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Definition: an intermediate representation (IR) is any internal data 
structure that a compiler uses for the facts that it derives about the 
program.
● this definition is intentionally broad, and it includes data 

structures we’ve already talked about, including ASTs, CFGs, the 
implementation/parent/class maps from PA2, etc.

● the IR is generally the canonical form that the compiler reasons 
about (i.e., the compiler discards the source code)
○ this makes IR choice important - facts that are not in the IR 

aren’t available to the compiler!
● typically, a compiler uses different IRs for different tasks
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How many IRs does a compiler need?

● As many as are useful!
○ I know that’s not a very helpful answer…

● Typically, a compiler will process IRs in stages
○ i.e., it will transform one IR into another, into another, etc., 

before eventually emitting code
● Different IRs are better suited to different tasks

○ for example, a CFG is useful for abstract interpretation or 
dataflow analysis…

○ …but would you use it for peephole optimizations? No, you 
want something much closer to the target assembly

An example of a peephole 
optimization is removing a 
redundant store/load pair 
that access the same address
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IR Design
● The design space of IRs is very large

○ In this lecture, I will survey some common ones
○ You are welcome to choose to use any or all of these in your 

compiler (or invent your own)
● IR design decisions impact the whole compiler

○ desirable properties:
■ easy to generate
■ easy to manipulate
■ expressive
■ appropriate level of abstraction

○ tradeoffs between these motivate different IRs at different 
compilation stages
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IR Design Taxonomy

● A non-exhaustive list of ways that IRs vary:
○ Structure

■ Graphical (trees, graphs, etc.)
■ Linear (code for some abstract machine)
■ Hybrids are common (e.g., control-flow graphs whose 

nodes are basic blocks of linear code)
○ Abstraction Level

■ High-level, near to source language
■ Low-level, closer to machine (exposes more details to 

compiler)
○ Naming conventions

Think of our discussion today as a 
toolbox of various well-known IRs. 
When building your compiler, pick 
and choose which ones are useful for 
each task
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Example: Representing an Array Reference

loadI 1 => r1 
sub rj,r1 => r2 
loadI 10 => r3 
mult r2,r3 => r4 
sub ri,r1 => r5 
add r4,r5 => r6 
loadI @A => r7 
add r7,r6 => r8 
load r8 => r9 

source code:  A[i,j]

graphical 
IR (tree):

high-level linear IR:  t1 <- A[i,j]

low-level 
linear IR:
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Levels of Abstraction

● Key design decision: how much detail to expose
○ Affects possibility and profitability of various optimizations
○ Depends on compiler phase: 

■ Some semantic analysis & optimizations are easier with 
high-level IRs close to the source code (e.g., an AST)

■ Low-level usually preferred for other optimizations, 
register allocation, code generation, etc.

○ Structural (graphical) IRs are typically fairly high-level – but 
are also used for low-level

○ Linear IRs are typically low-level
○ But these generalizations don’t always hold

One view: source code is just another 
IR that we happen to expose to 
programmers
● high-level of abstraction, linear
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Graphical IRs

● A graphical IR is any IR that is represented as a graph (or tree, 
flowchart, or other “graphical” structure)

● Nodes and edges typically reflect structure of the program
○ E.g., control flow, data dependence, caller/callee

● May be large (especially syntax trees)
● High-level examples: syntax trees, directed-acyclic graphs (DAGs)

○ Common in early phases of compilers
● Other examples: control flow graphs, data dependency graphs, and 

call graphs
○ Often used in semantic analysis, optimization, and code 

generation
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DAGs?

