly 0-address opcodes (great if sent via network)
○ Easy to generate; easy to write a front-end compiler, leaving

the “heavy lifting” and optimizations to the JIT
○ Simple to interpret or compile to machine code

● Disadvantages:
○ Somewhat inconvenient/difficult to optimize directly
○ Does not match up with modern chip architectures

● Hypothetical code for x = 2 * (m + n):

Linear IRs: stack machines: example

● Hypothetical code for x = 2 * (m + n):

Linear IRs: stack machines: example

Linear IRs: stack machines: example
● Hypothetical code for x = 2 * (m + n):

push all
operands
onto stack

Linear IRs: stack machines: example
● Hypothetical code for x = 2 * (m + n):

do the add
on top two
operands

Linear IRs: stack machines: example
● Hypothetical code for x = 2 * (m + n):

then the
mult…

Linear IRs: stack machines: example
● Hypothetical code for x = 2 * (m + n):

then the
store

Linear IRs: stack machines: example
● Hypothetical code for x = 2 * (m + n):

● Note compactness:
○ common opcodes just 1 byte wide
○ instructions have 0 or 1 operand

Linear IRs: stack machines: example
● Hypothetical code for x = 2 * (m + n):

● Note compactness:
○ common opcodes just 1 byte wide
○ instructions have 0 or 1 operand

In our “code generation”
lectures next week we will talk
explicitly about how you’d
build a stack machine for Cool

“Hybrid” IRs

“Hybrid” IRs

● Combinations of linear and graphical IRs are common

“Hybrid” IRs

● Combinations of linear and graphical IRs are common
○ for example, a CFG’s basic blocks usually contain code in

some linear IR (e.g., TAC)

“Hybrid” IRs

● Combinations of linear and graphical IRs are common
○ for example, a CFG’s basic blocks usually contain code in

some linear IR (e.g., TAC)
○ we call these hybrid IRs

“Hybrid” IRs

● Combinations of linear and graphical IRs are common
○ for example, a CFG’s basic blocks usually contain code in

some linear IR (e.g., TAC)
○ we call these hybrid IRs

● Level of abstraction varies; you can mix and match based on
your needs

“Hybrid” IRs

● Combinations of linear and graphical IRs are common
○ for example, a CFG’s basic blocks usually contain code in

some linear IR (e.g., TAC)
○ we call these hybrid IRs

● Level of abstraction varies; you can mix and match based on
your needs
○ when designing your own compiler’s internals, it’s okay to

be creative: pick the representation that makes your life
easiest

Three-Address Code

Three-Address Code

● Usual form: x <- y op z

Three-Address Code

● Usual form: x <- y op z
○ One operator

Three-Address Code

● Usual form: x <- y op z
○ One operator
○ Maximum of 3 names (thus the name)

Three-Address Code

● Usual form: x <- y op z
○ One operator
○ Maximum of 3 names (thus the name)

● Eg: x = 2 * (m + n) becomes
t1 <- m + n; t2 <- 2 * t1; x <- t2

Three-Address Code

● Usual form: x <- y op z
○ One operator
○ Maximum of 3 names (thus the name)

● Eg: x = 2 * (m + n) becomes
t1 <- m + n; t2 <- 2 * t1; x <- t2

○ You may prefer:
add t1, m, n; mul t2, 2, t1; movx, t2

Three-Address Code

● Usual form: x <- y op z
○ One operator
○ Maximum of 3 names (thus the name)

● Eg: x = 2 * (m + n) becomes
t1 <- m + n; t2 <- 2 * t1; x <- t2

○ You may prefer:
add t1, m, n; mul t2, 2, t1; movx, t2

● Invent as many new temp names as needed

Three-Address Code

● Usual form: x <- y op z
○ One operator
○ Maximum of 3 names (thus the name)

● Eg: x = 2 * (m + n) becomes
t1 <- m + n; t2 <- 2 * t1; x <- t2

○ You may prefer:
add t1, m, n; mul t2, 2, t1; movx, t2

● Invent as many new temp names as needed
○ “expression temps” don’t correspond to any user variables;

de-anonymize expressions

Three-Address Code

● Usual form: x <- y op z
○ One operator
○ Maximum of 3 names (thus the name)

● Eg: x = 2 * (m + n) becomes
t1 <- m + n; t2 <- 2 * t1; x <- t2

○ You may prefer:
add t1, m, n; mul t2, 2, t1; movx, t2

● Invent as many new temp names as needed
○ “expression temps” don’t correspond to any user variables;

de-anonymize expressions
● Store in a quadruple: <lhs,rhs1,op,rhs2>

Why TAC?

