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● As many of you have noticed, there was an issue with the PA3 
autograder that prevented anyone from passing tests 16+
○ This issue has been fixed as of this morning
○ Discuss with class: do y’all need another extension on PA3? I 

am open to giving one.
■ First rule of compilers: semantics >>> optimization

● I will be out of town on Wednesday 4/30 (for ICSE)
○ I’ve therefore rearranged the calendar a bit
○ My PhD student Erfan Arvan will give a lecture on 

exceptions



Agenda

● Super-local Value Numbering
● Other regional optimizations
● Intro to global optimizations
● Dataflow analysis basics
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● Local Value Numbering (LVN) is a classic algorithm for finding and 

eliminating redundant operations in a basic block
○ LVN uses a table to map names, constants, and expressions 

to value numbers 
■ each value number has a 1:1 relationship with the value 

that it represents
○ LVN table keys are constructed from the value numbers of 

subexpressions
● LVN allows us to trivially identify redundant computations

○ it’s straightforward to extend it to other local optimizations, 
like constant folding
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Review: Regional Optimizations
● A regional optimization considers one or more logically-related 

basic blocks together
○ These blocks are not required to form a whole procedure

■ that’s a “global” optimization; the boundary is fuzzy
○ However, usually they’re “related” in some way: for example, 

the whole body of a loop may be an optimization target
● Regional optimizations usually work on an extended basic block 

(“EBB”): a small control-flow graph of basic blocks
○ Most local optimizations can operate on EBBs with small 

modifications
● Formally, an EBB is a maximal collection of basic blocks with 

unique entry and exit blocks



Extended Basic Blocks: Example

(don’t worry about the details)
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● To extend LVN to more than one basic block, we 
need to reason about all possible paths through 
the EBB

● In theory, we can consider each path 
independently
○ That is, treat each path as if it were a block!

■ after all, no branches in a single path…
● Blocks with single predecessor can keep the 

hashtable from the last block
● Any block with multiple predecessors, such as B

5
, 

can use a fresh hashtable
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combine into a single logical block

…but we 
need S-LVN 
to discover 
these two!
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S-LVN: Practicality

● Unfortunately, analyzing each path separately isn’t feasible, 
because paths grow exponentially in the number of branches
○ this is called the path explosion problem

■ it impacts a number of important static analyses that work 
at path granularity (most famously symbolic execution)

● Regional optimizations can capitalize on the tree structure of an 
EBB, though, to avoid redoing too much work
○ insight: paths share common prefixes

■ e.g., (B
0

, B
2

, B
3

) and (B
0

, B
2

, B
4

) share prefix (B
0

, B
2

)
○ the compiler can cache the results for common prefixes and 

reuse them when analyzing related paths

For more details on this 
algorithm, see the book.



Other Regional Optimizations

● Loop unrolling
● Code motion
● Loop induction variable elimination
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● To unroll a loop, replicate the loop’s body and adjust the logic that 
controls the number of iterations performed

● Direct benefits:
○ reduce number of branches (they’re expensive)
○ enable reuse of certain computations (e.g., outer loop indices)
○ improve spatial locality, especially for array accesses

● Loop unrolling changes the ratio of arithmetic to memory 
operations in the loop
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Loop Unrolling: Indirect Effects
● Loop unrolling has a number of indirect effects, both positive and 

potentially negative:
○ it increases program size. If this causes the instruction cache 

to overflow, it’s not worthwhile to unroll the loop.
○ unrolling increases the number of operations in the loop 

body, which might enable other optimizations
■ e.g., more operations in the loop body might unlock 

interesting instruction schedules
○ unrolling can enable multi-word instructions (i.e., SIMD)

■ SIMD = “single instruction, multiple data”
○ unrolled loop may use more registers, and if it causes a spill 

the unrolling is almost certainly not worth it

Whether or not to unroll a loop often 
depends on these factors, so there is no 
one-size-fits-all algorithm for deciding 
whether to unroll
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Code Motion

● Goal: move loop-invariant calculations out of loops
● Example:

for (i = 0; i < 10; i++) {
   a[i] = a[i] + b[j];
   z = z + 10000;
}

● Benefit: avoids redundant computation each time around the 
loop

t1 = b[j];
t2 = 10000;
for (i = 0; i < 10; i++) {
 a[i] = a[i] + t1;
 z = z + t2;
}
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Strength reduction means replacing 
expensive operations with equivalent 
but less expensive operations
● e.g., x*2 -> x+x
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Loop Induction Variable Elimination

● Common special case of loop-based strength reduction
● For-loop index is the induction variable

○ incremented each time around loop
○ offsets & pointers calculated from it

● If used only to index arrays, rewrite with pointers
○ compute initial offsets/pointers before loop
○ increment offsets/pointers each time around loop
○ no expensive scaling in loop
○ then do loop-invariant code motion

for (i = 0; i < 10; i++){
    a[i] = a[i] + x;
}

for (p = &a[0]; p < &a[10]; p = p+4){
    *p = *p + x;
}
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Summary: Regional Optimizations

● Regional optimizations offer more opportunities than local 
optimizations

● Generally operate on extended basic blocks with one entry/exit
○ commonly, the body of a loop

● Benefits of a regional optimization often depend on indirect 
effects, such as spatial locality
○ This means that they are inherently more risky than their local 

cousins
● Nearly all local optimizations can be extended to work at the 

regional level
○ Which you want to use is up to you!



