
Global Optimizations
Martin Kellogg

Course Announcements

Course Announcements

● As many of you have noticed, there was an issue with the PA3
autograder that prevented anyone from passing tests 16+
○ This issue has been fixed as of this morning
○ Discuss with class: do y’all need another extension on PA3? I

am open to giving one.
■ First rule of compilers: semantics >>> optimization

Course Announcements

● As many of you have noticed, there was an issue with the PA3
autograder that prevented anyone from passing tests 16+
○ This issue has been fixed as of this morning
○ Discuss with class: do y’all need another extension on PA3? I

am open to giving one.
■ First rule of compilers: semantics >>> optimization

● I will be out of town on Wednesday 4/30 (for ICSE)
○ I’ve therefore rearranged the calendar a bit
○ My PhD student Erfan Arvan will give a lecture on

exceptions

Agenda

● Super-local Value Numbering
● Other regional optimizations
● Intro to global optimizations
● Dataflow analysis basics

Review: Local Value Numbering

Review: Local Value Numbering
● Local Value Numbering (LVN) is a classic algorithm for finding and

eliminating redundant operations in a basic block

Review: Local Value Numbering
● Local Value Numbering (LVN) is a classic algorithm for finding and

eliminating redundant operations in a basic block
○ LVN uses a table to map names, constants, and expressions

to value numbers

Review: Local Value Numbering
● Local Value Numbering (LVN) is a classic algorithm for finding and

eliminating redundant operations in a basic block
○ LVN uses a table to map names, constants, and expressions

to value numbers
■ each value number has a 1:1 relationship with the value

that it represents

Review: Local Value Numbering
● Local Value Numbering (LVN) is a classic algorithm for finding and

eliminating redundant operations in a basic block
○ LVN uses a table to map names, constants, and expressions

to value numbers
■ each value number has a 1:1 relationship with the value

that it represents
○ LVN table keys are constructed from the value numbers of

subexpressions

Review: Local Value Numbering
● Local Value Numbering (LVN) is a classic algorithm for finding and

eliminating redundant operations in a basic block
○ LVN uses a table to map names, constants, and expressions

to value numbers
■ each value number has a 1:1 relationship with the value

that it represents
○ LVN table keys are constructed from the value numbers of

subexpressions
● LVN allows us to trivially identify redundant computations

Review: Local Value Numbering
● Local Value Numbering (LVN) is a classic algorithm for finding and

eliminating redundant operations in a basic block
○ LVN uses a table to map names, constants, and expressions

to value numbers
■ each value number has a 1:1 relationship with the value

that it represents
○ LVN table keys are constructed from the value numbers of

subexpressions
● LVN allows us to trivially identify redundant computations

○ it’s straightforward to extend it to other local optimizations,
like constant folding

Review: Regional Optimizations

Review: Regional Optimizations
● A regional optimization considers one or more logically-related

basic blocks together

Review: Regional Optimizations
● A regional optimization considers one or more logically-related

basic blocks together
○ These blocks are not required to form a whole procedure

■ that’s a “global” optimization; the boundary is fuzzy

Review: Regional Optimizations
● A regional optimization considers one or more logically-related

basic blocks together
○ These blocks are not required to form a whole procedure

■ that’s a “global” optimization; the boundary is fuzzy
○ However, usually they’re “related” in some way: for example,

the whole body of a loop may be an optimization target

Review: Regional Optimizations
● A regional optimization considers one or more logically-related

basic blocks together
○ These blocks are not required to form a whole procedure

■ that’s a “global” optimization; the boundary is fuzzy
○ However, usually they’re “related” in some way: for example,

the whole body of a loop may be an optimization target
● Regional optimizations usually work on an extended basic block

(“EBB”): a small control-flow graph of basic blocks

Review: Regional Optimizations
● A regional optimization considers one or more logically-related

basic blocks together
○ These blocks are not required to form a whole procedure

■ that’s a “global” optimization; the boundary is fuzzy
○ However, usually they’re “related” in some way: for example,

the whole body of a loop may be an optimization target
● Regional optimizations usually work on an extended basic block

(“EBB”): a small control-flow graph of basic blocks
○ Most local optimizations can operate on EBBs with small

modifications

Review: Regional Optimizations
● A regional optimization considers one or more logically-related

basic blocks together
○ These blocks are not required to form a whole procedure

■ that’s a “global” optimization; the boundary is fuzzy
○ However, usually they’re “related” in some way: for example,

the whole body of a loop may be an optimization target
● Regional optimizations usually work on an extended basic block