● Can use a directed acyclic graph to store 
a variation on the AST
○ to capture shared substructures

● Example: (a * 2) + ((a * 2) * b)
● Pros: saves space, exposes redundant 

sub-expressions
○ why might it be useful to expose 

redundant sub-expressions?
● Cons: less flexibility if part of tree should 

be changed
● Ask me about egraphs in OH
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Data Dependency Graphs

● In a data dependency graph, an edge between a pair of nodes 
indicates that they reference common data

● Examples:
○ Block A defines x then B reads it (RAW – read after write)
○ Block A reads x then B writes it (WAR – “anti- dependence”)
○ Blocks A and B both write x (WAW) 

■ order of blocks must reflect original program semantics
● These dependencies restrict what reorderings the compiler can 

do
● Data dependency graph is most often used in conjunction with 

another IR to facilitate optimizations, but it has other uses too…
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Call Graphs

● A call graph represents the runtime transfers of control between 
procedures
○ one node for each procedure and one edge for each distinct 

procedure call site
○ e.g., if the code calls q from three textually distinct sites in p; 

the call graph has three edges (p, q), one for each call site
● Call graphs are useful if you want to do inter-procedural analysis

○ that is, analysis that requires you to reason about more than 
one procedure at the same time

○ during codegen, you probably don’t need to do this, but it 
might be useful for optimization



Trivia Break: International Relations

This ancient Athenian historian and general chronicled the 
fifth-century BC war between Athens and Sparta in his History of the 
Peloponnesian War. He is considered by some to be the first modern 
political theorist, because of his claims to have applied strict standards 
of impartiality and evidence-gathering and analysis of cause and 
effect, without reference to intervention by the gods. The Melian 
dialogue from his work is regarded as a seminal text of international 
relations theory.
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Linear IRs

● Pseudo-code for some abstract machine
○ “Linear” because, like source code, it has a textual structure
○ Level of abstraction varies

● Simple, compact data structures
○ Commonly used: arrays, linked structures

● Examples: 
○ three-address code (“TAC”), which we’ll see some examples of 

in a few minutes (and which you must generate for PA3c2
○ stack machine code, which we’ll see a long example of in a later 

lecture
○ single static assignment form, which we’ll see briefly today too
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● Linear IRs can be close to the source language, very low-level, or 
somewhere in between.

● Consider, for example, linear IRs for C array reference

 a[i][j+2]

● A high-level linear IR might represent this very similarly to 
source code:

 t1 <- a[i,j+2]
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Linear IRs: abstraction level

● A “medium level” IR:

t1 <- j + 2
t2 <- i * 20 
t3 <- t1 + t2 
t4 <- 4 * t3 
t5 <- addr a 
t6 <- t5 + t4 
t7 <- *t6

still retains basic symbolic info 
about variables

● A “low level” IR:

r1 <- [fp-4]
r2 <- r1 + 2
r3 <- [fp-8]
r4 <- r3 * 20
r5 <- r4 + r2
r6 <- 4 * r5
r7 <- fp – 216
f1 <- [r7+r6]

exposes all details of the low-level 
layout; explicit memory references 
and calculations
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Linear IRs: abstraction level tradeoffs

● High-level: good for some high-level optimizations, semantic 
checking; but can’t optimize things that are hidden – like address 
arithmetic for array subscripting

● Low-level: need for good code generation and resource utilization 
in back end but loses some semantic knowledge (e.g., variables, 
data aggregates, source relationships are usually missing)

● Medium-level: more detail but keeps more higher-level semantic 
information – great for machine-independent optimizations. Many 
(all?) optimizing compilers work at this level

● Many compilers use all 3 in different phases
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Linear IRs: stack machines
● Originally used for stack-based computers

○ famous example: B5000, ~1961
● Often used for virtual machines

○ Classic examples: Pascal’s pcode and Java bytecode 
● Advantages:

○ Compact; mostly 0-address opcodes (great if sent via network)
○ Easy to generate; easy to write a front-end compiler, leaving 

the “heavy lifting” and optimizations to the JIT
○ Simple to interpret or compile to machine code

● Disadvantages:
○ Somewhat inconvenient/difficult to optimize directly
○ Does not match up with modern chip architectures
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Linear IRs: stack machines: example
● Hypothetical code for x = 2 * (m + n):

● Note compactness: 
○ common opcodes just 1 byte wide
○ instructions have 0 or 1 operand

In our “code generation” 
lectures next week we will talk 
explicitly about how you’d 
build a stack machine for Cool
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“Hybrid” IRs