Trivia Break: CS + Pop Culture
This American has been a professor of both cognitive science and 
computer scientist, though his PhD (from the University of Oregon) is 
actually in Physics. His dissertation work was one of the early 
examples of modern scientific data visualization. However, he is most 
famous not for his academic work but for his nonfiction writing: his 
2007 book I Am a Strange Loop won the Los Angeles Times Book Prize 
for Science and Technology, and his 1979 book Gödel, Escher, Bach: An 
Eternal Golden Braid won the Pulitzer Prize for general nonfiction and 
a National Book Award (at that time called The American Book 
Award) for Science.



Trivia Break: Technology and Business

This Seattle-based ecommerce company’s first order from a 
non-employee was a copy of Douglas Hofstadter’s Fluid Concepts, on 
April 3, 1995. The company survived the dot-com crash in the early 
2000s and went on to become one of the world’s largest companies, 
with a market capitalization of more than 1.8 trillion USD. Internally, 
its corporate culture is focused on the concept of a “flywheel” 
between different parts of the business: that is, that growth in one 
part should encourage growth in other parts, creating positive 
feedback loops.
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“Global” Optimizations

● A global optimization changes an entire method (consisting of 
multiple basic blocks).

● We must be conservative and only apply global optimizations 
when they preserve the original semantics.

● We use global dataflow analyses to determine if it is OK to apply an 
optimization.
○ These analyses have a lot in common with abstract 

interpretation, which we covered earlier in the course
○ Like an abstract interpretation, flow analyses are built out of 

simple transfer functions and can work forwards or 
backwards.
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“Global” Optimizations (continued)

● We want to apply the same kinds of 
optimizations at the global level that 
we do at the local and regional levels
○ constant folding, DCE, etc.

● How would we know it is OK to 
globally propagate constants?
○ e.g., in the CFG to the left, it’s not 

safe to constant fold X!
● To replace a use of x by a constant k we must know this correctness 

condition:
On every path to the use of x, the last assignment to x is x := k
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“Global” Constant Folding: Examples

ok to constant fold: 
all paths have X := 3

not ok to constant fold: 
one path has X := 3, the 
other has X := 4
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“Global” Optimizations: Discussion

● This correctness condition is not trivial to check
●  “All paths” includes paths around loops and through branches of 

conditionals
○ May have an arbitrary number of jumps out of the procedure, 

unlike regional optimization
● Checking such a condition requires global analysis

○ “Global” = an analysis of the entire control-flow graph for one 
method body

● Dataflow analysis is a common global analysis
○ called “dataflow” analysis because it propagates information 

about how data moves through the control-flow graph
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Common Traits of Dataflow Analyses

● Proving most global optimizations safe depends on knowing a 
property P at a particular point in program execution
○ i.e., for all executions, is P true at this point?

● Proving P at any specific program point typically requires 
knowledge of the entire method body

● Property P is typically undecidable
○ Why?

■ Simple consequence of Rice’s Theorem



Review: Undecidability of Program Properties



● Rice’s Theorem: All interesting dynamic properties of a program are 
undecidable:

Review: Undecidability of Program Properties



● Rice’s Theorem: All interesting dynamic properties of a program are 
undecidable:

“interesting” in this context means 
“not trivial”, i.e., not uniformly true 
or false for all programs
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● Rice’s Theorem: All interesting dynamic properties of a program are 
undecidable:
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● Rice’s Theorem: All interesting dynamic properties of a program are 
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely 
■ Oops: We can now solve the halting problem. 
■ Take function H and find out if it halts by testing function 

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Rice’s theorem caveats:
● only applies to semantic 

properties (syntactic 
properties are decidable)

● “programs” only includes 
programs with loops

Review: Undecidability of Program Properties
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Back To Optimization

● Recall that to replace a use of x by a constant k we must know that:
On every path to the use of x, the last assignment to x is x := k

● This correctness condition is hard to check (undecidable)
● Checking it requires an analysis of a whole method body
● We said that was impossible, right?
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analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right 
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t 
know”
○ this is called conservative analysis
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● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as 

rarely as possible
● A sound program analysis has no false negatives

○ always answers “I don’t know” if the property of interest 
might not be true

● Our dataflow analyses for enabling optimizations will be sound 
and conservative
○ i.e., we will not optimize when they say “I don’t know”

Conservative Program Analysis
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● Global constant folding is one example of an optimization that 
requires global dataflow analysis

● Global constant folding can be performed at any point where 
the correctness condition holds

● Let’s consider the case of computing the correctness condition 
at all program points for a single variable X
○ We can easily extend this to other variables later
○ Keep in mind what you know about abstract interpretation 

as we go through this, and look for the similarities
■ there are many!