(“EBB”): a small control-flow graph of basic blocks
○ Most local optimizations can operate on EBBs with small

modifications
● Formally, an EBB is a maximal collection of basic blocks with

unique entry and exit blocks

Extended Basic Blocks: Example

(don’t worry about the details)

Super-local Value Numbering

Super-local Value Numbering

● To extend LVN to more than one basic block, we
need to reason about all possible paths through
the EBB

Super-local Value Numbering

● To extend LVN to more than one basic block, we
need to reason about all possible paths through
the EBB

● In theory, we can consider each path
independently

Super-local Value Numbering

● To extend LVN to more than one basic block, we
need to reason about all possible paths through
the EBB

● In theory, we can consider each path
independently
○ That is, treat each path as if it were a block!

■ after all, no branches in a single path…

Super-local Value Numbering

● To extend LVN to more than one basic block, we
need to reason about all possible paths through
the EBB

● In theory, we can consider each path
independently
○ That is, treat each path as if it were a block!

■ after all, no branches in a single path…
● Blocks with single predecessor can keep the

hashtable from the last block

Super-local Value Numbering

● To extend LVN to more than one basic block, we
need to reason about all possible paths through
the EBB

● In theory, we can consider each path
independently
○ That is, treat each path as if it were a block!

■ after all, no branches in a single path…
● Blocks with single predecessor can keep the

hashtable from the last block
● Any block with multiple predecessors, such as B

5
,

can use a fresh hashtable

S-LVN: Example

consider the path B
0

, B
2

, B
3

S-LVN: Example

consider the path B
0

, B
2

, B
3

combine into a single logical block

S-LVN: Example

consider the path B
0

, B
2

, B
3

combine into a single logical block

LVN can
discover this
redundancy
on its own…

S-LVN: Example

consider the path B
0

, B
2

, B
3

combine into a single logical block

…but we
need S-LVN
to discover
these two!

S-LVN: Practicality

● Unfortunately, analyzing each path separately isn’t feasible,
because paths grow exponentially in the number of branches

S-LVN: Practicality

● Unfortunately, analyzing each path separately isn’t feasible,
because paths grow exponentially in the number of branches
○ this is called the path explosion problem

■ it impacts a number of important static analyses that work
at path granularity (most famously symbolic execution)

S-LVN: Practicality

● Unfortunately, analyzing each path separately isn’t feasible,
because paths grow exponentially in the number of branches
○ this is called the path explosion problem

■ it impacts a number of important static analyses that work
at path granularity (most famously symbolic execution)

● Regional optimizations can capitalize on the tree structure of an
EBB, though, to avoid redoing too much work

S-LVN: Practicality

● Unfortunately, analyzing each path separately isn’t feasible,
because paths grow exponentially in the number of branches
○ this is called the path explosion problem

■ it impacts a number of important static analyses that work
at path granularity (most famously symbolic execution)

● Regional optimizations can capitalize on the tree structure of an
EBB, though, to avoid redoing too much work
○ insight: paths share common prefixes

■ e.g., (B
0

, B
2

, B
3

) and (B
0

, B
2

, B
4

) share prefix (B
0

, B
2

)

S-LVN: Practicality

● Unfortunately, analyzing each path separately isn’t feasible,
because paths grow exponentially in the number of branches
○ this is called the path explosion problem

■ it impacts a number of important static analyses that work
at path granularity (most famously symbolic execution)

● Regional optimizations can capitalize on the tree structure of an
EBB, though, to avoid redoing too much work
○ insight: paths share common prefixes

■ e.g., (B
0

, B
2

, B
3

) and (B
0

, B
2

, B
4

) share prefix (B
0

, B
2

)
○ the compiler can cache the results for common prefixes and

reuse them when analyzing related paths

S-LVN: Practicality

● Unfortunately, analyzing each path separately isn’t feasible,
because paths grow exponentially in the number of branches
○ this is called the path explosion problem

■ it impacts a number of important static analyses that work
at path granularity (most famously symbolic execution)

● Regional optimizations can capitalize on the tree structure of an
EBB, though, to avoid redoing too much work
○ insight: paths share common prefixes

■ e.g., (B
0

, B
2

, B
3

) and (B
0

, B
2

, B
4

) share prefix (B
0

, B
2

)
○ the compiler can cache the results for common prefixes and

reuse them when analyzing related paths

For more details on this
algorithm, see the book.