Why TAC?

● Advantages:

Why TAC?

● Advantages:
○ Resembles code for actual machines

Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results

Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results
○ Compact

Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results
○ Compact
○ Often easy to rearrange

Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results
○ Compact
○ Often easy to rearrange

● Why does PA3c2 require TAC?

Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results
○ Compact
○ Often easy to rearrange

● Why does PA3c2 require TAC?
○ I want you to build an IR early. You’ll need several before you

finish PA3.

Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results
○ Compact
○ Often easy to rearrange

● Why does PA3c2 require TAC?
○ I want you to build an IR early. You’ll need several before you

finish PA3.
○ I think TAC is basically guaranteed to be useful no matter

how you design the rest of your compiler
■ and I had to pick something…

Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results
○ Compact
○ Often easy to rearrange

● Why does PA3c2 require TAC?
○ I want you to build an IR early. You’ll need several before you

finish PA3.
○ I think TAC is basically guaranteed to be useful no matter

how you design the rest of your compiler
■ and I had to pick something…

The PA3c2 page has a long
discussion on Cool’s TAC format,
including pseudocode to generate it.

https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/projects/pa3.html#pa3c2-three-address-code-generator
https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/projects/pa3.html#pa3c2-three-address-code-generator

Single Static Assignment (SSA)

Single Static Assignment (SSA)

● IR where each variable has only one definition in the
program text

Single Static Assignment (SSA)

● IR where each variable has only one definition in the
program text
○ A single static definition, but that definition can be in a

loop, function, or other code that is executed
dynamically many times

Single Static Assignment (SSA)

● IR where each variable has only one definition in the
program text
○ A single static definition, but that definition can be in a

loop, function, or other code that is executed
dynamically many times

● Makes many analyses (and related optimizations) more
efficient

Single Static Assignment (SSA)

● IR where each variable has only one definition in the
program text
○ A single static definition, but that definition can be in a

loop, function, or other code that is executed
dynamically many times

● Makes many analyses (and related optimizations) more
efficient

● Separates values from memory storage locations

Single Static Assignment (SSA)

● IR where each variable has only one definition in the
program text
○ A single static definition, but that definition can be in a

loop, function, or other code that is executed
dynamically many times

● Makes many analyses (and related optimizations) more
efficient

● Separates values from memory storage locations
● Complementary to CFG or data dependency graph

○ better for some things, but cannot do everything

SSA: Basic Idea

● Basic Idea: for each original variable v, create a new variable vn at
the nth definition of the original v. Subsequent uses of v use vn
until the next definition point. E.g.:

SSA: Basic Idea

● Basic Idea: for each original variable v, create a new variable vn at
the nth definition of the original v. Subsequent uses of v use vn
until the next definition point. E.g.:

Original:
a := x + y
b := a – 1
a := y + b
b := x * 4
a := a + b

SSA: Basic Idea

● Basic Idea: for each original variable v, create a new variable vn at
the nth definition of the original v. Subsequent uses of v use vn
until the next definition point. E.g.:

Original:
a := x + y
b := a – 1
a := y + b
b := x * 4
a := a + b

SSA:
a

1
 := x

0
 + y

0
b

1
 := a

1
 – 1

a
2

 := y
0

 + b
1

b
2

 := x
0

 * 4
a

3
 := a

2
 + b

2

SSA: Merges

● This is fine until we reach a merge point:

if (...)
 a = x;
else
 a = y;
b = a;

SSA: Merges

● This is fine until we reach a merge point:

if (...)
 a = x;
else
 a = y;
b = a;

if (...)
 a

1
 = x

0
;

else
 a

2
 = y

0
;

b
1

 = a
???