● Combinations of linear and graphical IRs are common
○ for example, a CFG’s basic blocks usually contain code in 

some linear IR (e.g., TAC)
○ we call these hybrid IRs

● Level of abstraction varies; you can mix and match based on 
your needs
○ when designing your own compiler’s internals, it’s okay to 

be creative: pick the representation that makes your life 
easiest
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Three-Address Code

● Usual form: x <- y op z
○ One operator
○ Maximum of 3 names (thus the name)

● Eg: x = 2 * (m + n) becomes 
t1 <- m + n; t2 <- 2 * t1; x  <- t2

○ You may prefer: 
add t1, m, n; mul t2, 2, t1; movx, t2

● Invent as many new temp names as needed
○ “expression temps” don’t correspond to any user variables; 

de-anonymize expressions
● Store in a quadruple:  <lhs,rhs1,op,rhs2>
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Why TAC?

● Advantages:
○ Resembles code for actual machines
○ Explicitly names intermediate results
○ Compact
○ Often easy to rearrange

● Why does PA3c2 require TAC?
○ I want you to build an IR early. You’ll need several before you 

finish PA3.
○ I think TAC is basically guaranteed to be useful no matter 

how you design the rest of your compiler
■ and I had to pick something…

The PA3c2 page has a long 
discussion on Cool’s TAC format, 
including pseudocode to generate it. 

https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/projects/pa3.html#pa3c2-three-address-code-generator
https://kelloggm.github.io/martinjkellogg.com/teaching/cs485-sp25/projects/pa3.html#pa3c2-three-address-code-generator
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Single Static Assignment (SSA)

● IR where each variable has only one definition in the 
program text
○ A single static definition, but that definition can be in a 

loop, function, or other code that is executed 
dynamically many times

● Makes many analyses (and related optimizations) more 
efficient

● Separates values from memory storage locations
● Complementary to CFG or data dependency graph

○ better for some things, but cannot do everything
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SSA: Basic Idea

● Basic Idea: for each original variable v, create a new variable vn at 
the nth definition of the original v. Subsequent uses of v use vn 
until the next definition point. E.g.:

Original:
a := x + y
b := a – 1
a := y + b
b := x * 4
a := a + b

SSA:
a

1
 := x

0
 + y

0
b

1
 := a

1
 – 1

a
2

 := y
0

 + b
1

b
2

 := x
0

 * 4
a

3
 := a

2
 + b

2
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SSA: Merges

● This is fine until we reach a merge point:

● Solution: introduce a φ-function (“phi function”)
○ semantics: a

3
 is assigned to either a

1
 or a

2
, depending on 

which control flow path us used to reach the φ-function

if (...)
    a = x;
else
    a = y;
b = a;

if (...)
    a

1
 = x

0
;

else
    a

2
 = y

0
;

a
3

 = φ(a
1

, a
2

)
b

1
 = a

3
;
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How does the φ-function “know” what to pick? 

● It doesn’t!
● φ-functions don’t actually exist at run time

○ when we’re done using the SSA IR, we translate back out of 
SSA form, removing all φ-functions
■ Basically by adding code to copy all SSA x

i 
values to the 

single, non-SSA variable x
○ For analysis, all we typically need to know is the connection 

of uses to definitions – no need to “execute” anything
■ So φ-functions are (only) compile-time bookkeeping
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Converting to SSA

● Could simply add φ-functions for every variable at every join 
point(!)
○ called maximal SSA
○ this wastes way too much space and time to be useful in 

practice
● Instead, use the path convergence criterion:  insert a φ-function 

for variable a at program point z when:
○ There are blocks x and y, both containing definitions of a, and 

x != y
○ There are non-empty paths from x to z and from y to z
○ These paths have no common nodes other than z 

We’ll come back to SSA form when 
it’s relevant for optimizations we’re 
talking about, and revisit how you 
actually do this



Course Announcements

● PA2 due today!
● PA3c1 (codegen testing) is due on Friday

○ all gas, no brakes
● My OH on Wednesday will be later than usual (4-5 instead of 

3:30-4:30), because of a CS faculty meeting until 4
○ might even start a little bit later…