Other Regional Optimizations

● Loop unrolling
● Code motion
● Loop induction variable elimination

Loop Unrolling

Loop Unrolling

● To unroll a loop, replicate the loop’s body and adjust the logic that
controls the number of iterations performed

Loop Unrolling

● To unroll a loop, replicate the loop’s body and adjust the logic that
controls the number of iterations performed

● Direct benefits:
○ reduce number of branches (they’re expensive)
○ enable reuse of certain computations (e.g., outer loop indices)
○ improve spatial locality, especially for array accesses

Loop Unrolling

● To unroll a loop, replicate the loop’s body and adjust the logic that
controls the number of iterations performed

● Direct benefits:
○ reduce number of branches (they’re expensive)
○ enable reuse of certain computations (e.g., outer loop indices)
○ improve spatial locality, especially for array accesses

● Loop unrolling changes the ratio of arithmetic to memory
operations in the loop

Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and

potentially negative:

Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and

potentially negative:
○ it increases program size. If this causes the instruction cache

to overflow, it’s not worthwhile to unroll the loop.

Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and

potentially negative:
○ it increases program size. If this causes the instruction cache

to overflow, it’s not worthwhile to unroll the loop.
○ unrolling increases the number of operations in the loop

body, which might enable other optimizations
■ e.g., more operations in the loop body might unlock

interesting instruction schedules

Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and

potentially negative:
○ it increases program size. If this causes the instruction cache

to overflow, it’s not worthwhile to unroll the loop.
○ unrolling increases the number of operations in the loop

body, which might enable other optimizations
■ e.g., more operations in the loop body might unlock

interesting instruction schedules
○ unrolling can enable multi-word instructions (i.e., SIMD)

■ SIMD = “single instruction, multiple data”

Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and

potentially negative:
○ it increases program size. If this causes the instruction cache

to overflow, it’s not worthwhile to unroll the loop.
○ unrolling increases the number of operations in the loop

body, which might enable other optimizations
■ e.g., more operations in the loop body might unlock

interesting instruction schedules
○ unrolling can enable multi-word instructions (i.e., SIMD)

■ SIMD = “single instruction, multiple data”
○ unrolled loop may use more registers, and if it causes a spill

the unrolling is almost certainly not worth it

Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and

potentially negative:
○ it increases program size. If this causes the instruction cache

to overflow, it’s not worthwhile to unroll the loop.
○ unrolling increases the number of operations in the loop

body, which might enable other optimizations
■ e.g., more operations in the loop body might unlock

interesting instruction schedules
○ unrolling can enable multi-word instructions (i.e., SIMD)

■ SIMD = “single instruction, multiple data”
○ unrolled loop may use more registers, and if it causes a spill

the unrolling is almost certainly not worth it

Whether or not to unroll a loop often
depends on these factors, so there is no
one-size-fits-all algorithm for deciding
whether to unroll

Code Motion

● Goal: move loop-invariant calculations out of loops

Code Motion

● Goal: move loop-invariant calculations out of loops
● Example:

for (i = 0; i < 10; i++) {
 a[i] = a[i] + b[j];
 z = z + 10000;
}

Code Motion

● Goal: move loop-invariant calculations out of loops
● Example:

for (i = 0; i < 10; i++) {
 a[i] = a[i] + b[j];
 z = z + 10000;
}

t1 = b[j];
t2 = 10000;
for (i = 0; i < 10; i++) {
 a[i] = a[i] + t1;
 z = z + t2;
}

Code Motion

● Goal: move loop-invariant calculations out of loops
● Example:

for (i = 0; i < 10; i++) {
 a[i] = a[i] + b[j];
 z = z + 10000;
}

● Benefit: avoids redundant computation each time around the
loop

t1 = b[j];
t2 = 10000;
for (i = 0; i < 10; i++) {
 a[i] = a[i] + t1;
 z = z + t2;
}

Loop Induction Variable Elimination

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction

Strength reduction means replacing
expensive operations with equivalent
but less expensive operations
● e.g., x*2 -> x+x

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop
○ increment offsets/pointers each time around loop

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop
○ increment offsets/pointers each time around loop
○ no expensive scaling in loop

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop
○ increment offsets/pointers each time around loop
○ no expensive scaling in loop
○ then do loop-invariant code motion