Example Analysis: Global Constant Folding
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Using the Information

● Given global constant information, it is easy to decide whether or 
not to perform the optimization
○ Simply inspect the x = ? associated with a statement using x
○ If x is a constant at that point, replace that use of x by the 

constant!

● But how can an algorithm compute x = ?



Key Idea

The analysis of a complicated program can be expressed as a 
combination of simple rules relating the change in information 

between adjacent statements
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Explanation:

● The idea is to “push” or “transfer” information from one statement 
to the next

● For each statement s, we compute information about the value of x 
immediately before and after s:
○ C

in
(x,s) = value of x before s 

○ C
out

(x,s) = value of x after s
Definition: a transfer function 
expresses the relationship 
between C

in
(x, s) and C

out
(x, s)

Key Idea



Transfer functions: rule 1

C
out

(x, x := c) = c if c is a constant



Transfer functions: rule 2

C
out

(x, s) = bottom if C
in

(x, s) = bottom

Recall bottom = 
“unreachable code”
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Transfer functions: rule 3

C
out

(x, x := f(…)) = T

This is a conservative 
approximation! f(...) 
might always return a 
constant, but we don’t 
even try!
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Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

How hard is it to 
check if x ≠ y on all 
executions? (oh no)
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● Rules 1-4 relate the in of a statement to the out of the same 
statement 
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of 
the successor statement
○ to propagate information forward along paths

● In the following rules, let statement s have immediate predecessor 
statements p1 , …, pn

Propagation between Statements
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Transfer functions: rule 5

if C
out

(x, pi ) = T for some i, then C
in

(x, s) = T

If there’s any path 
on which we don’t 
know, then we 
don’t know at all
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Transfer functions: rule 6

if C
out

(x, pi ) = c and C
out

(x, pj ) = d and d ≠ c then C
in

 (x, s) = T

We don’t know 
which of the paths a 
given execution will 
take (so assume T)
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Transfer functions: rule 7

if C
out

(x, pi ) = c or bottom for all i, then C
in

(x, s) = c

If x has the same 
value (or bottom) 
on all input edges, it 
has that value in s



Transfer functions: rule 8

if C
out

(x, pi ) = bottom for all i, then C
in

(x, s) = bottom
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A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the 

inputs to the procedure.
● Set C

in
(x, s) = C

out
(x, s) = bottom everywhere else

● Repeat until all points satisfy rules 1-8: 
○ Pick s not satisfying rules 1-8 and update using the appropriate 

rule

This is a fixpoint (or fixed point) 
iteration algorithm. Such algorithms 
are characterized by a finite set of 
rules, which are applied until they 
“reach fixpoint”, which means that 
applying any rule produces no 
change.
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Why do we need bottom?

● To understand why we need to set non-entry points to bottom 
initially, consider a program with a loop.

● Because of cycles, all points must have values at all times during 
the analysis

● Intuitively, assigning some initial value allows the analysis to break 
cycles

● The initial value bottom means “we have not yet analyzed control 
reaching this point”



Another example: dealing with loops

Let’s do it on paper! 
Analyze the value of X.



Another example: dealing with loops

(We went through 
this answer on the 
whiteboard.)
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Lattices & Orderings

● You may have observed that there is a natural order to the different 
abstract values in our dataflow analysis
○ (Most) locations start as bottom
○ Locations whose current value is bottom might become c or T
○ Locations whose current value is c might become T

■ but never go back to bottom!
○ Locations whose current value is T never change
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0 1-1 ……

bot



Lattices & Orderings

T

0 1-1

bot

……

Review of how to read a lattice:
● abstract values higher in the 

lattice are more general (e.g., T 
is true of more things than 0)

● easy to compute least upper 
bound: it’s the lowest common 
ancestor of two abstract values

This structure between values is a lattice (just like in AI!):
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Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one 

direction as the analysis progresses
○ we can rewrite rules 5-8 in our nullness analysis using lub:

C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }lub is the reason dataflow 
analysis is an algorithm: 
because lub is monotonic, we 
only need to analyze each 
loop as many times as the 
lattice is tall
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Termination

● Let’s formalize the argument that our global constant folding 
analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that 

eventually nothing changes, after all
● The use of lub explains why the algorithm terminates:

○ values start as bottom and only increase 
○ bottom can change to a constant, and a constant to T 
○ thus, C_(x, s) can change at most twice (= lattice height minus 

one)



Next Time

● More dataflow analysis
○ “liveness analysis” for dead code elimination

● Inter-procedural analyses
○ Inlining, tail call optimization, and more



Course Announcements

● As many of you have noticed, there was an issue with the PA3 
autograder that prevented anyone from passing tests 16+
○ This issue has been fixed as of this morning
○ Discuss with class: do y’all need another extension on PA3? I 

am open to giving one.
■ First rule of compilers: semantics >>> optimization

● I will be out of town on Wednesday 4/30 (for ICSE)
○ I’ve therefore rearranged the calendar a bit
○ My PhD student Erfan Arvan will give a lecture on 

exceptions