;
b

1
 = a

3
;

SSA: Merges

● This is fine until we reach a merge point:

● Solution: introduce a φ-function (“phi function”)

if (...)
 a = x;
else
 a = y;
b = a;

if (...)
 a

1
 = x

0
;

else
 a

2
 = y

0
;

a
3

 = φ(a
1

, a
2

)
b

1
 = a

3
;

SSA: Merges

● This is fine until we reach a merge point:

● Solution: introduce a φ-function (“phi function”)
○ semantics: a

3
 is assigned to either a

1
 or a

2
, depending on

which control flow path us used to reach the φ-function

if (...)
 a = x;
else
 a = y;
b = a;

if (...)
 a

1
 = x

0
;

else
 a

2
 = y

0
;

a
3

 = φ(a
1

, a
2

)
b

1
 = a

3
;

How does the φ-function “know” what to pick?

How does the φ-function “know” what to pick?

● It doesn’t!

How does the φ-function “know” what to pick?

● It doesn’t!
● φ-functions don’t actually exist at run time

How does the φ-function “know” what to pick?

● It doesn’t!
● φ-functions don’t actually exist at run time

○ when we’re done using the SSA IR, we translate back out of
SSA form, removing all φ-functions

How does the φ-function “know” what to pick?

● It doesn’t!
● φ-functions don’t actually exist at run time

○ when we’re done using the SSA IR, we translate back out of
SSA form, removing all φ-functions
■ Basically by adding code to copy all SSA x

i
values to the

single, non-SSA variable x

How does the φ-function “know” what to pick?

● It doesn’t!
● φ-functions don’t actually exist at run time

○ when we’re done using the SSA IR, we translate back out of
SSA form, removing all φ-functions
■ Basically by adding code to copy all SSA x

i
values to the

single, non-SSA variable x
○ For analysis, all we typically need to know is the connection

of uses to definitions – no need to “execute” anything

How does the φ-function “know” what to pick?

● It doesn’t!
● φ-functions don’t actually exist at run time

○ when we’re done using the SSA IR, we translate back out of
SSA form, removing all φ-functions
■ Basically by adding code to copy all SSA x

i
values to the

single, non-SSA variable x
○ For analysis, all we typically need to know is the connection

of uses to definitions – no need to “execute” anything
■ So φ-functions are (only) compile-time bookkeeping

Converting to SSA

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)
○ called maximal SSA

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)
○ called maximal SSA
○ this wastes way too much space and time to be useful in

practice

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)
○ called maximal SSA
○ this wastes way too much space and time to be useful in

practice
● Instead, use the path convergence criterion: insert a φ-function

for variable a at program point z when:

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)
○ called maximal SSA
○ this wastes way too much space and time to be useful in

practice
● Instead, use the path convergence criterion: insert a φ-function

for variable a at program point z when:
○ There are blocks x and y, both containing definitions of a, and

x != y

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)
○ called maximal SSA
○ this wastes way too much space and time to be useful in

practice
● Instead, use the path convergence criterion: insert a φ-function

for variable a at program point z when:
○ There are blocks x and y, both containing definitions of a, and

x != y
○ There are non-empty paths from x to z and from y to z

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)
○ called maximal SSA
○ this wastes way too much space and time to be useful in

practice
● Instead, use the path convergence criterion: insert a φ-function

for variable a at program point z when:
○ There are blocks x and y, both containing definitions of a, and

x != y
○ There are non-empty paths from x to z and from y to z
○ These paths have no common nodes other than z

Converting to SSA

● Could simply add φ-functions for every variable at every join
point(!)
○ called maximal SSA
○ this wastes way too much space and time to be useful in

practice
● Instead, use the path convergence criterion: insert a φ-function

for variable a at program point z when:
○ There are blocks x and y, both containing definitions of a, and

x != y
○ There are non-empty paths from x to z and from y to z
○ These paths have no common nodes other than z

We’ll come back to SSA form when
it’s relevant for optimizations we’re
talking about, and revisit how you
actually do this

Course Announcements

● PA2 due today!
● PA3c1 (codegen testing) is due on Friday

○ all gas, no brakes
● My OH on Wednesday will be later than usual (4-5 instead of

3:30-4:30), because of a CS faculty meeting until 4
○ might even start a little bit later…