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop
○ increment offsets/pointers each time around loop
○ no expensive scaling in loop
○ then do loop-invariant code motion

for (i = 0; i < 10; i++){
 a[i] = a[i] + x;
}

Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop
○ increment offsets/pointers each time around loop
○ no expensive scaling in loop
○ then do loop-invariant code motion

for (i = 0; i < 10; i++){
 a[i] = a[i] + x;
}

for (p = &a[0]; p < &a[10]; p = p+4){
 *p = *p + x;
}

Summary: Regional Optimizations

Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local
optimizations

Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local
optimizations

● Generally operate on extended basic blocks with one entry/exit

Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local
optimizations

● Generally operate on extended basic blocks with one entry/exit
○ commonly, the body of a loop

Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local
optimizations

● Generally operate on extended basic blocks with one entry/exit
○ commonly, the body of a loop

● Benefits of a regional optimization often depend on indirect
effects, such as spatial locality

Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local
optimizations

● Generally operate on extended basic blocks with one entry/exit
○ commonly, the body of a loop

● Benefits of a regional optimization often depend on indirect
effects, such as spatial locality
○ This means that they are inherently more risky than their local

cousins

Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local
optimizations

● Generally operate on extended basic blocks with one entry/exit
○ commonly, the body of a loop

● Benefits of a regional optimization often depend on indirect
effects, such as spatial locality
○ This means that they are inherently more risky than their local

cousins
● Nearly all local optimizations can be extended to work at the

regional level

Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local
optimizations

● Generally operate on extended basic blocks with one entry/exit
○ commonly, the body of a loop

● Benefits of a regional optimization often depend on indirect
effects, such as spatial locality
○ This means that they are inherently more risky than their local

cousins
● Nearly all local optimizations can be extended to work at the

regional level
○ Which you want to use is up to you!

Trivia Break: CS + Pop Culture
This American has been a professor of both cognitive science and
computer scientist, though his PhD (from the University of Oregon) is
actually in Physics. His dissertation work was one of the early
examples of modern scientific data visualization. However, he is most
famous not for his academic work but for his nonfiction writing: his
2007 book I Am a Strange Loop won the Los Angeles Times Book Prize
for Science and Technology, and his 1979 book Gödel, Escher, Bach: An
Eternal Golden Braid won the Pulitzer Prize for general nonfiction and
a National Book Award (at that time called The American Book
Award) for Science.

Trivia Break: Technology and Business

This Seattle-based ecommerce company’s first order from a
non-employee was a copy of Douglas Hofstadter’s Fluid Concepts, on
April 3, 1995. The company survived the dot-com crash in the early
2000s and went on to become one of the world’s largest companies,
with a market capitalization of more than 1.8 trillion USD. Internally,
its corporate culture is focused on the concept of a “flywheel”
between different parts of the business: that is, that growth in one
part should encourage growth in other parts, creating positive
feedback loops.

“Global” Optimizations

“Global” Optimizations

● A global optimization changes an entire method (consisting of
multiple basic blocks).

“Global” Optimizations

● A global optimization changes an entire method (consisting of
multiple basic blocks).

● We must be conservative and only apply global optimizations
when they preserve the original semantics.

“Global” Optimizations

● A global optimization changes an entire method (consisting of
multiple basic blocks).

● We must be conservative and only apply global optimizations
when they preserve the original semantics.

● We use global dataflow analyses to determine if it is OK to apply an
optimization.

“Global” Optimizations

● A global optimization changes an entire method (consisting of
multiple basic blocks).

● We must be conservative and only apply global optimizations
when they preserve the original semantics.

● We use global dataflow analyses to determine if it is OK to apply an
optimization.
○ These analyses have a lot in common with abstract

interpretation, which we covered earlier in the course

“Global” Optimizations

● A global optimization changes an entire method (consisting of
multiple basic blocks).

● We must be conservative and only apply global optimizations
when they preserve the original semantics.

● We use global dataflow analyses to determine if it is OK to apply an
optimization.
○ These analyses have a lot in common with abstract

interpretation, which we covered earlier in the course
○ Like an abstract interpretation, flow analyses are built out of

simple transfer functions and can work forwards or
backwards.

“Global” Optimizations (continued)

● We want to apply the same kinds of
optimizations at the global level that
we do at the local and regional levels
○ constant folding, DCE, etc.

“Global” Optimizations (continued)

● We want to apply the same kinds of
optimizations at the global level that
we do at the local and regional levels
○ constant folding, DCE, etc.

● How would we know it is OK to
globally propagate constants?

“Global” Optimizations (continued)

● We want to apply the same kinds of
optimizations at the global level that
we do at the local and regional levels
○ constant folding, DCE, etc.

● How would we know it is OK to
globally propagate constants?
○ e.g., in the CFG to the left, it’s not

safe to constant fold X!

“Global” Optimizations (continued)

● We want to apply the same kinds of
optimizations at the global level that
we do at the local and regional levels
○ constant folding, DCE, etc.

● How would we know it is OK to
globally propagate constants?
○ e.g., in the CFG to the left, it’s not

safe to constant fold X!
● To replace a use of x by a constant k we must know this correctness

condition:

“Global” Optimizations (continued)

● We want to apply the same kinds of
optimizations at the global level that
we do at the local and regional levels
○ constant folding, DCE, etc.

● How would we know it is OK to
globally propagate constants?
○ e.g., in the CFG to the left, it’s not

safe to constant fold X!
● To replace a use of x by a constant k we must know this correctness

condition:
On every path to the use of x, the last assignment to x is x := k

“Global” Constant Folding: Examples

“Global” Constant Folding: Examples

“Global” Constant Folding: Examples

ok to constant fold:
all paths have X := 3

“Global” Constant Folding: Examples

ok to constant fold:
all paths have X := 3

“Global” Constant Folding: Examples

ok to constant fold:
all paths have X := 3

not ok to constant fold:
one path has X := 3, the
other has X := 4

“Global” Optimizations: Discussion

● This correctness condition is not trivial to check

“Global” Optimizations: Discussion

● This correctness condition is not trivial to check
● “All paths” includes paths around loops and through branches of

conditionals

“Global” Optimizations: Discussion

● This correctness condition is not trivial to check
● “All paths” includes paths around loops and through branches of

conditionals
○ May have an arbitrary number of jumps out of the procedure,

unlike regional optimization

“Global” Optimizations: Discussion

● This correctness condition is not trivial to check
● “All paths” includes paths around loops and through branches of

conditionals
○ May have an arbitrary number of jumps out of the procedure,

unlike regional optimization
● Checking such a condition requires global analysis

“Global” Optimizations: Discussion

● This correctness condition is not trivial to check
● “All paths” includes paths around loops and through branches of

conditionals
○ May have an arbitrary number of jumps out of the procedure,

unlike regional optimization
● Checking such a condition requires global analysis

○ “Global” = an analysis of the entire control-flow graph for one
method body

“Global” Optimizations: Discussion

● This correctness condition is not trivial to check
● “All paths” includes paths around loops and through branches of

conditionals
○ May have an arbitrary number of jumps out of the procedure,

unlike regional optimization
● Checking such a condition requires global analysis

○ “Global” = an analysis of the entire control-flow graph for one
method body

● Dataflow analysis is a common global analysis

“Global” Optimizations: Discussion

● This correctness condition is not trivial to check
● “All paths” includes paths around loops and through branches of

conditionals
○ May have an arbitrary number of jumps out of the procedure,

unlike regional optimization
● Checking such a condition requires global analysis

○ “Global” = an analysis of the entire control-flow graph for one
method body

● Dataflow analysis is a common global analysis
○ called “dataflow” analysis because it propagates information

about how data moves through the control-flow graph

Common Traits of Dataflow Analyses

Common Traits of Dataflow Analyses

● Proving most global optimizations safe depends on knowing a
property P at a particular point in program execution
○ i.e., for all executions, is P true at this point?

Common Traits of Dataflow Analyses

● Proving most global optimizations safe depends on knowing a
property P at a particular point in program execution
○ i.e., for all executions, is P true at this point?

● Proving P at any specific program point typically requires
knowledge of the entire method body

Common Traits of Dataflow Analyses

● Proving most global optimizations safe depends on knowing a
property P at a particular point in program execution
○ i.e., for all executions, is P true at this point?

● Proving P at any specific program point typically requires
knowledge of the entire method body

● Property P is typically undecidable
○ Why?

Common Traits of Dataflow Analyses

● Proving most global optimizations safe depends on knowing a
property P at a particular point in program execution
○ i.e., for all executions, is P true at this point?

● Proving P at any specific program point typically requires
knowledge of the entire method body

● Property P is typically undecidable
○ Why?

■ Simple consequence of Rice’s Theorem

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:

“interesting” in this context means
“not trivial”, i.e., not uniformly true
or false for all programs

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Review: Undecidability of Program Properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Rice’s theorem caveats:
● only applies to semantic

properties (syntactic
properties are decidable)

● “programs” only includes
programs with loops

Review: Undecidability of Program Properties

Back To Optimization

● Recall that to replace a use of x by a constant k we must know that:
On every path to the use of x, the last assignment to x is x := k

Back To Optimization

● Recall that to replace a use of x by a constant k we must know that:
On every path to the use of x, the last assignment to x is x := k

● This correctness condition is hard to check (undecidable)

Back To Optimization

● Recall that to replace a use of x by a constant k we must know that:
On every path to the use of x, the last assignment to x is x := k

● This correctness condition is hard to check (undecidable)
● Checking it requires an analysis of a whole method body

Back To Optimization

● Recall that to replace a use of x by a constant k we must know that:
On every path to the use of x, the last assignment to x is x := k

● This correctness condition is hard to check (undecidable)
● Checking it requires an analysis of a whole method body
● We said that was impossible, right?

Conservative Program Analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

Conservative Program Analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

Conservative Program Analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t
know”

Conservative Program Analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t
know”
○ this is called conservative analysis

● It’s always correct to say “I don’t know”

Conservative Program Analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Conservative Program Analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible
● A sound program analysis has no false negatives

Conservative Program Analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible
● A sound program analysis has no false negatives

○ always answers “I don’t know” if the property of interest
might not be true

Conservative Program Analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible
● A sound program analysis has no false negatives

○ always answers “I don’t know” if the property of interest
might not be true

● Our dataflow analyses for enabling optimizations will be sound
and conservative
○ i.e., we will not optimize when they say “I don’t know”

Conservative Program Analysis

● Global constant folding is one example of an optimization that
requires global dataflow analysis

Example Analysis: Global Constant Folding

● Global constant folding is one example of an optimization that
requires global dataflow analysis

● Global constant folding can be performed at any point where
the correctness condition holds

Example Analysis: Global Constant Folding

● Global constant folding is one example of an optimization that
requires global dataflow analysis

● Global constant folding can be performed at any point where
the correctness condition holds

Example Analysis: Global Constant Folding

Correctness condition for global
constant folding:
On every path to the use of x, the
last assignment to x is x := k

● Global constant folding is one example of an optimization that
requires global dataflow analysis

● Global constant folding can be performed at any point where
the correctness condition holds

● Let’s consider the case of computing the correctness condition
at all program points for a single variable X

Example Analysis: Global Constant Folding

● Global constant folding is one example of an optimization that
requires global dataflow analysis

● Global constant folding can be performed at any point where
the correctness condition holds

● Let’s consider the case of computing the correctness condition
at all program points for a single variable X
○ We can easily extend this to other variables later

Example Analysis: Global Constant Folding

● Global constant folding is one example of an optimization that
requires global dataflow analysis

● Global constant folding can be performed at any point where
the correctness condition holds

● Let’s consider the case of computing the correctness condition
at all program points for a single variable X
○ We can easily extend this to other variables later
○ Keep in mind what you know about abstract interpretation

as we go through this, and look for the similarities
■ there are many!

Example Analysis: Global Constant Folding

Global Constant Folding: Abstraction

● To make the problem precise, we associate one of the following
abstract values with X at every program point:

Global Constant Folding: Abstraction

● To make the problem precise, we associate one of the following
abstract values with X at every program point:
○ T (“top”) = “don’t know if X is a constant”
○ constant c = “the last assignment to X was X = c”
○ 丄 (“bottom”) = “X has no value here”

(Look familiar?)

Global Constant Folding: Abstraction

● To make the problem precise, we associate one of the following
abstract values with X at every program point:
○ T (“top”) = “don’t know if X is a constant”
○ constant c = “the last assignment to X was X = c”
○ 丄 (“bottom”) = “X has no value here”

(Look familiar?)

Global Constant Folding: Abstraction

● To make the problem precise, we associate one of the following
abstract values with X at every program point:
○ T (“top”) = “don’t know if X is a constant”
○ constant c = “the last assignment to X was X = c”
○ 丄 (“bottom”) = “X has no value here”

(Look familiar?)

Global Constant Folding: Formalized

Get out a piece of paper. Fill in these blanks:

Recall:
T = “don’t know”
c = constant
丄 = unreachable

Get out a piece of paper. Fill in these blanks:

Recall:
T = “don’t know”
c = constant
丄 = unreachable

Global Constant Folding: Formalized

Using the Information

Using the Information

● Given global constant information, it is easy to decide whether or
not to perform the optimization

Using the Information

● Given global constant information, it is easy to decide whether or
not to perform the optimization
○ Simply inspect the x = ? associated with a statement using x

Using the Information

● Given global constant information, it is easy to decide whether or
not to perform the optimization
○ Simply inspect the x = ? associated with a statement using x
○ If x is a constant at that point, replace that use of x by the

constant!

Using the Information

● Given global constant information, it is easy to decide whether or
not to perform the optimization
○ Simply inspect the x = ? associated with a statement using x
○ If x is a constant at that point, replace that use of x by the

constant!

● But how can an algorithm compute x = ?

Key Idea

The analysis of a complicated program can be expressed as a
combination of simple rules relating the change in information

between adjacent statements

Explanation:

Key Idea

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

Key Idea

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

● For each statement s, we compute information about the value of x
immediately before and after s:

Key Idea

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

● For each statement s, we compute information about the value of x
immediately before and after s:
○ C

in
(x,s) = value of x before s

○ C
out

(x,s) = value of x after s

Key Idea

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

● For each statement s, we compute information about the value of x
immediately before and after s:
○ C

in
(x,s) = value of x before s

○ C
out

(x,s) = value of x after s
Definition: a transfer function
expresses the relationship
between C

in
(x, s) and C

out
(x, s)

Key Idea

Transfer functions: rule 1

C
out

(x, x := c) = c if c is a constant

Transfer functions: rule 2

C
out

(x, s) = bottom if C
in

(x, s) = bottom

Recall bottom =
“unreachable code”

Transfer functions: rule 3

C
out

(x, x := f(…)) = T

Transfer functions: rule 3

C
out

(x, x := f(…)) = T

This is a conservative
approximation! f(...)
might always return a
constant, but we don’t
even try!

Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

How hard is it to
check if x ≠ y on all
executions?

Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

How hard is it to
check if x ≠ y on all
executions? (oh no)

Propagation between Statements

● Rules 1-4 relate the in of a statement to the out of the same
statement

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

Propagation between Statements

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of
the successor statement

Propagation between Statements

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of
the successor statement
○ to propagate information forward along paths

Propagation between Statements

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of
the successor statement
○ to propagate information forward along paths

● In the following rules, let statement s have immediate predecessor
statements p1 , …, pn

Propagation between Statements

Transfer functions: rule 5

if C
out

(x, pi) = T for some i, then C
in

(x, s) = T

Transfer functions: rule 5

if C
out

(x, pi) = T for some i, then C
in

(x, s) = T

If there’s any path
on which we don’t
know, then we
don’t know at all

Transfer functions: rule 6

if C
out

(x, pi) = c and C
out

(x, pj) = d and d ≠ c then C
in

 (x, s) = T

Transfer functions: rule 6

if C
out

(x, pi) = c and C
out

(x, pj) = d and d ≠ c then C
in

 (x, s) = T

We don’t know
which of the paths a
given execution will
take (so assume T)

Transfer functions: rule 7

if C
out

(x, pi) = c or bottom for all i, then C
in

(x, s) = c

Transfer functions: rule 7

if C
out

(x, pi) = c or bottom for all i, then C
in

(x, s) = c

If x has the same
value (or bottom)
on all input edges, it
has that value in s

Transfer functions: rule 8

if C
out

(x, pi) = bottom for all i, then C
in

(x, s) = bottom

The Dataflow Analysis Algorithm

● For every entry point e to the procedure, set C
in

(x, e) = T

The Dataflow Analysis Algorithm

A static analysis algorithm

● For every entry point e to the procedure, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the procedure.

A static analysis algorithm

● For every entry point e to the procedure, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the procedure.
● Set C

in
(x, s) = C

out
(x, s) = bottom everywhere else

A static analysis algorithm

● For every entry point e to the procedure, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the procedure.
● Set C

in
(x, s) = C

out
(x, s) = bottom everywhere else

● Repeat until all points satisfy rules 1-8:
○ Pick s not satisfying rules 1-8 and update using the appropriate

rule

A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the procedure.
● Set C

in
(x, s) = C

out
(x, s) = bottom everywhere else

● Repeat until all points satisfy rules 1-8:
○ Pick s not satisfying rules 1-8 and update using the appropriate

rule

This is a fixpoint (or fixed point)
iteration algorithm. Such algorithms
are characterized by a finite set of
rules, which are applied until they
“reach fixpoint”, which means that
applying any rule produces no
change.

Why do we need bottom?

Why do we need bottom?

● To understand why we need to set non-entry points to bottom
initially, consider a program with a loop:

Why do we need bottom?

● To understand why we need to set non-entry points to bottom
initially, consider a program with a loop:

This way
is easy!

Why do we need bottom?

● To understand why we need to set non-entry points to bottom
initially, consider a program with a loop:

This way
is easy!

????

Why do we need bottom?

● To understand why we need to set non-entry points to bottom
initially, consider a program with a loop.

● Because of cycles, all points must have values at all times during
the analysis

Why do we need bottom?

● To understand why we need to set non-entry points to bottom
initially, consider a program with a loop.

● Because of cycles, all points must have values at all times during
the analysis

● Intuitively, assigning some initial value allows the analysis to break
cycles

Why do we need bottom?

● To understand why we need to set non-entry points to bottom
initially, consider a program with a loop.

● Because of cycles, all points must have values at all times during
the analysis

● Intuitively, assigning some initial value allows the analysis to break
cycles

● The initial value bottom means “we have not yet analyzed control
reaching this point”

Another example: dealing with loops

Let’s do it on paper!
Analyze the value of X.

Another example: dealing with loops

(We went through
this answer on the
whiteboard.)

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our dataflow analysis

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our dataflow analysis
○ (Most) locations start as bottom

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our dataflow analysis
○ (Most) locations start as bottom
○ Locations whose current value is bottom might become c or T

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our dataflow analysis
○ (Most) locations start as bottom
○ Locations whose current value is bottom might become c or T
○ Locations whose current value is c might become T

■ but never go back to bottom!

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our dataflow analysis
○ (Most) locations start as bottom
○ Locations whose current value is bottom might become c or T
○ Locations whose current value is c might become T

■ but never go back to bottom!
○ Locations whose current value is T never change

Lattices & Orderings

This structure between values is a lattice (just like in AI!):

T

0 1-1 ……

bot

Lattices & Orderings

T

0 1-1

bot

……

Review of how to read a lattice:
● abstract values higher in the

lattice are more general (e.g., T
is true of more things than 0)

● easy to compute least upper
bound: it’s the lowest common
ancestor of two abstract values

This structure between values is a lattice (just like in AI!):

Lattices (continued)

● least upper bound (“lub”) has useful properties:

Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one

direction as the analysis progresses

Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one

direction as the analysis progresses
○ we can rewrite rules 5-8 in our dataflow analysis using lub:

C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }

Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one

direction as the analysis progresses
○ we can rewrite rules 5-8 in our nullness analysis using lub:

C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }lub is the reason dataflow
analysis is an algorithm:
because lub is monotonic, we
only need to analyze each
loop as many times as the
lattice is tall

Termination

● Let’s formalize the argument that our global constant folding
analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all

Termination

● Let’s formalize the argument that our global constant folding
analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● The use of lub explains why the algorithm terminates:

Termination

● Let’s formalize the argument that our global constant folding
analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● The use of lub explains why the algorithm terminates:

○ values start as bottom and only increase

Termination

● Let’s formalize the argument that our global constant folding
analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● The use of lub explains why the algorithm terminates:

○ values start as bottom and only increase
○ bottom can change to a constant, and a constant to T

Termination

● Let’s formalize the argument that our global constant folding
analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● The use of lub explains why the algorithm terminates:

○ values start as bottom and only increase
○ bottom can change to a constant, and a constant to T
○ thus, C_(x, s) can change at most twice (= lattice height minus

one)

Next Time

● More dataflow analysis
○ “liveness analysis” for dead code elimination

● Inter-procedural analyses
○ Inlining, tail call optimization, and more

Course Announcements

● As many of you have noticed, there was an issue with the PA3
autograder that prevented anyone from passing tests 16+
○ This issue has been fixed as of this morning
○ Discuss with class: do y’all need another extension on PA3? I

am open to giving one.
■ First rule of compilers: semantics >>> optimization

● I will be out of town on Wednesday 4/30 (for ICSE)
○ I’ve therefore rearranged the calendar a bit
○ My PhD student Erfan Arvan will give a lecture on

exceptions

